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Discussions about school mathematics often address the importance of reasoning and 
proving for building students’ understanding of mathematics. However, there is little 
research examining how teachers enact tasks designed to engage students in justifying 
and proving in the classroom. This article presents results of a study investigating the 
processes and outcomes of implementing proof-related tasks in the classroom. Data 
collection consisted of observations of 7 middle school classrooms during implemen-
tation of proof-related tasks—tasks providing opportunities for students to produce 
generalizations, conjectures, or proofs—in the Connected Mathematics Project (CMP) 
curriculum by teachers experienced in using the materials. The findings suggest that 
students’ experiences with such tasks are insufficient for developing an understanding 
of what constitutes valid mathematical justification.
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Despite the wealth of existing literature on students’ abilities to generate and 
understand proof, we still know very little about how skills related to justifying and 
proving are taught in school mathematics—particularly in mathematics courses 
outside of high school geometry. We do know that of the many functions of proof 
in mathematics, which consist of “verification, explanation, systematization, 
discovery, communication, construction of empirical theory, exploration of defini-
tion and of the consequences of assumptions, and incorporation of a well-known 
fact into a new framework” (Yackel & Hanna, 2003, p. 228), proof in the high 
school geometry curriculum has evolved to emphasize verification (Herbst, 2002b). 
Further, research has not examined students’ opportunities to develop deductive 
reasoning and to learn skills for evaluating the validity of others’ mathematical 
arguments. Without such opportunities, students are inadequately prepared to 
participate in meaningful discussions about mathematical proofs and to explore the 
variety of roles a proof can play in doing mathematics.
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In the United States, calls for reform declare that reasoning and proof cannot be 
activities that students do in some mathematics classes but not in others. Rather, 
reasoning and proving should be an everyday occurrence in K–12 mathematics 
classrooms (NCTM, 2000, 2009). However, mathematics education researchers in 
other countries with long-standing commitment to proof throughout the curriculum, 
such as Italy, France, and Japan, have found that teachers find it challenging to 
include activities related to reasoning and proving as a regular part of their practice. 
This is primarily due to difficulties students face when generating justifications 
and proofs (Mariotti, 2006). To understand how to change the ways in which 
students learn to prove in school mathematics communities, we need to understand 
how teachers, students, and the curricula they use—elements existing at the nexus 
of school mathematics communities (Cohen, Raudenbush, & Ball, 2003)—interact 
in classroom settings when students are discussing and developing justifications 
and proofs. The goal of this research is to investigate how tasks designed to engage 
students in justifying their reasoning are implemented in middle school class-
rooms.

The corpus of existing literature on students’ conceptions of proof indicates that 
students at all grade levels have great difficulty with proof (Knuth, Choppin, & 
Bieda, 2009; Chazan, 1993; Hoyles, 1997; Hoyles & Küchemann, 2002). Students, 
even undergraduate mathematics majors, tend to generate empirically based justi-
fications instead of constructing deductive proofs and to supplement valid deduc-
tive proofs with diagrams or examples (Chazan, 1993; Hoyles, 1997; Knuth, 
Choppin, Slaughter, & Sutherland, 2002; Weber, 2001). The nature of the didactical 
situation of teaching students to do proofs in school mathematics, however, may 
unintentionally support a dichotomy between the mathematically rigorous proofs 
that teachers expect from students and the empirically based arguments that 
students believe are sufficient for proof (Harel & Sowder, 1998; Hoyles, 1997; 
Weber, 2001). Students’ prior experience with what serves as proof in contexts 
outside of mathematics, such as the notion of providing proof that a criminal has 
committed a crime, conflicts with the construct of mathematical proof, particularly 
its emphasis on deductive reasoning with general arguments, that is unique to the 
discipline (Fischbein, 1982). Mathematics teachers and the textbooks they use are 
representatives of the discipline and serve as guides in helping students understand 
what counts as valid mathematical proof. This role requires teachers to strike a 
precarious balance between illustrating norms of proving as characteristic of the 
discipline and leaving room for students to discover and learn the necessity and 
utility of those norms (Herbst, 2002a).

Whereas teachers may face pragmatic difficulties when engaging students in 
proving in classroom settings, teachers’ knowledge of proof and their beliefs about 
teaching proof may also constrain their ability to teach proof effectively. Examining 
high school (Grades 9–12) mathematics teachers’ beliefs about pedagogy and proof, 
Knuth (2002a) found that many of the teachers did not believe that either formal 
or less formal proofs were suitable for all secondary mathematics students. The 
teachers struggled to understand, mathematically, the role of proof and the various 
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forms of proof that can be employed to justify an argument (Knuth, 2002b). Given 
that middle school (Grades 6–8) teachers may have taken fewer proof-related 
advanced mathematics courses than their high school counterparts, Knuth’s find-
ings about the knowledge and beliefs of high school mathematics teachers regarding 
proof suggest that middle school teachers are not likely to be prepared for imple-
menting activities to develop students’ deductive reasoning and support students 
in communicating their reasoning through proof.

Existing literature also suggests weaknesses in the potential of curriculum to 
facilitate engaging students in justifying and proving. Although U.S. students’ initial 
encounter with proof traditionally occurs during a high school geometry course, 
recently developed series of NCTM Standards-based middle-grades curricula (e.g., 
Mathematics in Context [MiC], Connected Mathematics Project [CMP]), funded by 
the U.S. National Science Foundation (NSF), were designed to include activities that 
more explicitly address reasoning and proof. One analysis of the CMP curriculum 
has shown that although the materials contain a variety of opportunities for students 
to engage in reasoning and proof, these opportunities are not consistent in sixth 
through eighth grades (G. J. Stylianides, 2007, 2009). Stylianides found that out of 
a sample of 4,855 tasks 1 from units focused on algebra, number theory, and geom-
etry, 40% were designed to offer at least one opportunity for students to engage in 
reasoning and proving activities. The distribution of these tasks across the curric-
ulum, however, was uneven. Stylianides determined that the first unit in sixth grade 
offered more reasoning-and-proving tasks (tasks that engaged students in pattern 
recognition, pattern generalization, conjecture development, and/or proof produc-
tion) than any other unit in the series for sixth through eighth grades. The inconsis-
tency of the CMP curriculum’s inclusion of reasoning-and-proving tasks may result 
in a lack of curricular support for the development of students’ knowledge and skills 
to reason and prove throughout middle school. Further, inconsistent experiences 
with proving may leave students unprepared to successfully learn more rigorous, 
formal proof in high school mathematics courses. To achieve NCTM’s (2000) recom-
mendations that reasoning and proof be a regular, everyday part of doing mathe-
matics for all students, it is vitally important that the curriculum materials provide 
consistent, progressively advanced opportunities to justify and prove.

One way to gain a better understanding of the possibilities for improving the 
teaching of proof is to explore a best-case scenario: classrooms using a curriculum 
with rich opportunities for students to justify and prove, taught by teachers who are 
experienced with the curriculum and attending ongoing professional development. 
In such a case, the question is how proof-related tasks are enacted and how those 
aspects of teaching proof can apply to other settings. The aim of this study is to 
examine the process of learning to prove in middle school classrooms by studying 
the enactment of proof-related tasks in settings such as those described previously 
as best-case scenarios. This research has implications not only for middle school 

1 Tasks here refer to “any exercise, problem, activity, or parts thereof that have a separate marker in 
the students’ textbook” (G. J. Stylianides, 2009, p. 270).
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teachers’ pedagogies with regard to proof but also for ways in which curricula can 
support preparation of students for mathematics beyond the middle grades.

CONCEPTUAL FRAMEWORK

Applying a Unifying Definition of Proof in School Mathematics

Scholarly work examining students’ and teachers’ proving activity has typically 
utilized proof frameworks that originate with a definition of proof as mathemati-
cians use proof. One broadly disseminated definition, from Principles and 
Standards for School Mathematics (NCTM, 2000), states that proofs are “argu-
ments consisting of logically rigorous deductions of conclusions from hypotheses” 
(p. 55). This definition is adequate in describing the results of proving in a math-
ematically appropriate way but fails to describe the core features of a proof and the 
social ingredients necessary to generate proof.

