

Products and Design Suggestions

Gary Paradise Mitsubishi Electric Cooling & Heating <u>University of Maryland Solar Decathalon</u> <u>Winner</u> http://www.youtube.com/watch? feature=player_detailpage&v=0rPMztLx Jzg

Design Considerations- Ducted or Non-Ducted

Benefits of Ducted

- 1) Air distributed more effectively
- 2) Not visible to consumer except for grills/registers.
- 3) Dehumidifier may be easily added

Benefits of Non-Ducted

- ◆ 1) Zoning for energy efficiency- easy to do
- 2) Each Zone has own temperature setting-efficient
- 3) No energy loss due to ductwork
- 4) Washable Air filtration- built in by Mitsubishi

Negatives of Ducted

- 1)Air and power losses due to ductwork and the inherent design.
- 2) Initial cost more
- 3) Indoor Air Quality may be impacted.

Negatives of Non-Ducted

- ◆ 1) Airflow focused on one or two rooms
- ◆ 2) May need additional air circulation fans or thru the wall power vents

Ductwork Design

Why are Ducts Important?

- Duct Design is the most Critical Consideration for the engineer
- ◆ The equipment characteristics are fixed. Ductwork can be designed well- or poorly.
- Poor ductwork design means- reduced comfort and high energy costs.
- Air is heavy- moving thousands of cubic feet per hour takes ENERGY.

Ductwork Design Components

- Ductwork
- Fittings
- Filters
- Registers/Grills- minimal impact
- Coils (not covered here)- mfg. selected

Designing System

- Block load needed of complete envelope for cooling and heating season.
- Room by room load calculations and ventilation requirements- ACCA Manual J
- Equipment- selection based on loads
- Ductwork Design-ACCA Manual D

AIR HANDLER EXTERNAL STATIC PRESSURE

Indoor Unit: SEZ-KD09NA4

Outdoor Unit: SUZ-KA09NA

Voltage Indoor - Outdoor S1-S2 AC 208 / 230V Indoor - Outdoor S2-S3 DC 12-24V
Indoor Unit
MCA1A
ran Type x Quantity
Fan Motor Output
Fan Motor
Airflow (Lo - Med - Hi)
174 222 205 MAN OFF
Air Filter 174 - 222 - 285 Wet CFM External Static Pressure Polypropylene Honeycomb
External Static Pressure0.02 - 0.06 - 0.14 - 0.20"WG
Sound Pressure Lavel (10 Med 11)

SEZ Static Performance Curves

Static Pressure

- ◆ The air handler fan must overcome the resistance of air moving in the ductwork.
- Lower resistance in the ductwork means less energy needed by the fan and system.
- Doubling the resistance in the ductwork

Quadruples

the energy required.

How do we cut this resistance to the air flow?

- ◆ 1) Larger ductwork and no FLEX DUCT!
- ◆ 2) Aerodynamic Fittings/design
- ◆ 3) Design using as little ductwork as possible

Aerodynamic Fittings

Air Filtration

- Filter selection can have a major impact on airflow!
- ◆ The more particulate is captured the high restriction to the airflow- higher resistance to airflow, and more energy required.

How to minimize Filter Energy Loss

- ◆ 1) Greater filter size- use a 20"x20" not 10"x10"
- 2) Increase the filter from 1" to 2"
- 3) And use a pleated filter

Non- Ducted Air Handlers

- ◆ Are much more Energy Efficient
- No ductwork losses- saves energy
- ◆ Air flows directly from unit into the space- you can feel it!
- ◆ Washable air filter- built in. No waste to the the landfill
- Hyper Heat models offer extreme heating at 5F.

MSZ-FH Hyper-Heat

09k- 12k- 15k soon 18k

High efficiency up to 30.5 SEER / 10.6 HSPF(09k)

Heating down to -13°F- FULL to 5F

TRIPLE filtration

2 hi

All MSZ/MUZ-FH systems

iSee Sensor- 3 Dimensional

New FH Series for 2014!

