

Mark Scheme (Final)

January 2015

Pearson Edexcel International A Level in Statistics 1 (WST01/01)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015 Publications Code IA040679 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{10}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question	Scheme	Marks
1. (8		B1
(1	$a = 0.26 - 0.1 \underline{\text{or}} b = 0.26 + 0.28 \text{ or } `a' + 0.38 \text{ or } 0.76 - `c' \\ \underline{\text{or}} c = 0.76 - `b' \text{or } 1 - (0.62 + `a') \\ a = \underline{0.16} \qquad b = \underline{0.54} \qquad c = \underline{0.22}$	(1) M1 A2
((3) B1
(6	P(X is an odd number) = $0.1 + 0.28 + 0.24 = 0.62$ P(X ₁ and X ₂ are both odd) = 0.62^2 = 0.3844 awrt <u>0.384</u>	(1) M1 A1
(($P(X_{1} + X_{2} = 6 \text{both are odd})$ $= \frac{P(X_{1} + X_{2} = 6 \cap X_{1} \text{ and } X_{2} \text{ are odd})}{P(X_{1} \text{ and } X_{2} \text{ are odd})}$ $= \frac{0.1 \times 0.24 + 0.28 \times 0.28 + 0.24 \times 0.1}{\text{'(their answer to d)'}} = \frac{0.1264}{\text{'(d)'}}$ $= 0.328824141$ awrt <u>0.329</u>	(2) M1 A1ft A1 (3)
		(10 marks)
	Notes	
(8) B1 for sight of 1 referring to d (may be in table or in the question)	
a	 M1 for any correct calculation seen (may be implied by one correct answer is < 0 or ft their values for 'a', 'b' or 'c' Do not award if answer is < 0 or A1 for at least two values correct A2 for all 3 values correct 	
(č	M1 for $(0.1 + 0.28 + 0.24)^2$ oe i.e. must be a complete correct expression e.g. $(1 - [`a' + `c'])^2$ and ft their values for `a' and `c' A1 for awrt 0.384 or exact fraction $\frac{961}{2500}$	
((M1 for attempt at correct conditional probability i.e. a correct ratio of stated in words that mentions both X₁ and X₂ May be implied by a numerical ratio with correct num' and their "(d) This would score M1A1ft 1st A1ft for correct numerator / 0.384 2nd A1 for awrt 0.329 or exact fraction 316/961 	l)" on denom'

2. (a)	Year 7 median = 29	B1	
 (u)	Year 11 median = 54	B1	
		(2)	
(b)	-	B1	
	[Upper quartile =] 42	B1	
	N 7	(2)	
(c)	Year 7 $Q_3 - Q_2$ (=13) > $Q_2 - Q_1$ (=7) Year 11 $Q_3 - Q_2$ (=5) < $Q_2 - Q_1$ (=16)	M1	
	$\begin{array}{c} Q_3 - Q_2 & (-13) > Q_2 - Q_1 & (-1) \\ Positive skew \\ Negative skew \\ \end{array}$	A1 A1	
		(3)	
(d)	Data is skewed	B1	
	Data is <u>not continuous</u>	B1	
		(2)	
		(9 marks)	
(-)	Notes		
(a) SC	In (a) at least one of the values should be assigned to a Year group		
SC	If you see just "29" and "54" award SC B1B0 1 st B1 for 29 seen (may be circled on diag.)		