A. J. Stylianides’ (2007) definition of proof aligns the conceptions of proof in 
the discipline with those in school mathematics, emphasizing sociocultural aspects 
of students’ proving practice:

Proof is a mathematical argument, a connected sequence of assertions for or against 
a mathematical claim, with the following characteristics:

1. �It uses statements accepted by the classroom community (set of accepted state-
ments) that are true and available without further justification;

2. �It employs forms of reasoning (modes of argumentation) that are valid and known 
to, or within the conceptual reach of, the classroom community; and

3. �It is communicated with forms of expression (modes of argument representation) 
that are appropriate and known to, or within the conceptual reach of, the classroom 
community. (p. 291)

One critical feature of Stylianides’ definition is the attention to the role of the 
classroom community. Although mathematicians rigorously scrutinize their 
colleagues’ proofs, teachers typically serve as arbiters of what counts as valid proof 
in the classroom. The didactical contract 2 between teacher and students in the 
classroom can constrain students’ experiences with authentic proving activity 
(Herbst, 2006) and may lead unintentionally to the development of authoritarian or 
ritualistic proof schemes (Harel & Sowder, 1998). However, if proof, as defined by 
A. J. Stylianides, emerges as a product of discussions between the teacher and 

2 The didactical contract is a set of implicit expectations between teachers and learners in instruc-
tional settings, established by institutional goals that “link the roles of teacher and students and shape 
their work in such a way to meet these goals” (Martin, McCrone, Bower, & Dindyal, 2005, p. 99, citing 
Brousseau, 1984).
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students about what is required to justify a conjecture for all cases and how various 
forms of argumentation influence a justification’s proof potential, students learn 
that proof goes beyond convincing oneself and convincing a friend in that it must 
convince the broader audience of the classroom community. Further, proof also 
becomes a vehicle for establishing stores of mathematical knowledge developed 
by, and accessible to, members of the classroom community. To understand how 
classroom communities engage in proving activities, attention must be paid to the 
teacher’s and students’ moves, or the various kinds of turns in discourse, following 
the path of a written proof-related task to the resulting justification or proof.

Defining a Process of Enacting Proof-Related Tasks

The design of this research draws from a framework of the mathematical instruc-
tional task (Henningsen & Stein, 1997) to understand the implementation of proof-
related tasks. The framework (see Figure 1) illustrates that a task as written is not 
considered the same as the task as implemented; mathematics tasks evolve from 
their form in curriculum materials to a new form as teacher and students interact 
with the tasks. Applying this framework to a study of task implementation, 
Henningsen and Stein found that tasks set up by the teacher to be “doing mathe-
matics” tasks—tasks of the highest cognitive demand that include activities such 
as developing and proving conjectures—often devolve into tasks of lower cognitive 
demand. Their research identified several factors related to a reduction in cognitive 
demand during implementation, including reduction of task demands by the 
teacher, inappropriateness of task for the students, and a focus on correct answers 
instead of process-oriented outcomes.

Figure 1. Elements of focus in studying the implementation of proof-related tasks  
(adapted from Henningsen & Stein, 1997, p. 528).
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This study extends existing work of Henningsen and Stein (1997) by distin-
guishing proof-related tasks from other “doing mathematics” tasks such as nonrou-
tine problem solving, focusing data collection and analysis on the set-up and the 
implementation of proof-related tasks, and attending to aspects of the teacher’s and 
students’ interactions during whole-class discussions about proof-related tasks. The 
particular features of interest in the framework (shaded in Figure 1) are the teacher- 
and student-related factors influencing the evolution of a task as intended by the 
teacher to the task as enacted with students. Such factors include the teacher’s and 
students’ discursive moves as they discussed proof-related tasks in the classroom, 
focusing not only on how the teacher guides students to work on such tasks but also 
on how students respond and how the teacher attempts to develop and address 
students’ responses. This research shows the nature of teacher and student interac-
tions as a teacher enacts proof-related tasks in a middle school classroom.

RESEARCH QUESTION

Considering the existing work about students’ competencies in constructing 
mathematical proofs, teachers’ beliefs and knowledge about proof, and the oppor-
tunities as written in curriculum for students to engage in producing justifications 
and proofs, the guiding question framing this research addresses the kinds of expe-
riences students encounter in the classroom when justifying and proving their 
mathematical claims, namely:

What is the nature of the students’ and teacher’s actions and discourse during the 
enactment of tasks written to engage middle school students in justifying and 
proving?

METHOD

The author conducted a multiple case study of classrooms engaged in doing proof-
related tasks with experienced teachers familiar with the curricular materials that 
contained those tasks. Multiple case studies are used when addressing either descrip-
tive or explanatory research questions for which the units of analysis are multiple 
cases chosen “as replications of each other, contrasting comparisons, or as hypoth-
esized variations” (Yin, 2006, p.112). In this research, the case is the enactment of 
proof-related tasks in middle school mathematics, for which the units of analysis 
are implementations by experienced sixth- through eighth-grade teachers trained to 
implement curricular materials containing proof-related tasks. Given that the 
research question seeks descriptions of the students’ and teacher’s involvement in 
the enactment of proof-related tasks across the middle school level, the multiple case 
study design supports data collection to address the intent of the research. Classroom 
observations, teachers’ responses to preobservation writing prompts, and teachers’ 
responses during postobservation interviews served as the sources of data for these 
case studies. The data presented in this manuscript come from the multiple case 
study, primarily from observations of several lesson implementations over the course 
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of the school year intended to generate rich descriptions of the nature of teachers’ 
and students’ engagement with proof-related tasks.

Participants

Data were collected in seven middle schools from the same school district. 
Among these seven schools, 54% of the entire student population declared race as 
White, whereas 46% reported NonWhite (either African American, Hispanic, Asian 
American, or Native American). The percentage of students among these seven 
schools eligible for the free/reduced lunch program was 42% (range: 17.5%–85%). 
All seven middle schools from this district had begun to implement the Connected 
Mathematics Project (CMP) curriculum 6 years prior to data collection. Authors 
of the CMP curriculum wrote the series to align with Curriculum and Evaluation 
Standards for School Mathematics (NCTM, 1989). One stated goal of the CMP 
curriculum is to provide students with opportunities to reason and prove throughout 
the series, and, as indicated earlier, an independent curriculum analysis reported 
that 40% of the tasks, as written, engage students in reasoning and proving (G. J. 
Stylianides, 2007, 2009). Although a new version of CMP (CMP 2) was launched 
in 2005, only three of the seven schools were in the process of transitioning to CMP 
2 during the period of data collection. The participating teachers from these three 
schools taught the lessons observed from the most recent version.

Recruiting participants began with determining that, for the purpose of sampling 
across grade levels and different demographic contexts, the sample would consist 
of two sixth-grade teachers, two seventh-grade teachers, and two eighth-grade 
teachers from different schools within the district. No two teachers participating in 
the study would teach in the same building. The district middle school mathematics 
resource personnel recommended 22 teachers for participation based on the criteria 
that each of the potential participants had taught from CMP for at least 3 years and 
had participated in district-mandated professional development for the curriculum. 
After initially categorizing this list of 22 teachers by grade level and school, the 
author selected one teacher at random in each of the seven schools to be contacted 
to participate, with the goal of obtaining two teachers at each grade level for a total 
of six participants. The seven teachers initially recruited received e-mail messages 
informing them about the study and what they would be asked to do as a participant. 
Two of the seventh-grade teachers in the initial pool declined to participate, so two 
other seventh-grade teachers, selected at random, were recruited. A total of six 
teachers—two sixth-grade teachers, two seventh-grade teachers, and two eighth-
grade teachers—volunteered to participate in the study from the nine teachers 
recruited. One sixth-grade teacher, who was a part of the initial set of seven teachers 
recruited to participate in the study, indicated a willingness to participate late in 
the recruitment process. Although this resulted in three sixth-grade teacher partic-
ipants, the teacher was included in the sample so that all seven middle schools that 
had participated in CMP implementation six years earlier would have representa-
tion in the participant pool.
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Participants had taught, on average, a total of 17 years, with 9 years being the 
least amount of teaching experience for any teacher in the group. Additionally, six 
of the seven teachers belonged to the district’s CMP Leadership Academy, which 
required members to attend daylong seminars at least once per quarter to explore 
problems with implementing CMP and to discuss research-based articles covering 
current issues in mathematics education. It is important to note that measures of 
knowledge about, or interest in, reasoning and proof were not used to select 
participants. Instead, participant recruitment was designed to obtain a sample 
representative of highly qualified middle school mathematics instruction—expe-
rienced teachers who participate in ongoing professional development using the 
curriculum. Studying such a sample of teachers would develop an understanding 
of how teachers, without necessarily having obtained professional development on, 
or having professional interests in, issues of teaching and learning reasoning and 
proof, would implement tasks with rich potential for engaging students in justifying 
and proving.

