Evaluating Impacts of System Integration on Joint Fires Operations

Edward Lo, Peter Hoek, and Andrew Au
Defence Science and Technology Organisation

IEEE MilCIS, Canberra, November 2014
Coalition Attack Guidance Experiment (CAGE)

- CAGE: series of multinational joint warfare human-in-the-loop experiments
- Develop new concepts of operations for joint fires
 - Explore new tools & processes to assist coalition joint operations at brigade & divisional HQ levels
- CAGE3A was Australia led:
 - Between 28 Oct – 8 Nov 2013
 - In situ military participation from Australia, Canada & UK
- AUS focused on improving:
 1. Tactical Air Picture
 2. Joint C2 Fires Messaging
 3. Digital Targeting
- Hypothesis testing mandated
 - 1 experiment to test 9 hypotheses
- CAGE3A, Canada & UK had own experimental objectives
- CAGE experiment run annually
 - CAGE2 in 2012: AUS, CAN & USA
A Complex System of Systems in CAGE3A

Australia

- **ASC:** All Source Cell ~ 10 pers
- **SACC:** Supporting Arms Coordination Centre ~ 20 persons
- **JFECC:** Joint Fires Effect Coordination Centre ~ 20 persons
- **Gallipoli Barracks, Enoggera**

Canada

- **TOC:** Tactical Ops Centre
- **ASIC:** All Source Intel Cell

UK

- **UAS:** Unmanned Aerial System

Australia

- 3
Benefits from CAGE

Return for the Military:

- Understand benefits & constraints of CSS
- Opportunity to influence future TTPs & systems
- Experience in new roles
 - In SACC, JFECC & ASC
- Interact with Coalition
 - Canada, UK (US in CAGE2)
 - Activities: request for CFF, UAV & logistics support

Reward for DSTO:

- Extensive client engagement
- Running human-in-the-loop experiments
 - Live, constructive, virtual
- Collect firsthand data
- Invaluable learn experience
- Engage coalition analysts
 - Technical experts in CSS
 - Human factors scientists
- Develop expertise to design & run experiments
CAGE3A Experimental Design

- Single group (mostly) repeated measures design
 - Same group employed *As-Is* and *To-Be* C2 sociotechnical system
 - Same scenario was run in both weeks to trigger participant activity

- A sequential experimental design
 - A counterbalanced design or week reversal was discarded due to perceived system complexity

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
</tr>
<tr>
<td>S2</td>
<td>S2</td>
<td>S2</td>
<td>S2</td>
</tr>
</tbody>
</table>

- Potential problems with CAGE3A experimental design
 - Can’t discount possibility that order effects cause performance improvements in 2nd week (from learning or memory effects)
Objective 1: Improving Tactical Air Picture (TAP)

- **Hypothesis**: A digital TAP comprising of UAV and army aviation positional information improves ability to manage and control airspace.

- **As-Is**: limited UAV positional info was augmented into TAP for coordinating and controlling battlefield airspace.

- **To-Be**: UAV positional info was supplied via 2 separate systems due to system constraints, resulting in a partial air picture being presented on each.
Objective 1: Improving Tactical Air Picture (TAP)

- Seek to understand whether additional UAV positional info in TAP improves ability to manage and control airspace.
- **Qualitative measures**: evaluations from targeted participants and SMEs in both SACC & JFECC.
- **Quantitative measure**: time taken for ‘clear air calls’.
Objective 1: Did Ability to Manage and Control the Airspace Improve?

- Qualitative results revealed statistical significance between As-Is and To-Be weeks.
- There was little agreements
 - Between SMEs
 - Between SMEs and participants
Objective 1: SME Evaluation of Tactical Air Picture Usefulness

Usefulness of the TAP in Managing & Controlling Airspace

- SACC SME
- JFECC SME

<table>
<thead>
<tr>
<th>Score</th>
<th>D1</th>
<th>S2</th>
<th>S1</th>
<th>S2</th>
<th>S1</th>
<th>S2</th>
<th>S1</th>
<th>S2</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

As-Is

To-Be
Objective 1: Improving Tactical Air Picture

- **Hypothesis:** A digital TAP comprising of UAV and army aviation positional information improves ability to manage and control airspace.