PRODUCT GUIDE MSZ

MSZ-FH**NA

				200 March 1997	
Margal Name	Instear Unit		MSZ-FHDelia	MSZ-FH12NA	MSZ-FH16N/
Mate Name			MLE FHOSHIL	MUZ-FH12NA	MUZ-FH151/A
	Rated Capacity	Btu/h	9,000	12,000	15,000
	Capacity Hange	Btu/h	2,800-9,000	2,800-12,000	6,450 - 19,000
Onelles 14	Rated Total Input	W	560	870	1,200
Cooling *1	Energy Efficiency	SEER	30.5	26.1	22.0
	Molsture Removal	Pints/h	0.6	1.9	4.0
	Sensible Heat Factor		0.920	0.830	0.700
Heating at 47° F *2	Rated Capacity	Btu/h	10,900	13,600	18,000
	Capacity Range	Btu/h	1,600 - 18,000	3,700 - 21,000	5,150 - 24,000
	Rated Total Input	W	710	950	1,300
	HSPF (IV)	Btu/h/W	13.5	12.5	12.0
Heating at 17° F*3	Rated Capacity	Btu/h	6,700	8,000	11,000
	Rated Total Input	W	600	720	1,020
	Maximum Capacity	Btu/h	12,200	13,600	18,000
Heating at 5° F	Maximum Capacity	Btu/h	10,900	13,600	18,000

Hyper-Heat INVERTER

MSZ/MUZ-FE H2i Heating Capacity at Low Temperatures

MSZ-FE**NA Systems MSZ/MUZ-FH09/12/15/18

i-See Sensor

The i-see sensor improves comfort in the room & efficiency

by sensing and controlling for the temperature felt by the room's occupants to help prevent over cooling or under heating

New "i-See Sensor-3D"

What is "i-See Sensor-3D"?

- Analyzes the room temperature in three dimensions.
- This function makes it possible to judge where people are in the room, then enables the variety of airflow.

MSZ-FH High Performance H2i Heat Pumps

No change

• i-see sensor 3D can detect temperature, size and shape

Simple Motion Sensor detects only when people are moving, therefore if you sit on a sofa, <u>it</u> will miss you.

Simple Motion sensor will be responding to pets because <u>it</u> <u>cannot distinguish</u> by the different temperature.

Only FH-series can detect human position and provide true conformability.

Net-Zero and Passive House Designs

• Buildings constructed are very well insulated, virtually air-tight that is heated by passive solar gain and by internal gains from people and equipment.

An Energy Recovery Ventilator(ERV) use is inherent in the design.

Design Challanges to Consider

- Not enough heating and cooling neededthe house is TOO efficient!
- ◆ Limited Air Circulation- with a wall mounted air handler.
- Humidity Issues
- Fresh Air- IAQ

Air Handler Sizes

- ◆ Sizes for Ducted and Non-Ducted start at 9,000 btus- or ¾ ton.
- Mitsubishi Multizones- unique 6,000 btu wall mount.
- ◆ Sizes go up to 18,000 btu (1½) tons for Hyper Heat wall mounted air handlers or the SEZ ducted unit.

Energy Recovery Ventilators

- Simply running an exhaust fan not practical. Realistically ERV's can recover up to 75%(+-) of the energy.
- Lossnay models can be easily ducted

Dehumidification

Energy Star dehumidifiers may be required due to the tightness of the home.

Aprilaire-SPECIFICATION SHEET DEHUMIDIFIER MODEL 1830

PRODUCT SPECIFICATIONS

Capacity₍₁₎ 70 ppd

Energy factor₍₁₎ 1.91 L/kW-h

Airflow @ varying E.S.P.

(external static pressure - dry coil)

 0.0" w.c.
 160 CFM

 0.2" w.c.
 120 CFM

 0.4" w.c.
 70 CFM

Voltage, Phase, Frequency 120V, 1, 60 Hz

Current draw₍₁₎ 6.3 A

Noise 47 dBA ducted

51 dBA unducted

Dimensions (cabinet) Width: 12.5" cabinet

Height: 14.5" cabinet Length: 25" cabinet

Weight 67 lbs

Operating conditions

Inlet air operating conditions 50°F - 104°F, 40°F dew point min. Ambient/Ventilation 40°F - 140°F, 0% - 99% RH

(1) Rated Capacity, Energy Factor and Current Draw measured in accordance with AHAM DH-1 2008 at 80 F/60% RH inlet air at 0.0 ESP"

Typical Ducted Dehumidifier

Questions

Thank you!