Curriculum Analysis

Preceding collection of data in the classrooms, the author conducted a targeted 
curriculum analysis of CMP textbooks to determine lessons (called Investigations 
in CMP) that contained proof-related tasks (called Problems in CMP). From this 
point forward, the terms lessons and investigations, as well as tasks and problems, 
will be used interchangeably. In this study, proof-related tasks are defined as those 
written to engage students in generalizing patterns and developing conjectures 3 
from such patterns or problems presenting conjectures to be justified. This curric-
ulum analysis enabled the author to schedule classroom observations that maxi-
mized the likelihood that the class periods observed would include activity 
involving proof-related tasks. As such, the analysis aimed to identify neither every 
proof-related task as written in CMP (because not all investigations containing 
proof-related problems were taught during the data collection period) nor every 
task that could potentially result in proving activity.4

Unit of Analysis

The analysis included only problems labeled as “Problem” or “Follow-up” (for 
example, “Problem 1.1” or “1.1 Follow-Up”) within unit investigations.5 Homework 
problems, known in CMP as “Applications, Connections, Extensions” (ACE) 
problems, or “Mathematical Reflection” questions were not included because the 
role of homework in the classroom and the assignment of extension-type questions 

3 Following G. J. Stylianides (2009), the analysis employed a definition of conjecture as “a reasoned 
hypothesis about a general mathematical relation [based] on incomplete evidence” (p. 11), in which 
the modifier “reasoned” distinguishes hypotheses that were conjectures from arbitrary claims.

4 For a complete curriculum analysis of the CMP texts with regard to reasoning-and-proving, see  
G. J. Stylianides (2009).
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typically varies widely from teacher to teacher. The only materials examined when 
determining which investigations contained proof-related problems were the 
student text materials; however, teacher support materials were also referenced to 
determine the support offered by the curriculum in implementing both the entire 
lesson and particular proof-related problems.

Method Used to Classify Problems

Problems were initially selected based on whether or not they contained one or 
more of the following key verbs indicative of proof-related problems: prove, conjec-
ture, justify, verify, show, and convince. Once a problem had been selected, the 
complete lesson containing the problem was reviewed to assess whether the lesson 
offered potential for the problem to engage students in developing conjectures when 
it was implemented in the classroom. Based on the nature of the activity and subse-
quent questions, additional problems found in lessons with problems containing 
key verbs were identified as having potential to engage students in developing 
justifications, despite not containing key verbs. For instance, if a problem required 
students to generalize patterns and the teacher support materials suggested possible 
justifications for a generalization, the problem was selected based on its potential 
for students to generate justifications as the teacher and students discussed the 
patterns found. Because the aim of the study was to learn more about how proof-
related problems are implemented in the classroom rather than study the imple-
mentation of all proof-related problems in CMP, the curriculum analysis targeted 
the most salient opportunities at the risk of missing some problems with proving 
potential. Nonetheless, each of the lessons selected for observation contained at 
least one proof-related problem.

Data Collection

The author observed 6 or 7 investigations that contained proof-related problems 
(identified as described in the previous section) per classroom, resulting in 49 
observations 6 overall. Due to the occasional difficulty in scheduling observations, 
6 of these investigations were taught in multiple classrooms, resulting in a total of 
43 different investigations observed. The investigations observed spanned a wide 
range of mathematical content areas, from topics in number theory, such as factors 
and multiples, to statistical topics, such as measures of center. Three data sources 
provided information about the practices of implementing proof-related problems: 

5 CMP uses the term investigations to name lessons. Within an investigation, there may be one or 
more problems. These are the tasks that engage students in the mathematics of each investigation. 
These problems often have several parts, and there are also follow-ups that can be used to assess stu-
dent understanding as well as provide an extension of the mathematics in the problems.

6 Some investigations took more than one class period to implement, requiring two observations. Con-
sequently, there is not a one-to-one correspondence between investigations and observations.
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(a) teachers’ responses to preobservation writing prompts, (b) classroom observa-
tions, and (c) teachers’ responses in postobservation interviews.

Preobservation Writing Prompts

At least one day before each observation, the author e-mailed three questions to 
participants to obtain data about their preparation for the lesson. Participants 
e-mailed their responses back to the author prior to the beginning of each observa-
tion. The questions were as follows:

Q1.What changes have you made to the investigation as written in CMP? Why?

Q2. What are your goals for the investigation?

Q3. �What problem(s) from the investigation is (are) particularly important? What 
are ideal responses you hope students will provide to this (these) problem(s)?

Because the preobservation questions were the same regardless of the lesson 
being observed, e-mailed responses were as accurate and more time efficient for 
the participants than responses that might have been obtained in preobservation 
interviews.

Responses to the preobservation questions enriched data collected in observa-
tions by identifying possible changes in the written curriculum prior to task imple-
mentation (Q1), revealing teachers’ interpretations of the mathematical goals of 
the lesson and whether developing students’ competencies in justification and proof 
were explicit goals (Q2), and determining whether teachers identified proof-related 
tasks as important in the CMP lessons prior to lesson enactment (Q3).

Classroom Observations

During observations, the author constructed field notes guided by an observation 
protocol. The observation protocol consisted of questions designed to capture 
aspects of implementation along the following dimensions motivated by the math-
ematical task framework (Henningsen & Stein, 1997): task features as set up by 
the teacher, cognitive demand of the task as set up by the teacher, classroom norms 
evident during implementation (e.g., expectations for group work during task), task 
conditions during implementation (e.g., appropriateness of time allotted for task 
completion), teachers’ and students’ habits and dispositions during implementation 
(e.g., a teacher’s willingness to allow students to struggle during a difficult task, 
students’ perseverance in finding a solution to a difficult task), task conditions as 
enacted, and cognitive demands of tasks as enacted. After each observation, the 
author wrote concise narratives of what happened during the observations by 
answering questions from the protocol using field notes and digital audio record-
ings of the observed lesson. Questions whose responses provided documentation 
of teachers’ and students’ instructional habits during implementation in narratives 
included:
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1. �What questions did students have about the investigation, and what were the 
teacher’s responses?

2. In what ways, if any, did students not follow instructions?

3. �How did the teacher assess student progress on the problems in the investiga-
tion?

4. How did students respond to the teacher’s guidance during the investigation?

5. What changes did the teacher make to the investigation as it was enacted?

6. What questions/responses from students prompted changes?

7. �Did she or he restate the explanation, ask for feedback from class, or ask for other 
justifications to the proof-related problem?

8. When did the teacher ask students to explain their justification further?

9. �What kinds of information were assumed/“taken-as-shared” during the discus-
sion of the proof-related problem?

10. �Were any explanations given for responses to the proof-related problem high-
lighted and in what way?

11. �What aspects of the lesson discussion seemed to be difficult for the teacher to 
facilitate?

The field notes did not include analytic comments in an effort to approximate an 
objective account of the events observed, whereas the narratives included comments 
and inferences from the researcher.

Teacher Interviews

The author interviewed each participant after having conducted at least four 
observations. The author decided to interview after an observation if the observa-
tion contained episodes of classroom discussion that were particularly pertinent to 
the goals of the research and needed both clarification and affirmation from a 
teacher’s point of view. In all cases, every attempt was made to conduct the inter-
view as close in time to the actual implementation as possible. Whereas some 
teachers had a planning period after the class that was observed, other teachers 
could be interviewed only at the end of the school day. As a result, some interviews 
were face-to-face, and others were conducted by telephone. The author audio 
recorded each interview conversation.

The goal of the interviews was to obtain the teacher’s perspective on the investi-
gation implementation, as well as to learn about why the teacher responded in 
particular ways to student thinking during the enactment of proof-related problems. 
Thus, although some questions such as “What did you think about how the inves-
tigation went today?” were standard in all interviews, other questions such as “Why 
did you decide to highlight [student’s name]’s justification?” were more specific to 
the dialogue during the lesson. By obtaining the teacher’s perspective on the inves-
tigation implementation, the postobservation interview responses informed inter-
pretations of the teacher’s discourse moves after analysis of the field notes.
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Data Analysis

Data analysis primarily involved coding classroom observation field notes for 
teachers’ and students’ verbal responses and any written work for display to the 
entire class during the implementation and enactment of the proof-related problems, 
and then identifying patterns in the responses and written work across and within 
the observations at each grade level. Once patterns were identified, both the preob-
servation responses and postobservation interviews were consulted to provide 
insight into inferences made to determine the patterns.