	2^{nd} B1 for 54 seen		
(b)	1^{st} B1 for 22 and 2^{nd} B1 for 42 (these values may be circled on the diagram)		
(c)	M1 for a comparison for either year using quartiles only. For either " $Q_3 - Q_2 > Q_2 - Q_1$ and positive skew' Statements show		
	For either " $Q_3 - Q_2 > Q_2 - Q_1$ and positive skew" Statements show <u>Or</u> " $Q_3 - Q_2 < Q_2 - Q_1$ and negative skew" compatible with		
		ulen values	
	1 st A1 for Year 7 clearly labelled "positive skew"(both words) ("correlat		
	2 nd A1 for Year 11 clearly labelled "negative skew"(both words) ("correlation of the state of		
Ans. only	If no comparison is stated then award M1A1A1 only if <u>both</u> statements a	are correct	
	and compatible with their medians and quartiles so score is 0 or 3		
(b)	1^{st} B1 for a statement mentioning (or implying) that the data is <u>skew</u> (or	not	
(u)	symmetric) Ignore ref to +ve or - ve		
SC	Allow for statement "mean \neq median" if mean = 48.8 and median = 5		
	2 nd B1 for a statement mentioning data is <u>not continuous</u> (allow identifial	ble spelling)	
	Allow "this data is discrete" for 2 nd B1		
ND moong	V oor 7 $\bar{x} = 21.5$ V oor 11 $\bar{x} = 40.9$		
NB means	Year 7 $\bar{x} = 31.5$ Year 11 $\bar{x} = 48.8$		

3. (a)	$29 \times 75 + 29 \times 83 + \dots + 46 \times 126 = 33856$ <u>33856</u>	B1cao
(b)	$\sum m = 306 \text{ and } \sum b = 861$ $S_{bm} = '33\ 856' - \frac{'861' \times '306'}{8} = 922.75$ awrt <u>923</u>	(1) B1 M1 A1
(c)		(3) M1 A1
(d)	As milk price increase, so does bread price.	(2) B1 (1)
(e)	Since bread price increases but milk price stays the same Therefore the correlation will decrease (or be weaker)	B1 dB1 (2)
	Nietoz	(9 marks)
(a)	Notes B1 for 33856 as their final answer	
(b)	B1 for both $\sum m$ and $\sum b$ seen or implied by $861 \times 306 = 263\ 466$ or a correct answer These must be seen in (b) do not allow for $\sum m + \sum b = 306 + 861 = 1167$ just in (a) M1 for use of correct formula ft their answer to (a) A1 for awrt 923 [Answer only scores B1M1A1]	
(c)	M1 for attempt at correct formula. Must have their S_{bm} and the given values of S_{bb} and S_{mm} (3sf or better) in the correct places. NB $\sqrt{3083.875 \times 305.5} = 970.63$ (0.95 with no working score M1 A0).Allow M1 even if $ r > 1$ A1 for awrt 0.951 [Answer only of awrt 0.951 scores M1A1]	
(d)	B1 for a contextual description of positive correlation.Must use words "milk" and "bread" so "as <i>m</i> increases <i>b</i> increases" is B0 Ignore any mention of correlation or skewness if a correct interpretation is given.	
(e)	1 st B1 for a suitable reason e.g. $m = 46$, $b = 175$ does not follow trend/pattern <u>or</u> is an outlier <u>or</u> new point will be further from the (regression) line <u>or</u> 175 is more that	an expected
NB		milk price. and is B1 orrelation)
NB	The new value of $r = 0.86767$ You may see this but it does not score an	ything.

4. (a)(i)	x + 0.1 [P(x + 0.1) is B0]	B1
(ii)	$P(B A) = {P(B \cap A) \over P(A)} = {0.1 \over x + 0.1}$	M1 A1 (3)
(b)		(3) B1
		(1)
(c)	x+y+0.1+0.32 = 1 or $x+y+0.1 = 0.68$ or "(b)" + 0.32 = 1 o.e. x+0.1 = 2(y+0.1)	M1 M1
	Eliminating x gives $3y = 0.48$	M1
	x = 0.42 $y = 0.16$	A1 A1
		(5) (0 montrs)
	Notes	(9 marks)
(a)(ii)	M1 for a correct ratio of probabilities formula with at least one correct pr	obability
	value (may ft their (a)(i) in the denominator) <u>or</u> a prob ratio of the form $\frac{0.1}{(a)(i)}$	
	If num' > denom' score M0. NB P(A) = $0.68 - y$ and P(B A) = $\frac{0.1}{0.68 - y}$ is B0M1A0	
	A1 for $\frac{0.1}{x+0.1}$ as their final answer	
(b)	B1 for any correct expression in x and y e.g. $0.1 + x + 0.1 + y - 0.1$ Condone $x + y + 0.1 = 1 - 0.32$ or 0.68 since LHS is a correct expression	
(c)	1^{st} M1 for using sum of probs. = 1 to form a "correct" linear equ'n in x and y [x + y = 0.58]	
	Ft their (b) and or their (a)(i) e.g. "(a)(i)" $+0.32 + y = 1$	
	2^{nd} M1 for using P(A) = 2P(B) to form a "correct" linear equ'n in x and y[x - 2y = 0.1] Ft their P(A) from part (a)	
	If they use $2P(A) = P(B)$ or swap x and y score 2^{nd} M0 but allow access to 3^{rd} M	
	3 rd M1 for an attempt to solve their 2 linear equations. Implied by 1 st 2 Ms and correct ans.	