- **Outcome**
 - Not possible to attribute various improvements in SA, task performance or decision quality to improvement in TAP.
 - Supported by quantitative analysis of average times to clear air (no statistically significant improvement in SACC or JFECC).
 - Unable to reject null hypothesis.
Objective 2: Improving Joint C2 Fires Messaging

- Seek to understand whether C2 processes improve as a result of additional recognised land picture (RLP) information.

Hypotheses

- **Coalition**: Using To-Be system improves coalition C2 fires messaging in a Joint environment
- **Australian Only**: Using To-Be system improves Australian C2 fires messaging in a Joint environment

As-Is: Operators are required to request for clear ground from responsible C2 node through Chat or VOIP.

To-Be:

- JF ECC has visibility of coalition RLP.
- JF ECC has visibility of RLP showing SACC controlled ground units.
- SACC has visibility of RLP showing JF ECC controlled ground units.
Objective 2: Did Procedures Change for C2 Fires Messaging?

- Participants made no changes to existing TTPs despite given additional SA over other AOs through RLP.

- Strong evidence to support null hypothesis for Objective 2.

- Valid reasons to commit to existing doctrine include:
 - Lack of blue force tracker across all units in coalition
 - Positional info reported on CSSs may be inaccurate
 - Coalition forces might use different ROEs
 - Responsibility for engagement into another AO belongs to C2 node in charge
Objective 2: Were There Improvements in To-Be Week?

- Evidence suggests that more SA from RLP did not improve C2 fires messaging.
- Possible improvements due to learning or memory effects resulting from identical scenarios (single group experimental design).
Objective 2: Improving Joint C2 Fires Messaging

- Qualitative Assessment
 - Measures: SA Rating, RLP Usefulness, RLP Timeliness, RLP Intuitiveness, Decision Confidence
 - Multivariate analysis of session-based survey results
 - JFECC participants show significant difference across weeks ($p = 0.042$)
 - SACC participants show no significant difference across weeks ($p > 0.05$)

- Quantitative Assessment
 - Timing for clearing ground for each mission
 - Avg times appeared similar across weeks
 - Greater delay in To-Be week after zero duration removed
 - Adversely influenced by unreliable CSSs and loss of trust
Objective 3: Digital Targeting

- Involve using digital C2 systems, roles and processes associated with identification, development and prosecution of targets.

- Targets could be prosecuted
 - within seconds or minutes, or
 - require complex development, gathering of information and careful prosecution over hours or days
Objective 3: Digital Targeting

- **Hypothesis**: An integrated set of digital tools will lead to improved situation awareness and understanding for target development and prosecution

- Participants’ feedback
 - Unreliable technical systems as most serious problem
Objective 3: Assessment of Situation Awareness

- Self-rating responses from participants
- 3-D version of SA Rating Technique (SART)
 - Quick and easy self-rating assessment
 - Three dimensions on a 7-point rating scale (1 = Low, 7 = High)
 - Demand on attentional resources
 - Supply of attentional resources
 - Understanding of the situation
Objective 3: Mean Dimensions of SA for Each Type of Architecture
Objective 3: Summary of p-values from MANOVA results

- No significant difference over architectures on SACC, JFECC, or JFECC JOR.
- Significant effects of architectures on SACC JOR

![Table of p-values for situation awareness metrics](image-url)

* Indicates a statistically reliable effect at a significance level of $p < .05$

** Indicates a statistically reliable effect at a significance level of $p < .01$

Green & red cells: statistically significant improvement & degradation, respectively
Conclusion

- CAGE3A provides useful coalition joint fire experience
 - Users gained exposure to new systems and processes
 - Validate whether doctrine is an accurate representation of practice

- CAGE3A is an excellent opportunity for scientists
 - Collect invaluable data from warfighters and SMEs
 - Understand operators’ needs
 - Specify technical requirements to support warfighters
 - Examine C2 issues and TTPs not available in traditional exercises
Lessons Learnt from CAGE3A

- Mitigate confounding factors
 - Order effects, system failures, controlled variables

- More than system integration
 - Consider human element and processes to ensure effective socio-technical system

- Develop meaningful hypotheses
 - Identify real and important problems faced by operators

- Employ modelling and simulation
 - Identify suitable problems to investigate as a precursor to controlled experiments

- Test systems rigorously before an experiment
 - System unreliability and failure is a serious threat to experimental integrity