The analytic process consisted of four stages, 0 to 3. During Stage 0, the author 
segmented field-note records by changes in either participant structure (e.g., 
teacher-led, TL, to individual work time, IW) or activity structure (e.g., warm-up, 
WU, to homework review, HW) as the records were created. This in-the-moment 
analysis was necessary so that the time spent either in a particular participant 
structure or activity structure could be noted in the absence of anything audible on 
the recording. Stage 1 was the first step in analysis after all observations were 
completed in a teacher’s classroom. During Stage 1, the author identified units of 
analysis at a relatively large grain size, separating events named as opportunities 
to prove—generalizations or conjectures students offered in the context of proof-
related tasks—from other kinds of classroom events. The following example shows 
the kinds of statements students generated during events coded as opportunities to 
prove:

Seventh-grade teacher: 	� Look at the boxes that you build. Look at the dimensions and the 
surface area and draw conclusions. Why are those surface areas so 
different?

Student: 	 If the length is small, the surface area might be small.
Sixth-grade student:	� Even numbers are composite numbers, and the odd ones are prime 

numbers.

To establish the reliability of the author’s coding of events as opportunities to prove, 
the author’s codes for Stage 1 were compared with codes for Stage 1 analysis gener-
ated by a second coder from six complete observations (two observations at each 
grade level). Between the two independent analyses of these data sets, the coding 
of events as opportunities to prove was aligned 86% of the time.

In Stage 2, the analytic process distinguished segments of the field notes 
containing opportunities to prove from instances coded as proving events, events 
during which students provided justifications for the generalizations or conjectures 
coded as opportunities to prove. The author classified justifications into one of two 
types: (a) justification consisting of arguments treating a general case or (b) justi-
fication consisting of nonproof arguments, for example, using examples or restating 
a conjecture instead of a justification.

Finally, in Stage 3, utterances from the teacher and the students were coded using 
a constant comparative method of coding (Glaser & Strauss, 1967), focusing on 
the teacher’s involvement and the students’ involvement (teacher’s and students’ 
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moves) in the discourse during proving events. Elements of the field notes were 
coded at the turn level; thus, individual student and teacher moves related to each 
part of the proving process were coded as separate instances. This article features 
results derived from analyses completed during Stage 3.

RESULTS

The primary goal of this study was to determine the nature of the teacher’s and 
students’ participation in the enactment of proof-related problems from the CMP 
curriculum in middle school classrooms. Observations of the implementation of 
proof-related problems not only revealed how students demonstrated proving-
related competencies but also defined characteristics of the pedagogy of proving 
that emerged during implementation. This section presents descriptive statistics 
about the opportunities to prove, and presents analyses of episodes from the obser-
vations to illustrate various teacher and student moves in response to the justifica-
tions during the process of enacting proof-related problems (see Figure 2, p. 367). 
Figure 2 presents the various paths that the proof-related problems followed when 
implemented in the classroom. The author developed these trajectories with the 
assumption that the classroom community either enacted a task, meaning that 
students provided a justification to a generalization that served as a response to the 
task, or did not enact a task. In either case, Figure 2 shows the teacher’s and students’ 
feedback to a generalization after task enactment took one of three paths.

Implementation of Proof-Related Problems

Two conditions, determined prior to the observations, were used to identify a 
proof-related problem as being implemented: (a) the teacher provided students with 
instructions to work on the proof-related problem(s) at the start of the activity 
without changing the problem(s) as written in the text; and (b) the teacher elicited 
students’ responses to the problem(s) during whole-class discussion. Although it 
was possible for the teacher to modify a problem written in the text as a proof-
related problem to an alternative proof-related problem, this did not happen in any 
of the observations.

Overall, 71% (52 of 73) of the problems identified as proof-related prior to the 
observations were proof-related as implemented (see Table 1). Of the remaining 21 
problems, two factors contributed to nonimplementation. For 15 of the 21 problems, 
lack of time was the primary factor that prevented the problems from being imple-
mented. Although teachers instructed students to work on the proof-related prob-
lems during the investigation, there was not enough time after the activity to discuss 
answers to some or all of the problems. A related but less common factor was the 
teacher’s choice not to have students work on the problems in the moment of task 
implementation (6 out of 21 problems). When asked in postobservation interviews 
why they decided not to assign those problems during class work time, in all 
instances teachers cited a concern that there would not be enough time to get 
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through the material in the lesson. Another potential way that a proof-related 
problem might not be implemented is if the teacher modified instructions when 
assigning a proof-related problem to change the cognitive demand of the problem 
as written. However, this was not observed in the sample of observations 
conducted.

As evident in Table 1, the sixth-grade investigations observed contained more 
proof-related problems as written, and the data suggest the possibility that the 
sixth- and seventh-grade classroom communities observed in this study supported 
the implementation of more proof-related problems than the eighth-grade class-
rooms. However, it is worth noting the limitations of the data collection methods 
that affect cross-grade comparisons. First, there were differences in the sampling 
of teachers and lessons across the three grade levels. The sample consisted of three 
sixth-grade teachers, compared to only two teachers in each of seventh and eighth 
grades. Also, there were 19 lessons observed in sixth-grade classrooms compared 
to only 12 lessons each in seventh and eighth grades. Most important, the author 
sampled from the set of CMP investigations containing proof-related problems to 
determine the investigations to be observed; this sample is not a representative 
sample of all lessons in the participating classrooms. As such, the sample cannot 
be considered representative of the proof-related instruction in the participating 
classrooms.

Despite these limitations, the data appear to support G. J. Stylianides’ (2007, 
2009) conclusions about the irregularity of reasoning and proving opportunities as 
written in the CMP curriculum. In the sixth-grade curriculum, there were more 
proof-related problems as written in the lessons observed (40 problems from 19 
lessons [see Table 1], or roughly two problems per investigation) than in seventh 
grade (16 problems from 12 lessons, or roughly one problem per investigation) or 

Table 1
Problems Implemented Compared to Problems Written

Gr.

No. of different 
investigations 

observed

No. of different 
problems used in 

observed investiga-
tions that were 

“proof-related as 
written”a

No. (percentage) of different 
“proof-related as written” 

problems observed in at least 
one of the different investiga-
tions that were “proof-related 

as implemented”

6 19 40 31 (78%)

7 12 16 13 (81%)

8 12 17 8 (47%)

Total 43 73 49.94 (71%)

aSome, but not all, investigations were observed in multiple teachers’ classrooms. To 
minimize the unintended sampling effects of observing one lesson in multiple classrooms, 
a proof-related problem was counted once as implemented if it was observed to be imple-
mented in at least one classroom, as shown in the third column of the table.
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eighth grade (17 problems from 12 lessons, or roughly one problem per investiga-
tion). The data also appear to suggest that there were more proof-related problems 
implemented per investigation in sixth grade (31 problems from 19 lessons, at a 
rate of 1.6 problems per investigation) than in seventh grade (13 problems from 12 
lessons, at a rate of 1.1 problems per investigation) or in eighth grade (8 problems 
from 12 lessons, at a rate of 0.67 problems per investigation).

Opportunities to Prove

Opportunities to prove were possible outcomes of the implementation of proof-
related problems, as shown in the trajectory of proof-related tasks as observed 
provided in Figure 2 (on p. 367). Each proof-related problem in the lessons 
observed was written, at minimum, to elicit conjecture development; therefore, 
students’ expected responses to these problems were conjectures. An opportunity 
to prove in the classroom surfaced once a student offered a response in the form of 
a conjecture. Even if the proof-related problem as intended did not explicitly ask 
students to provide a justification to support the conjecture, the emergence of a 
conjecture opened the door for the teacher or other students to ask for a justification 
before the generalization was accepted. Table 2 shows the extent to which proof-
related problems generated these opportunities to prove.

From the 52 proof-related problems implemented in observations across the 
seven classrooms, students’ responses presented 109 opportunities to prove. Of the 
109 opportunities to prove (conjectures) that emerged, students did not justify in 
nearly half of the opportunities to prove at each grade level. Because CMP empha-
sizes whole-class discussion of students’ work, it is not surprising that there are 

Table 2
Opportunities to Prove Generated From Problems Implemented

1 2 3 4 5

Gr.

No. of problems 
proof-related as 

implemented (see 
Table 1)

No. of opportuni-
ties to prove 

generated from 
proof-related 
problems as 

implementeda

No. (%) of 
opportunities to 
prove supported 
with a student 
justification

No. (%) of 
opportunities to 

prove not 
supported with a 
student justifica-

tion

6 31 65 41 (63%) 24 (37%)

7 13 28 11 (39%) 17 (61%)

8 8 16 7 (44%) 9 (56%)

Total 52 109 59 (54%) 50 (46%)

aAs each problem was implemented, more than one opportunity to prove could be gener-
ated. As such, the totals reflect situations in which more than one opportunity to prove 
emerged during the implementation.
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more opportunities to prove than proof-related problems implemented, because 
more than one student would likely have the opportunity to share a conjecture in 
response to a problem. It is important to note that the opportunities to prove as 
reported in Table 2 are not counts of conjectures that make different claims. For 
example, if, at distinct times during the discussion, two students both conjectured 
that the sum of two odd numbers is even, two separate opportunities to prove were 
counted. Whereas multiple opportunities to prove (conjectures) could be generated 
from one proof-related problem, students provided either no justification for an 
opportunity to prove or one justification for an opportunity to prove.

The following results shed light upon the teachers’ and students’ moves in these 
situations in which opportunities to prove emerged as a result of proof-related 
problem implementation. The results first examine teachers’ and students’ moves 
during the episodes in which opportunities to prove were not justified and resulted 
in proof-related problems not being enacted—nearly half (50 of 109, or 46%) of 
the cases. These results are followed by a presentation of patterns in teachers’ and 
students’ moves during the episodes in which justifications accompanied opportu-
nities to prove, resulting in the enactment of those proof-related problems—
episodes referred to as proving events.

Generalizations Without Justifications: Proof-Related Problems Not Enacted

As shown in Figure 2, teachers responded in one of three ways when students 
did not provide justifications for their conjectures: (a) teachers gave no feedback 
to elicit a justification, (b) teachers sanctioned the conjecture as valid without 
justification, or (c) teachers asked other students to state whether or not they agreed 
with a student’s conjecture. Data presented in Table 3 shows the types of moves 
carried out by the classroom community—the teacher and students—in response 
to opportunities to prove that students did not justify. These results have not been 
segregated by grade level as the total number of opportunities to prove that were 
not justified was small at each grade level. Of the 50 opportunities to prove, 21 
(42%) that were not justified did not receive feedback by either the teacher or the 
students; in essence, the classroom community ignored these emergent opportuni-
ties to prove. In contrast, the remaining 29 (of the 50) opportunities to prove that 

Table 3
Teacher Moves in Response to Opportunities to Prove That Were Not Justified by Students 
(From Table 2, Column 5)

Type of move Frequency Percentage

No response given 21 42%

Teacher sanctions conjecture 17 34%

Teacher asks for class input 12 24%

Total 50 100%
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were not justified received some sort of feedback from the classroom community. 
The feedback consisted of either (a) teachers sanctioning the use of the generaliza-
tion without obtaining sufficient justification (17 events or 59% of the 29 oppor-
tunities to prove not justified that received feedback) or (b) teachers requesting 
input from other students but not providing a response or subsequent follow-up (12 

Figure 2. Trajectory of proof-related tasks as observed.
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events or 41% of the 29 opportunities to prove not justified that received feedback). 
There was no student-initiated feedback to opportunities to prove that were not 
justified. That is, if a student provided a generalization, but the student or other 
members of the classroom community did not ultimately justify the generalization, 
no student response was noted to these unjustified generalizations.

The following excerpts from the observations illustrate the types of moves 
accompanying opportunities to prove that were not justified by students. An excerpt 
from Ms. Clinton’s sixth-grade class as they developed conjectures about the parity 
of the product of odd and even numbers exemplifies the classroom discourse in 
instances in which the teacher sanctions, or approves, a student’s conjecture that is 
not justified:

Ms. Clinton: 	 Josh, you said even?
Josh: 	 Two times three equals six. Six times three equals eighteen.
Ms. Clinton:	 No matter what, it comes up?
Josh:	 Even.
Ms. Clinton:	 Even. Easy, easy.

Note that after Josh’s presentation of two confirming examples, Ms. Clinton recon-
firms Josh’s generalization that “No matter what, it comes up even,” a move coded 
as sanctioning Josh’s conjecture. Her satisfaction with Josh’s method of justification 
implicitly approves the use of confirming examples to show the truth of statements 
about sums and products of odd and even numbers. Further evidence from a postob-
servation interview with Ms. Clinton confirmed that she believed examples-based 
justifications to be satisfactory for sixth graders:

Interviewer:	� When you asked them to “prove it” to you . . . what explanations did you 
anticipate students would provide?

Ms. Clinton:	 �Proving it to me using numbers or using blocks or drawing on paper. Some of 
the brighter kids will use numbers, go beyond the blocks. I want them to use 
different numbers with the odd ones.

Her responses indicate how she values the different ways that students justify their 
reasoning, but she does not explain what mathematical content she is expecting 
them to use in their justifications. There is little indication that she desires a certain 
type of response indicative of correct reasoning about sums and products of odd 
and even numbers, aside from a hope that they will use different “numbers,” or 
examples, to support their conjectures about sums and products of odd numbers. 
More problematic, however, is her belief that using numbers, as opposed to alterna-
tive representations such as the “blocks,” is indicative of more sophisticated math-
ematical reasoning. The belief that justifications using numerical examples repre-
sent more sophisticated mathematical reasoning than justifications using statements 
about the blocks contradicts the ideas presented in the textbook. In the lesson,7 tile 

7 Investigation 2.2 from CMP sixth-grade unit Prime Time (Lappan, Fey, Fitzgerald, Friel, & Phillips, 
2002)
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models, or unit blocks as used in Ms. Clinton’s lesson, are intended to embody 
definitions of odd and even numbers that should be used in general arguments about 
sums and products of odd and even numbers, such as the definition that an odd 
number is a even number with an extra tile (or block). Further, this belief may 
explain why Ms. Clinton’s responses to Josh appear to sanction the use of empirical 
argumentation or examples-based reasoning. Given the wealth of literature on 
students’ preference for empirical arguments, Ms. Clinton’s move may have only 
reinforced her students’ naïve beliefs about mathematical proof.

The following excerpt is from one of the 12 events in which teachers asked 
students to provide input regarding a student’s conjecture. In this case, the teacher 
polled the students to assess whether the class believed the student’s conjecture to 
be correct or incorrect and then ultimately sanctioned the conjecture without 
supplying or requesting justification. The excerpt comes from a discussion in Ms. 
Kelly’s sixth-grade class of how to use prime factors to determine the least common 
multiple (LCM) of two numbers. Although Ms. Kelly introduced the lesson as an 
“unusual” activity in which the students would learn a procedure she was going to 
“give” to them and then apply it when solving problems, one student, Max, arrived 
at a conjecture early into the discussion of the procedure:

1 Max: [Using the provided example of 12 and 10, both of which are 
2 factored into their prime factorizations on the overhead proje-
3 tion screen] So you have the 12. Then you multiply the numbers 
4 that weren’t circled [distinct prime factors not common to 12
5 and 10], that’s 30. Then you multiply by [the common prime 
6 factor] 2.
7 Ms. Kelly: Do you think his answer is going to work for all numbers? 
8 Class: No.
9 Ms. Kelly: The authors want you to know this is the way you do it. Max is
10 right. Those of you who said it wasn’t going to work all the
11 time, that’s good, because in math we have things that aren’t 
12 always right.

Max’s initial generalization in lines 3 to 6, that the least common multiple of two 
numbers can be found by finding the product whose factors consist of one copy of 
each of the common prime factors and the distinct prime factors, is called into 
question by the class in line 8. However, Ms. Kelly makes the decision to sanction 
Max’s method in lines 9 and 10 without eliciting a justification from Max or other 
students or providing one herself.

An interesting aspect of the classroom discourse during these episodes, in situ-
ations in which opportunities to prove did not materialize into proving events, was 
the abbreviated duration of the discussions. In all but 2 of the 29 episodes in which 
feedback was given during an opportunity to prove not justified, the dialogue 
between the teacher and students regarding the opportunity to prove ended after 
the teacher’s move (as exemplified in the excerpt presented earlier from Ms. 
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Clinton’s class). In 12 events in which the teacher requested feedback from other 
students, the teacher used the format of a “class poll” to elicit the feedback. The 
teacher would ask students questions such as, “Do you think they explained 
things?” and, given either no response from the class or some nodding heads, the 
teacher moved on to the next problem.

Justifications Emerging From Opportunities to Prove: Proof-Related Tasks 
Enacted

A proving event consisted of a classroom episode during which a justification 
accompanied an opportunity to prove. Analysis of these events began by classifying 
the justifications into one of two categories: (a) the justification was sufficient as 
a mathematical proof or treated the general case but fell short of being a valid proof, 
or; (b) the justification relied solely upon confirming examples, represented a 
rationale (G. J. Stylianides, 2007, 2009), or failed to address the conjecture. In the 
first category, students’ justifications are, at minimum, on the right track to 
achieving the generality needed for proof, whereas the second category includes 
justifications that confirm that the conjecture works for certain cases or responses 
that suggested misunderstanding of the intent of the task. Table 4 shows how many 
of the opportunities to prove that students generated were supported with justifi-
cations—turning opportunities to prove into proving events—as well as how many 
of the justifications were general in nature compared to those that relied upon 
examples (nonproof arguments).

Table 4
Number of Proving Events (Opportunities to Prove Supported With Justifications per Grade 
Level )

Gr. 
No. of opportuni-

ties to prove a

No. of proving 
events b  

(n = B + C )

No. of proving 
events with  

justifications 
using general 
arguments (B)

No. of proving 
events with  

justifications 
using nonproof 
arguments (C )

6 65 41 19 22

7 28 11 6 5

8 16 7 3 4

Total 109 59 28 31
a From Table 2, Column 3. b From Table 2, Column 4, No. of opportunities to prove 
supported with at least one justification.

As shown in Table 4, regardless of grade level, roughly half of the justifications 
students produced in proving events were nonproof arguments, whereas the others 
attempted to treat the general case. Because there were no clear differences by grade 
level, and the total number of proving events is small, the results that follow 
regarding patterns within sequences of teacher and student moves are not separated 
by grade level.
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Justifications receiving no feedback. As shown in Table 4, students provided 
justifications for 59 of the initial 109 (54%) opportunities to prove across all obser-
vations of the seven classrooms. However, almost 30% (17) of these 59 proving 
events consisted of justifications that received no feedback—from the teacher or 
the students—as to the sufficiency of the argument. In these cases, justifications 
that used general arguments (10 out of 17 events) were more likely not to receive 
feedback from the teacher and/or students than those arguments that relied solely 
upon confirming examples (7 out of 17 events).

As illustrated in the following excerpt, these proving events in which students’ 
justifications received no feedback from the teacher or students typically contained 
no more than three turns. A turn was counted as either the teacher’s or a student’s 
verbal input into class discussion. The following excerpt comes from a portion of 
the discussion in Ms. North’s seventh-grade class, as students discuss why the 
product of two negative numbers results in a positive number.

Ms. North:	� Yesterday, you saw those two negative signs make it a positive . . . today’s goal 
is why does that work. Adrienne?

Adrienne:	� I counted up the negatives so I know that the answer is negative then 3 times 4 
times 1 equals 12.

Ms. North:	 Are people in agreement? Brittany?
Brittany:	� Since there is a positive and a negative, then it would be negative automati-

cally.
Class:	 Woo hoo . . .oh . . . oh.
Ms. North:	� Hey, no trash talking. This is math. Time me, I’m going to give directions in 

less than a minute.

At the beginning of the excerpt, Ms. North charges the class with understanding 
why two negative numbers multiply to make a positive, given that the students saw 
confirming examples of the rule during class the day before. In the first turn, 
Adrienne’s justification involved a recounting of the procedure she used supported 
with an example. In the second turn, Ms. North asks for class input and calls on 
Brittany, a student with her hand raised. In the third turn, Brittany’s response 
provided a generalization of the parity of positive and negative products. Ms. North 
follows with instructions to start the next phase of the lesson, a move that sidesteps 
further discussion of Brittany’s or Adrienne’s justifications. As a result, Ms. North 
missed an opportunity to discuss what it means to validate that a rule is true in 
mathematics, by discussing how both arguments simply restated a rule and used 
specific examples to confirm the rule instead of providing a general argument.

Justifications receiving teacher feedback. Although 30% of the 59 proving events 
did not involve feedback from the classroom community, 70% (42) of the 59 
proving events received teacher feedback (see Table 5), which took one of three 
forms: (a) sanctioning of justification (positive appraisal); (b) questioning related to 
justification; or (c) requesting of feedback from other students. Regardless of the kind 
of justification students produced or the kind of feedback given, the classroom  
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Table 5

Teachers’ Moves During Proving Events for Which Justification Received Teacher 
Feedback by Justification Type

Teacher move Type of justification No. of instances

Sanctioning (positive 
appraisal)

General arguments 9

Nonproof arguments 9

Questioning
General arguments 2

Nonproof arguments 10

Requesting feedback 
from other students 

General arguments 8

Nonproof arguments 4

Total 42

discussions of the justifications were short-lived; the number of turns in proving 
events for which the teacher provided feedback did not exceed five turns. Thus, 
even in the cases in which teachers made instructional moves to address students’ 
justifications, there likely was not enough discussion about the validity of students’ 
arguments to change students’ conceptions.

Teachers’ feedback differed based on the kind of justification that was provided. 
Table 5 shows how the teachers’ moves varied depending upon the kind of justifi-
cation. The excerpts that follow exemplify some of those moves.

As shown in Table 5, teachers positively appraised 9 justifications out of a total 
of 19 proving events (out of 42) that utilized a general argument, sanctioning the 
use of the justification. An example of this type of feedback is given in the following 
excerpt from Ms. Xavier’s seventh-grade class, as they discuss how the volume of 
a prism changes as the number of sides increase (e.g., from a triangular prism to a 
rectangular prism):

Ms. Xavier:	 Which one do you think holds more, a cylinder or rectangular prism?
Joy:	 The cylinder. The closer to a circle it is, the greater the area.
Ms. Xavier:	� There you go. The closer we get to a circle, the larger the volume is going  

to be.

In this episode, Joy provides a general argument “the closer to a circle it is, the 
greater the area” to justify her conjecture of “cylinder.” Ms. Xavier apparently 
approved of Joy’s conjecture and justification, using the statement “There you go.” 
Ms. Xavier, perhaps accustomed to the sparse explanations that middle school 
students tend to provide, seems to have concluded that Joy understood that given a 
constant height, as the number of sides of the polygonal base of the prism increases, 
and its shape approaches that of a circle, the area of the base approaches its 
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maximum and therefore maximizes the volume. However, Joy’s classmates may 
have found Joy’s justification unclear or even tangential to the question posed by 
Ms. Xavier. Considering A. J. Stylianides’ (2007) definition of proof, and its 
emphasis on the importance of the understanding of the classroom community, the 
discourse around Joy’s conjecture was insufficient to determine how other students 
evaluated Joy’s reasoning. Ms. Xavier’s move sidestepped input from other students 
in the classroom community, and missed a key opportunity to reinforce the impor-
tance of clarity and completeness when producing justifications.

In the 23 out of 42 proving events for which students provided nonproof argu-
ments, teachers preferred to sanction the justification (9 events) or to question the 
justification (10 events) rather than to ask other students for feedback (4 events). 
The next two excerpts, taken from one observation in Ms. Kelly’s sixth-grade class, 
illustrate how her use of different kinds of instructional moves depended upon the 
type of justification students provided during the implementation of a single 
problem. In the investigation, students explored definitions of odd and even 
numbers and generated conjectures about the parity of the result when adding or 
multiplying odd and even numbers. The textbook presented tile models to represent 
the differences between odd and even numbers, showing models that were two tiles 
high to represent a factor of two in each number. When constructed, rectangles 
formed by joining columns two tiles high represent even numbers, and rectangles 
formed by joining columns two tiles high with one extra square attached to one side 
(see Figure 3) represent odd numbers.

1 3 4 5 6 72

Figure 3. Tile models of numbers 1 through 7.

The implementation of the investigation took two full days. In this excerpt, Ms. 
Kelly had asked for volunteers to share their conjectures and justifications for a 
problem in which students are asked to make a conjecture about the parity of the 
result of the sum of two odd numbers.

1 Jason: All odd numbers added together make an even. The odd numbers
2 always [have] a square hanging off and if you have another odd number 
3 with a square number hanging out they fit together.
4 Ms. Kelly: Any comments? Anyone have any additions to it?
5 Tyler: I just said that . . . I can’t think of it any other way . . . adding two
6 together you take the two extra pieces off and then add them together.
7 Ms. Kelly: Okay. Who wants to do problem c? Adding odd and even?