	Requires correct algebraic steps leading to an equation in one variable.	
	If there are not 2 equations this cannot be scored (but see SC) 1^{st}A1 for $x = 0.42$ (following correct working and dep. on $1^{\text{st}} 2 \text{ Ms}$)	
	2^{nd} A1 for $y = 0.16$ (following correct working and dep. on 1^{st} 2 Ms)	
Beware	0.42 = 0.32 + 0.1 so answer only does <u>not</u> score full marks	
SC	P(A) = 0.68 - y = 2(y + 0.1) score M2 (2 nd and 3 rd Ms) and 2 nd A1 when y Sight of $x + y + 0.1 = 0.68$ (o.e.)(scores 1 st M1) and then 1 st A1 if $x = 0.42$	
or	P(A) = x + 0.1 = 2(0.68 - x) score M2 (2 nd and 3 rd Ms) and 1 st A1 when $x = 0.42$ seen Sight of $x + y + 0.1 = 0.68$ (o.e.)(scores 1 st M1) and then 2 nd A1 if $y = 0.16$ follows.	

5. (a)	Resting heart rate, h , is being measured (you can't control it) So it is the response variable	B1 dB1 (2)
(b)	For every additional minute of exercise, heart rate decreases by 0.43 (bpm)	B1 (1)
(c)	$\left[\overline{t}=\right]50 \left[\overline{h}=\right]72$	B1 B1
(d)	$h = 93.5 - 0.43$ (50) so $h = 72$ or Allow: $72 = 93.5 - 0.43 \times 50$	$\begin{array}{c} (2) \\ B1 \cos \end{array} $
(e)	[h = 93.5 - 0.43 (60)] $h = 67.7 (allow 68 if a correct expression is seen)$	(1) B1 (1)
(f)	Since 1 hour (60 minutes) is within the range (of the <i>t</i> -values), The estimate is reliable	(1) B1 dB1 (2)
(g)	$\frac{a-73}{8} = -1.96$ or $\frac{b-73}{8} = 1.96$	M1 B1
	8 $73 \pm 1.96 \times 8$ (57.32, 88.68) awrt 57.3 and 88.7	dM1 A1
		(4) (13 marks)
	Notes	
(a)	 1st B1 for a reason that doesn't use words "response" or "explanatory" e.g. <i>h</i> is dependent on/ affected by/changed by/influenced by/determined by <i>t</i> or <i>t</i> is being controlled 2nd dB1 dep. on 1st B1 for choosing <i>h</i> as the response variable 	
(b)	B1 for a correct interpretation in context. Need mention of "exercise" plus a unit of time and "heart rate" or "beats" with a correct corresponding value. No need for bpm. (Just saying "increase of <i>t</i> by 1 means decrease of <i>h</i> by 0.43 is B0need words!)	
(c)	$1^{st} B1$ for 50 and $2^{nd} B1$ for 72	
(d)	B1cso allow a correct expr' with all 4 numbers in the correct places without a comment	
(f)	1 st B1 for a reason. Allow <i>t</i> or time or 60 is within data <u>or</u> "interpolation". "Its" is B0B0. If they say both $t = 60$ and $h = 67.7$ are within range then B0B0 unless they later specify that <i>t</i> is intended or mention "interpolation" 2 nd dB1 dep. on 1 st B1, for saying it is reliable (o.e. e.g. "accurate")	
(g)	1 st M1 for $\frac{a-73}{8} = z$ or $\frac{b-73}{8} = z$ with $ z >1$, must be a z-value B1 for 1.96 seen and used as a z value. NB 1 – 1.96 is not a z value and scores B0 2 nd dM1 dep. on 1 st M1 for rearranging to find a or b 73±z×8 A1 for both a = awrt 57.3 and b = awrt 88.7	
Ans only	Both values seen and correct then answer only scores 4/4	

6. (a) $\frac{1^{2}}{k} + \frac{2^{2}}{k} + \frac{3^{2}}{k} + \frac{4^{2}}{k} = 1$ $\frac{1^{2}}{30} + \frac{2^{2}}{30} + \frac{3^{2}}{30} + \frac{4^{2}}{30} = \frac{30}{30} = 1$ $\frac{30}{k} = 1,$ (b) $1 - P(X = 4), 1 - \frac{16}{30} = \frac{7}{15} \text{ (or exact equiv. e.g. } \frac{14}{30} \text{ or } 0.4\dot{6})$ (c) $[E(X) =]1 \times \frac{1}{30} + 2 \times \frac{4}{30} + 3 \times \frac{9}{30} + 4 \times \frac{16}{30}, = \frac{10}{3} \text{ (or exact equiv. e.g. } 3.3rec)$ (d) $[E(X^{2}) =]1^{2} \times \frac{1}{30} + 2^{2} \times \frac{4}{30} + 3^{2} \times \frac{9}{30} + 4^{2} \times \frac{16}{30}, = \frac{354}{30} (= 11.8)$ $Var(X) = E(X^{2}) - E(X)^{2} = \frac{354}{30} - \left(\frac{100}{30}\right)^{2}$ (d) $E(Y) = 3E(X) - 1 (= 9)$ $Var(Y) = 3^{2}Var(X) (= 6.2)$ (e) $E(Y) = 3E(X) - 1 (= 9)$ $Var(Y) = 3^{2}Var(X) (= 6.2)$ (f) $Var(X) = Var(X) = \frac{3}{30} + \frac{1}{30} + $
(b) $\begin{aligned} \mathbf{(b)} & 1 - P(X = 4), \ 1 - \frac{16}{30} = \frac{7}{15} \ (\text{or exact equiv. e.g. } \frac{14}{30} \ \text{or } 0.4\dot{6}) \\ (\mathbf{(c)} & [E(X) =]1 \times \frac{1}{30} + 2 \times \frac{4}{30} + 3 \times \frac{9}{30} + 4 \times \frac{16}{30}, \ = \frac{10}{3} \ (\text{or exact equiv. e.g. } 3.3\text{rec}) \\ (\mathbf{(d)} & [E(X^2) =]1^2 \times \frac{1}{30} + 2^2 \times \frac{4}{30} + 3^2 \times \frac{9}{30} + 4^2 \times \frac{16}{30}, \ = \frac{354}{30} \ (= 11.8) \\ (\mathbf{(d)} & Var(X) = E(X^2) - E(X)^2 = \frac{354}{30} - \left(\frac{100}{30}\right)^2 \\ Var(X) = \frac{31}{45} \ (\text{or exact equivalent e.g. } 0.6\dot{8}) \\ (\mathbf{(e)} & E(Y) = 3E(X) - 1 \ \ (= 9) \end{aligned}$
(b) $1 - P(X = 4), 1 - \frac{16}{30} = \frac{7}{15}$ (or exact equiv. e.g. $\frac{14}{30}$ or $0.4\dot{6}$) M1, A1 (c) $[E(X) =]1 \times \frac{1}{30} + 2 \times \frac{4}{30} + 3 \times \frac{9}{30} + 4 \times \frac{16}{30}, = \frac{10}{3}$ (or exact equiv. e.g. 3.3rec) M1, A1 (d) $[E(X^2) =]1^2 \times \frac{1}{30} + 2^2 \times \frac{4}{30} + 3^2 \times \frac{9}{30} + 4^2 \times \frac{16}{30}, = \frac{354}{30}$ (= 11.8) M1, A1 $Var(X) = E(X^2) - E(X)^2 = \frac{354}{30} - \left(\frac{100}{30}\right)^2$ M1 $Var(X) = \frac{31}{45}$ (or exact equivalent e.g. 0.68) A1 (e) $E(Y) = 3E(X) - 1$ (= 9) M1