The excerpt illustrates, especially in lines 4 and 7, how Ms. Kelly’s perceived indif-
ference to the students’ justifications provided in lines 1–3 and 5–6 served as an 
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implicit positive appraisal of the students’ arguments. Tyler’s argument was simply 
a restatement of Jason’s justification, and Ms. Kelly was satisfied enough with both 
justifications that she moved discussion to the next problem. Although both Jason 
and Tyler referred to the tile models in their arguments, they did not make an explicit 
connection between the tile models and definitions of odd and even numbers. Ms. 
Kelly missed a key opportunity to help students understand, concretely, why the 
sum of two odd numbers makes an even number.

The next excerpt, from the same class and the same discussion, features an 
examples-based justification produced in response to the conjecture that the 
product of two odd numbers is odd:

1 Ms. Kelly: Anyone want to do problem e? Product of two odds? Okay, I’ve

2 got lots of nonvolunteers . . . Sophie?

3 Sophie: I think it [the product of two odd numbers] is odd because . . . 

4 5 * 5 is 25 and they are both odd numbers.

5 Ms. Kelly: What did you notice about your [tile] models?

6 Sophie: It’s like a puzzle. When you add the extra pieces, there is one out.

7 Ms. Kelly: Any questions?

In this excerpt, Sophie initially presented an examples-based argument to support 
her conjecture that the product of two odd numbers is odd (lines 3 to 4). Ms. Kelly 
responded by asking Sophie to think about the tile models, and Sophie offered a 
justification (line 6) more general in nature than her initial justification (lines 3 to 
4). Ms. Kelly seemed satisfied with Sophie’s revised justification, as she then 
opened up the discussion to other students (line 7). Both of these excerpts from Ms. 
Kelly’s class exemplify typical discourse sequences in which students offered 
justifications concurrently with conjectures, but they also highlight an important 
facet of instructional practice when teachers evaluate students’ justifications. In the 
excerpts already presented, Ms. Kelly was satisfied when students provided justi-
fications that involved using tile models. In fact, an examples-based justification 
was presented that utilized the tile models and Ms. Kelly did not probe for further 
explanation. In a sense, Ms. Kelly was keeping her “eyes on the prize” during class 
discussion, in which the prize was a justification based on the tile models.

Evidence from both the curriculum and Ms. Kelly’s responses to preobservation 
writing prompts confirmed this goal. The suggested response provided in the CMP 
teacher support materials to the problem of the sum of an even number and an odd 
number is: “The sum of two odd numbers is even. The tile models for the odd 
numbers each have an extra square. If we combine the models, we can pair the extra 
squares to form a rectangle” (Lappan et al., 2002, p. 35e). In her response to a 
preobservation writing prompt about the responses she expected from students, 
Ms. Kelly stated: “An ideal response to each would include an explanation using 
the model or something equally substantive that the students have created. The 
explanations should include ideas about extra blocks sticking off the end.” Ms. 
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Kelly’s focus on a particular set of accepted statements about tile models, namely 
“ideas about extra blocks sticking off the end,” instead of attention to a mode of 
argumentation that treated a general case resulted in an overemphasis of the impor-
tance of using accepted statements without consideration as to the completeness, 
form, or generality of the argument.

Justifications receiving student feedback. Teachers asked students to provide 
comments or questions related to other students’ justifications for roughly 20% of 
the proving events (12 proving events out of 59) and were more likely to ask for 
students’ feedback to justifications based on general arguments than nonproof 
arguments (see Table 5). In only one event did another student respond to the 
teacher’s request with a follow-up question, thus continuing the discussion of the 
justification. Although this is only one case out of 12 proving events in which 
students took up the opportunity to critique others’ justifications, there is signifi-
cance in this episode in that it was the only event in which the student’s justification 
closely approximated proof. In other proving events, students primarily produced 
confirming examples to justify conjectures or produced general statements that 
were either incorrect mathematically or were not based on a deductive argument 
(such as using the statement “Two odd numbers sum to make an even numbers 
because numbers go even, odd, even, odd and after two odds you will get an even”). 
However, the proving event featured in the following excerpt closely approximates 
proof because the justification provided uses statements referring to a generic, 
visual example in a deductive way. In the episode, the teacher played a minor role 
in the discourse but the other students provided the critical community necessary 
for a mathematically sophisticated proof to evolve.

The excerpt comes from an observation of Ms. Conroy’s eighth-grade class 
during an investigation that engaged students in producing a visual proof of the 
Pythagorean theorem via the context of constructing puzzles from two puzzle 
frames (Investigation 3.2, Looking for Pythagoras, Lappan et al., 1998). The pieces 
of the puzzle were three squares, one square with side length a, one square with 
side length b, and one square with side length c, where a2 + b2 = c2. Additionally, 
students were given eight right triangles, each with side lengths a, b, and c, where 
a2 + b2 = c2. The two puzzle frames were identical squares of side length a + b. To 
begin the activity, students discussed how the side lengths of the squares compare 
to the side lengths of the triangle (part A). This helped students establish that the 
squares represent the squares of the side lengths of the triangles, thus serving to 
link the “conjecture” of the Pythagorean theorem to the puzzle pieces. After iden-
tifying the relationships between the pieces, students arranged the pieces to fit 
exactly into the two puzzle frames (part B). In parts C and D, students were asked 
to think about the relationships between the areas of the three square puzzle pieces 
as well as the relationships between the side lengths of the triangle.

After Ms. Conroy introduced the investigation, students worked to cut out the 
puzzle pieces from a worksheet and answer parts B through D of the problem. Ms. 
Conroy canvassed the room as students worked, making sure students were on task. 
To launch the discussion, Ms. Conroy called one student, Becky, up to the overhead 
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projector to demonstrate how to fill in the puzzle frames with plastic pieces. In one 
frame, Becky placed two triangles together to make a rectangle and placed the 
rectangular piece in the upper left corner of the frame, and then duplicated the 
process, situating the second rectangle below the first with its long sides perpen-
dicular to the long sides of the first. She inserted the square with side length b in 
the upper right corner of the puzzle frame with the square with side length a directly 
beneath. In the second frame, another student, named Jessica, fitted a triangle into 
each of the four corners and then filled in the middle of the frame with the square 
of side length c (see Figure 4).

Figure 4. Visual proof of the Pythagorean theorem.

1 Kyle: Okay, I don’t get what this tells us.

2 Becky: It means that with 4 triangles both the large box and the small

3 and medium box fit.

4 Ms. Conroy: Go up and point out what you mean.

5 Becky: [at overhead projector] We all know that this [pointing to one of the 

6 two squares of side length b] is the same size as these [pointing to 

7 the longest leg of a triangle]. These 4 triangles [pointing to triangles 

8 in one puzzle frame] are the same size as these 4 [triangles in other

9 puzzle frame]. They fit perfectly in there just like these so the two

10 smaller squares must be equal to the larger square.

11 Kyle: How does that prove the theory?

12 Ms. Conroy: Our job today is to try to prove the theorem, not just accept it.

13 Jerome: Yeah, how does that prove that the two squares are equal to the 

14 larger square?

15 Kyle: Are you trying to say that the two squares are equal to the larger 

16 square?

17 Becky: I just proved that the sides are the same length because you can put

18 them into a square with each other.
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This excerpt shows a potential key to the development of students’ abilities to 
prove, namely, the emergence of a critical community in which students’ justifica-
tions are vetted before being accepted. It also raises the issue of the teacher’s and 
students’ roles in establishing proof. Because the title of the investigation was 
“Puzzling Through a Proof,” students in the excerpt seem aware of the need for 
proof, especially in lines 11, 13, and 14. Although the mode of argument represen-
tation was given to the students in the activity, the goal, as achieved by Becky in 
lines 5–10, was to understand how the visual argument established the truth of the 
Pythagorean theorem. The most significant part of the excerpt from an analytic 
point of view was Kyle’s response in line 11. His questioning of how Becky’s argu-
ment proved the theorem was unique among the hundreds of questions, both by 
students and teachers, posed during proving events observed. But, his question is 
also an absolutely essential move to promote the development of an appropriate 
proof, namely, a move that requires students to explain why their arguments are 
sufficient to justify their conjectures.

When asked in a post observation interview whether Jessica and Becky had pro-
duced a proof, Ms. Conroy claimed: “If your definition of proof is just like getting 
why it works, then I would say yes. It was proof for them.” Ms. Conroy’s answer 
suggests that she recognizes a difference between the students’ arguments and what 
the discipline of mathematics considers as proof, but her actions in the classroom 
reveal that she is unsure of how to impart her disciplinary knowledge. She is not 
alone; no other teacher was observed asking how students’ justifications suffice as 
proof. Given that this is the only investigation in the entire CMP series in which 
proof is the main activity of the investigation, it is no surprise that the question of 
the sufficiency of an argument as proof arose in discussion. Given that there were 
42 other investigations observed during the study (see Table 1), the excerpt also 
suggests that proof remains elusive in middle grades mathematics classrooms.

DISCUSSION AND IMPLICATIONS

This research investigated teachers’ and students’ involvement in discourse about 
proof-related problems from the CMP curriculum when experienced teachers well 
trained in implementing CMP tasks enacted such problems in middle school class-
rooms. The results show that students regularly responded to proof-related tasks by 
offering conjectures that created opportunities to prove, and students provided 
justifications for nearly half of the conjectures, resulting in proving events. 
Although students were regularly involved in responding to proof-related tasks, 
teachers in the classrooms observed did not provide sufficient feedback to sustain 
discussions about students’ conjectures and/or justifications. Findings of this 
research also indicate that when a teacher provided feedback to students’ justifica-
tions, it was not sufficient to establish standards for proof in a mathematics class-
room. For instance, teachers were just as likely to sanction a justification with a 
positive appraisal if it was a justification based on nonproof arguments as a justi-
fication based on general arguments.
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The lack of general arguments, and the predominance of examples-based justi-
fications during the enactment of proof-rich tasks are not surprising considering 
the literature on students’ tendencies to generate and prefer empirically based 
justifications as proof. Generating mathematical proof can be considered a 
demanding, “high-level cognitive activity” (Henningsen & Stein, 1997, p. 529). 
Henningsen and Stein identified several factors that contribute to the decline of 
high-level cognitive activity as tasks are enacted, including task challenges 
becoming nonproblems, time constraints, and lack of accountability. Findings of 
this study suggest that for proof-related problems in particular, time constraints 
and, more important, a lack of sufficient discussion about students’ justifications 
to establish standards for proof-related activity, contribute to the reduction of cogni-
tive demand for these problems. Given that the results were based on data from 
observations of classrooms and teachers that were, in many ways, well equipped 
for meaningful implementation of such proof-related tasks, one might expect  
even more superficial experiences in reasoning and proving in classrooms using 
curricula not developed to meet the NCTM Standards or teachers who are inexpe-
rienced or unfamiliar with the curricular materials.

Lack of Time

Time constraints are a given in school settings, and the brutal honesty of the clock 
forces teachers to prioritize the aspects of a lesson they believe to be most critical. 
Considering the results of Knuth’s (2002b) research on secondary school teachers’ 
beliefs about the value of proving in school mathematics, it is likely that, in response 
to time constraints, teachers would tend to minimize time spent on proving activi-
ties. Findings from the data collected in observations and postobservation inter-
views indicate that the reasons for proof-related problems not to be implemented 
during lesson enactment: Either the teacher perceived a lack of time for students 
to work on the problems or for the class to discuss their work before problems were 
assigned (6 out of 21 instances, or 29% of such occurrences), or the teacher chose 
not to discuss students’ work after students’ small-group work (15 out of 21 
instances, or 71% of such occurrences).

The effects of time restrictions wreak havoc on the process of proving, potentially 
more so than on other kinds of mathematical activity. For example, if teachers do 
not have time to present a particular solution method or discuss a difficult problem, 
the result is a missed instructional opportunity that may or may not be remedied by 
adjusting plans for subsequent lessons. In terms of learning outcomes, students 
may not have adequate time to discuss a topic with the teacher and their peers, and 
they may only develop a surface-level understanding of the content. However, as 
problematic as this situation is, students are not taught erroneous concepts. When 
a teacher does not have enough time to discuss why an examples-based justification 
is not sufficient as proof, the result is not only a reduction in the cognitive demands 
of the proof-related task, but it may also be an implicit sanctioning of examples-
based justifications as viable means of establishing knowledge in mathematics.
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Setting Standards for Proof-Related Instruction

Existing research indicates there is a symbiotic relationship between teachers’ 
and students’ actions during the process of generating proof in whole-class discus-
sions (Martin, McCrone, Bower, & Dindyal, 2005). Drawing from the theory of 
the didactical contract (Brousseau, 1984, as cited in Herbst, 2002a), Herbst asserts 
that the teacher’s responsibility in classroom episodes in which students are 
involved in generating proof is to help students learn to produce arguments that 
meet standards of appropriate justifications and proofs in mathematics. In the 
middle school classrooms observed for this research, the sparse nature of teachers’ 
involvement in providing feedback and instructional support during proving events 
suggests that the assumptions underpinning the didactical contract between 
teachers and students during proof-related activity were not sufficient to support 
meaningful learning about the standards for justification and proof. Throughout 
the observations, teachers’ and students’ feedback to justifications during proving 
events consisted of fewer than five turns between teachers and/or students. No 
evidence surfaced in the observations that students were expected to hold their 
classmates accountable for ensuring that their arguments provided a sufficient 
justification for their conjectures. Of the 59 proving events, 30% never received 
any feedback whatsoever. Of the 70% that received feedback, there was only one 
event in which a student revised an examples-based justification with an argument 
treating a general case. Further, the only time a member of the classroom commu-
nity raised a question such as “How does this prove the theory?” occurred after a 
student had provided a justification nearly sufficient for proof, and it was a question 
posed by a student rather than the teacher.

Teachers’ lack of feedback may be a pedagogical move to shift authority to 
students to determine what counts as acceptable justification. Reform in mathe-
matics education over several decades has emphasized more constructivist, 
“student-centered” methods of teaching, methods that have been interpreted as 
downplaying the role of “telling,” in which the teacher disseminates information 
to students (Smith, 1996). However, Lobato, Clarke, and Ellis (2005) note several 
reasons why telling is needed in mathematics classrooms and, in the case of proof, 
students’ naïve conceptions from prior experience in providing proof in nonmath-
ematical contexts may be incommensurable with the concept of proof in the disci-
pline of mathematics (Fischbein, 1982). For discipline-specific conventions and 
norms, students may not be able to discover this knowledge without guidance from 
a teacher. Chazan and Ball (1999) suggest several ways to provide feedback that 
can support students in learning the norms of mathematics without telling.

What is absent in existing research, and within teacher support materials for 
middle school curricula such as CMP (Stylianides, 2009), are indications of appro-
priate standards for proving at the middle grade levels that could assist teachers in 
understanding how to provide feedback to students’ justifications and proofs. 
Although teachers participating in this study received extensive support in how to 
teach with the CMP materials and had several years of experience in implementing 
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CMP lessons, the teachers identified proof-related problems as important in only 
6 of the 39 observations. Further, their statements about their primary goals for the 
lesson implementations indicate skepticism of students’ abilities to generate justi-
fications and proofs:

Sixth-grade teacher:	� Some of them will not understand because developmentally they 
aren’t there yet. Some will catch on a bit and others will understand 
to justify their answer.

Seventh-grade teacher:	� It may come up from the kids why this is, and then we will go with 
it . . .

Eighth-grade teacher:	� Part C & D [explaining the proof of the Pythagorean theorem]  
are important. If they can really put their ideas into words, it is 
especially impressive.

The language that the teachers used to describe their expectations reveals some 
uncertainty about whether students are capable of understanding conceptually the 
mathematics in the investigation, let alone justifying their thinking. Justification is 
seen as something “especially impressive” or something for students who are 
developmentally ready. Teachers’ beliefs about the role of justification and their 
mathematical understanding of what constitutes an appropriate justification are 
possible explanations for why so few of the students’ justifications received feed-
back. In terms of the didactical contract, if the majority of the students are not 
expected to produce justifications of their mathematical thinking, and the instruc-
tional materials fail to make explicit what is expected in students’ responses to 
proof-related tasks, it is not within the teacher’s responsibility to ensure that 
students learn what constitutes acceptable mathematical justification and proof.

In summary, this study shows that even in the best of circumstances—teachers 
with ample experience and professional development using a curriculum that 
provides multiple opportunities for justification and proof—instruction that 
supports students’ understanding of justification and proof at the middle school 
level is quite superficial. This suggests that greater emphasis is needed for middle 
school teacher preparation, professional development, and curricular support to 
make justifying and proving a routine part of middle school students’ opportunities 
to learn.
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