(c) $\begin{bmatrix} E(X) =]1 \times \frac{1}{30} + 2 \times \frac{4}{30} + 3 \times \frac{9}{30} + 4 \times \frac{16}{30}, = \frac{10}{3} \text{ (or exact equiv. e.g. 3.3rec)} \\ \begin{bmatrix} E(X^2) =]1^2 \times \frac{1}{30} + 2^2 \times \frac{4}{30} + 3^2 \times \frac{9}{30} + 4^2 \times \frac{16}{30}, = \frac{354}{30} (= 11.8) \\ Var(X) = E(X^2) - E(X)^2 = \frac{354}{30} - \left(\frac{100}{30}\right)^2 \\ Var(X) = \frac{31}{45} \text{ (or exact equivalent e.g. 0.68)} \\ \end{bmatrix}$ (c) $\begin{bmatrix} E(Y) = 3E(X) - 1 (= 9) \end{bmatrix}$ (d) $\begin{bmatrix} E(Y) = 3E(X) - 1 (= 9) \end{bmatrix}$ (e) $\begin{bmatrix} E(Y) = 3E(X) - 1 (= 9) \end{bmatrix}$ (f) $\begin{bmatrix} E(X) = \frac{10}{30} + \frac{10}{30}$
(c) $[E(X) =]1 \times \frac{1}{30} + 2 \times \frac{4}{30} + 3 \times \frac{9}{30} + 4 \times \frac{16}{30}, = \frac{10}{3} \text{ (or exact equiv. e.g. 3.3rec)} $ M1, A1 (d) $[E(X^2) =]1^2 \times \frac{1}{30} + 2^2 \times \frac{4}{30} + 3^2 \times \frac{9}{30} + 4^2 \times \frac{16}{30}, = \frac{354}{30} (= 11.8) $ M1, A1 $Var(X) = E(X^2) - E(X)^2 = \frac{354}{30} - \left(\frac{100}{30}\right)^2$ M1 $Var(X) = \frac{31}{45} \text{ (or exact equivalent e.g. 0.68)}$ A1 (e) $E(Y) = 3E(X) - 1 (= 9)$ M1
(d) $\begin{bmatrix} E(X^{2}) = \end{bmatrix} 1^{2} \times \frac{1}{30} + 2^{2} \times \frac{4}{30} + 3^{2} \times \frac{9}{30} + 4^{2} \times \frac{16}{30}, = \frac{354}{30} (= 11.8) \\ Var(X) = E(X^{2}) - E(X)^{2} = \frac{354}{30} - \left(\frac{100}{30}\right)^{2} \\ Var(X) = \frac{31}{45} \text{ (or exact equivalent e.g. } 0.68) \\ (e) E(Y) = 3E(X) - 1 (= 9) \end{bmatrix}$ (f)
(d) $\begin{bmatrix} E(X^2) = \end{bmatrix} 1^2 \times \frac{1}{30} + 2^2 \times \frac{4}{30} + 3^2 \times \frac{9}{30} + 4^2 \times \frac{16}{30}, = \frac{354}{30} (= 11.8) \\ Var(X) = E(X^2) - E(X)^2 = \frac{354}{30} - \left(\frac{100}{30}\right)^2 \\ Var(X) = \frac{31}{45} \text{ (or exact equivalent e.g. } 0.68) \\ (e) E(Y) = 3E(X) - 1 (= 9) \end{bmatrix}$ M1
$Var(X) = E(X^{2}) - E(X)^{2} = \frac{354}{30} - \left(\frac{100}{30}\right)^{2}$ $Var(X) = \frac{31}{45} \text{ (or exact equivalent e.g. } 0.6\dot{8}\text{)}$ $A1$ $(e) E(Y) = 3E(X) - 1 (=9)$ $M1$
(e) $E(Y) = 3E(X) - 1$ (= 9) (50 (30)) (e) $K(X) = \frac{31}{45}$ (or exact equivalent e.g. 0.68) (f) $M1$
(e) $E(Y) = 3E(X) - 1$ (= 9) (A1)
(e) $E(Y) = 3E(X) - 1$ (= 9) M1
$E(Y^{2}) = Var(Y) + E(Y)^{2} = 6.2 + 9^{2}, = \frac{87.2}{5} $ (o.e. e.g. $\frac{436}{5}$) M1, A1
(4) (14 mark
Notes
(a) M1 for clear use of sum of probs. = 1 (Minimum is $k = 1 + 2^2 + 3^2 + 4^2$) A1 for correct conclusion with no incorrect working seen
(b) M1 for $1 - P(X=4)$ or $P(X=1) + P(X=2) + P(X=3)$
(c) M1 for attempt at correct expression for $E(X)$ (at least 3 correct products)
(d) 1^{st} M1 for attempt at correct expression for $E(X^2)$ (at least 3 correct products) 1^{st} A1 for 11.8 o.e. may be implied by fully correct sol'n. Condone Var(X) = $E(X^2)$ for M1A 2^{nd} M1 for using Var(X) formula with correct substitution, may ft their $E(X)$ and $E(X)$ If Var(X) < 0 score 2^{nd} M0
(e) 1^{st} M1 for finding $y = 2.5$ 8 and 11 (at least 3 correct)
ALT 1 Prob dist'n 2^{nd} M1 for a correct prob. distribution for Y so $P(Y = 2) = \frac{1}{30}$, $P(Y = 5) = \frac{4}{30}$ etc
Prob dist'n 2^{nd} M1 for a correct prob. distribution for Y so $P(Y = 2) = \frac{1}{30}$, $P(Y = 5) = \frac{4}{30}$ etc

7. (a)	$P(W > 92) = P(Z > \frac{92 - 99}{3.6})$	M1	
	= P(Z > -1.94) or P(Z < 1.94)	A1	
	= 0.9738 awrt <u>0.974</u>	A1	
		(3)	
(b)	P(W < k) = 3P(W > k) so $P(W < k) = 0.75$ or $P(W > k) = 0.25$	B1	
	$\frac{k-99}{3.6} = 0.67$	M1 B1	
	3.6	WII DI	
	(<u>k =) 101.4</u>	A1cao	
		(4)	
(c)	k is the upper quartile	B1 (1)	
(b)	$\mathbf{D}(\mathbf{W} < \mathbf{R}) = 0.2$	(1)	
(d)			
	$\frac{116-120}{\sigma} = -0.8416$	M1 B1	
	σ $\sigma = 4.7528517$ awrt <u>4.75</u>	A1	
	0 = 4.7520517 awit 4.75	(3)	
		(11 marks)	
	Notes	()	
(a)	M1 for standardising with 92, 99 and 3.6	-	
	1^{st} A1 for either correct probability statement and z awrt ± 1.94 (may be seen as a		
	correct shading on a diagram).		
	2 nd A1 for awrt 0.974		
NB	They may get $z = 1.945$ and round to 1.95 leading to 0.9744 (score M1A0A1)		
(b)	$1^{\text{st}} \mathbf{P} 1$ for $\mathbf{P}(\mathbf{W} < \mathbf{k}) = 0.75$ or $\mathbf{P}(\mathbf{W} > \mathbf{k}) = 0.25$ (a.e.) [May be implied by \mathbf{k}	x = 0.0000000000000000000000000000000000	
(b) NB	1 st B1 for $P(W < k) = 0.75$ or $P(W > k) = 0.25$ (o.e.) [May be implied by $k = awrt 101.4$] B0M1B1A1 is possible if an incorrect statement e.g. $P(W < k) = 0.25$ is seen		
	B0M1B1A1 is possible if an incorrect statement e.g. $P(W < k) = 0.25$ is seen for an attempt to standardise with k (or any letter), 99 and 3.6 and set equal to		
	\pm a z-value in range 0.6 ~0.7		
	2^{nd} B1 for ± 0.67 or better i.e. z in 0.670 ~ 0.678 (calc gives 0.674489)		
	NB e.g. 0.68 is B0 but could score A1.		
	A1cao for 101.4 (must be given to 1dp) and must follow from compatible signs		
Ang only	If z value not given and a value in [101 41 101 42] is seen soore $\mathbf{P}_1\mathbf{M}_1$	D1 othomyico	
Ans. only	If <i>z</i> value not given and a value in [101.41, 101.43] is seen score B1M1 B1M1B0 for awrt 101.4 (and A1 when 101.4 given as final answer)	DI Ouleiwise	
	billing of a with 101.4 (and 711 when 101.4 given as final answer)		
(c)	B1 for Upper quartile (allow $Q_3 \text{ or third quartile } \underline{\text{or } 75^{\text{th}} \text{ percentile}})$		
(d)	M1 for an attempt to standardise and set equal to \pm a z-value in 0.8~0.9		
	B1 for ± 0.8416 or better (calc gives 0.84162123). Value must be <u>us</u>	ed as a z value	
	NB 0.84 scores B0 but see SC		
	A1 for awrt 4.75 following from an equation with compatible signs		
SC	If they use $z = 0.84$ and get an answer of awrt 4.76 (with correct working) score		
50	M1B0A1		

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE