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Summary

As an emergent infectious disease outbreak unfolds, public health response is reliant on information
on key epidemiological quantities, such as transmission potential and serial interval. Increasingly,
transmission models fit to incidence data are used to estimate these parameters and guide policy.
Some widely-used modeling practices lead to potentially large errors in parameter estimates and,
consequently, errors in model-based forecasts. Even more worryingly, in such situations, confidence
in parameter estimates and forecasts can itself be far over-estimated, leading to the potential for large
errors that mask their own presence. Fortunately, straightforward and computationally inexpensive
alternatives exist that avoid these problems. Here, we first use a simulation study to demonstrate
potential pitfalls of the standard practice of fitting deterministic models to cumulative incidence data.
Next, we demonstrate an alternative based on stochastic models fit to raw data from an early phase of
2014 West Africa Ebola Virus Disease outbreak. We show not only that bias is thereby reduced, but
that uncertainty in estimates and forecasts is better quantified and that, critically, lack of model fit
is more readily diagnosed. We conclude with a short list of principles to guide the modeling response
to future infectious disease outbreaks.

Introduction

The success of model-based policy in response to outbreaks of bovine spongiform encephelopathy (An-
derson et al., 1996) and foot-and-mouth disease (Ferguson et al., 2001; Keeling et al., 2001) established
the utility of scientifically informed disease transmission models as tools in a comprehensive strategy for
mitigating emerging epidemics. Increasingly, the expectation is that reliable forecasts will be available
in real time. Recent examples in which model-based forecasts were produced within weeks of the index
case include severe acute respiratory syndrome (SARS; Lipsitch et al., 2003; Riley et al., 2003), pandemic
H1N1 influenza (Fraser et al., 2009), cholera in Haiti and Zimbabwe (Tuite et al., 2011), Middle East res-
piratory syndrome (MERS; Breban et al., 2013), and lately, Ebola virus disease (EBVD) in West Africa
(Fisman et al., 2014). In the early stages of an emerging pathogen outbreak, key unknowns include its
transmission potential, the likely magnitude and timing of the epidemic peak, total outbreak size, and
the durations of the incubation and infectious phases. Many of these quantities can be estimated using
clinical and household transmission data, which are, by definition, rare in the early stages of such an
outbreak. Much interest therefore centers on estimates of these quantities from incidence reports that

1



accumulate as the outbreak gathers pace. Such estimates are obtained by fitting mathematical models
of disease transmission to incidence data.

As is always the case in the practice of confronting models with data, decisions must be made as to the
structure of fitted models and the data to which they will be fit. Concerning the first, in view of the
urgency of policy demands and paucity of information, the simplest models are, quite reasonably, typically
the first to be employed. With even the simplest models, such as the classical susceptible-infected-
recovered (SIR) model, the choice of data to which the model is fit can have significant implications for
science and policy. Here, we explored these issues using a combination of inference on simulated data
and on actual data from an early phase of the 2013–2015 West Africa EBVD outbreak. We find that
some of the standard choices of model and data can lead to potentially serious errors. Since, regardless
of the model choice, all model-based conclusions hinge on the ability of the model to fit the data, we
argue that it is important to seek out evidence of model misspecification. We demonstrate an approach
based on stochastic modeling that allows straightforward diagnosis of model misspecification and proper
quantification of forecast uncertainty.

Deterministic models fit to cumulative incidence curves: a recipe
for error and overconfidence

An inexpensive and therefore common strategy is to formulate deterministic transmission models and fit
these to data using least squares or related methods. These approaches seek parameters for which model
trajectories pass as close to the data as possible. Because, in such an exercise, the model itself is deter-
ministic, all discrepancies between model prediction and data are in effect ascribed to measurement error.
Implicitly, the method of least squares assumes that these errors are independent, normally distributed,
with a constant variance. This assumption can be replaced without difficulty by more realistic assump-
tions of non-normal errors and, in particular, an error variance that depends on the mean. As for the
data to be fit, many have opted to fit model trajectories to cumulative case counts. The incompatibility
of this choice with the assumptions of the statistical error model has been pointed out previously (Grad
et al., 2012; Ma et al., 2014; Towers et al., 2014). In particular, the validity of the statistical estimation
procedure hinges on the independence of sequential measurement errors, which is clearly violated when
observations are accumulated through time (see Appendix B). To explore the impact of this violation on
inferences and projections, we performed a simulation study in which we generated data using a stochas-
tic model, then fit the corresponding deterministic model to both raw and cumulative incidence curves.
We generated 500 sets of simulated data at each of three different levels of measurement noise. For each
data set, we estimated model parameters, including transmission potential (as quantified by the basic
reproduction number, R0) and observation error overdispersion (as quantified by the negative binomial
overdispersion parameter, k). Full details of the data generation and fitting procedures are given in
Appendix A. The resulting parameter estimates are shown in Fig. 1.

[Figure 1 about here.]

Recognizing that quantification of uncertainty is prerequisite to reliable forecasting, we computed pa-
rameter estimate confidence intervals, and investigated their accuracy. Fig. 1A shows that, in estimating
R0, one finds considerable error but little evidence for bias, whether raw or cumulative incidence data
are used. Although in general one expects that violation of model assumptions to introduce some degree
of bias, in this case since both the raw and cumulative incidence curves generically grow exponentially
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at a rate determined by R0, estimates of this parameter are fairly accurate, on average, when data are
drawn, as here, from the early phase of an outbreak. Fig. 1B is the corresponding plot of estimated
overdispersion of measurement noise. Using the raw incidence data, one recovers the true observation
variability. When fitted to cumulative data, however, the estimates display extreme bias: far less mea-
surement noise is needed to explain the relatively smooth cumulative incidence. The data seem to be in
very good agreement with the model.

To quantify the uncertainty in the parameter estimates, we examined the confidence intervals. The
nominal 99% profile-likelihood confidence interval widths for R0 are shown in Fig. 1C. When the model
is fit to the simulated data, increasing levels of measurement error lead to increased variance in the
estimates of R0. However, the confidence interval widths are far smaller when the cumulative data are
used, superficially suggesting a higher degree of precision. This apparent precision is an illusion however,
as Fig. 1D shows. This figure plots the achieved coverage (probability that the true parameter value lies
within the estimated confidence interval) as a function of the magnitude of measurement error and the
choice of data fitted. Given that the nominal confidence level here is 99%, it is disturbing that the true
coverage achieved is closer to 25% when cumulative data are used.

When a deterministic model is fit to cumulative incidence data, the net result is a potentially quite over-
optimistic estimate of precision, for three reasons. First, failure to account for the non-independence of
successive measurement errors leads to an under-estimate of parameter uncertainty (Fig. 1C). Second,
as seen in Fig. 1B, the variance of measurement noise will be substantially under-estimated. Finally,
because the model ignores environmental and demographic stochasticity, treating the unfolding outbreak
as a deterministic process, forecast uncertainty will grow unrealistically slowly with the forecast horizon.
We elaborate on the last point in the Discussion.

Stochastic models fit to raw incidence data: feasible and trans-
parent

The incorporation of demographic and/or environmental stochastic processes into models allows, on the
one hand, better fits to the trends and variability in data and, on the other, improved ability to diagnose
lack of model fit (He et al., 2010). We formulated a stochastic version of the SEIR model as a partially
observed Markov process and fit it to actual data from an early phase of the 2013–2015 West Africa
EBVD outbreak. We estimated parameters by maximum likelihood, using sequential Monte Carlo to
compute the likelihood and iterated filtering to maximize it over unknown parameters (Ionides et al.,
2015). See Appendix B for details.

Fig. 2 shows likelihood profiles over R0 for country-level data from Guinea, Liberia, and Sierra Leone.
We also wanted to explore the potential for biases associated with spatial aggregation of the data. Hence,
we fit our models to regional data, encompassing all reported cases from the three West African countries
just mentioned. In line with the lessons of Fig. 1C, estimated confidence intervals are narrower when
the cumulative reports are used. The “true” parameters are, of course, unknown, but, as in the earlier
example, this higher precision is probably illusory. The somewhat, but not dramatically, larger confidence
intervals that come with adherence to the independent-errors assumption (i.e., with the use of raw
incidence data) lead to a quite substantial increase in forecast uncertainty, as we shall see. Finally, the
ease with which the stochastic model was fit and likelihood profiles computed testifies to the fact that,
in the case of outbreaks of emerging infectious diseases, it is not particularly difficult or time-consuming
to work with stochastic models.
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[Figure 2 about here.]

We took advantage of the stochastic model formulation to diagnose the fidelity of model to the data. To
do so, we simulated 10 realizations of the fitted model; the results are plotted in Fig. 3. While the overall
trends appear similar, the model simulations display greater variability at high frequencies than do the
data. To quantify this impression, we computed the correlation between cases at weeks t and t− 1 (i.e.,
the autocorrelation function at lag 1 wk, ACF(1)) for both model simulations and data. For Guinea,
Liberia, and the region as a whole (“West Africa”), the observed ACF(1) lies in the extreme right tail of
the model-simulated distribution, confirming our suspicion. For Sierra Leone, the disagreement between
fitted model and data is not as poor, at least as measured by this criterion. These diagnostics caution
against the interpretation of the outbreaks in Guinea and Liberia as simple instances of SEIR dynamics
and call for a degree of skepticism in inferences and forecasts based on this model. On the other hand,
the Sierra Leone epidemic does appear, by this single metric, to better conform to the SEIR assumptions
when the data are aggregated to the country level.

[Figure 3 about here.]

Fig. 4 suggests why the present Ebola outbreak might not be adequately described by the well-mixed
dynamics of the SEIR model. The erratically fluctuating mosaic of localized hotspots suggests spatial
heterogeneity in transmission, at odds with the model’s assumption of mass action. As an aside, this
heterogeneity hints at control measures beyond the purview of the SEIR model. While the latter might
provide more or less sound guidance with respect to eventual overall magnitude of the outbreak and
associated demands for hospital beds, treatment centers, future vaccine coverage, etc., the former points
to the potential efficacy of movement restrictions and spatial coordination of control measures.

[Figure 4 about here.]

Discussion

To summarize, we have here shown that the frequently adopted approach of fitting deterministic models
to cumulative incidence data can lead to bias and pronounced under-estimation of the uncertainty associ-
ated with model parameters. Not surprisingly, forecasts based on such approaches are similarly plagued
by difficult-to-diagnose over-confidence as well as bias. We illustrated this using the SEIR model—in its
deterministic and stochastic incarnations—fit to data from the current West Africa EBVD outbreak. Em-
phatically, we do not here assert that the SEIR model adequately captures those features of the epidemic
needed to make accurate forecasts. Indeed, when more severe diagnostic tests are applied (Fig. B1), it
seems less plausible that the Sierra Leone data appear are a sample from the model distribution. More-
over, we have side-stepped important issues of identifiability of key parameters such as route-specific
transmissibility, asymptomatic ratio, and effective infectious period. Rather, we have purposely over-
simplified, both to better reflect modeling choices often made in the early days of an outbreak and to
better focus on issues of statistical practice in the context of quantities of immediate and obvious public
health importance, particularly the basic reproduction number and predicted outbreak trajectory. Fig. 5
shows projected incidence of EBVD in Sierra Leone under both the deterministic model fit to cumula-
tive incidence data (in red) and the stochastic model fit to raw incidence data (in blue). The shaded
ribbons indicate forecast uncertainty. In the deterministic case, the latter is due to the combined effects
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of estimation error and measurement noise. As we showed above, the first contribution is unrealisti-
cally low because serial autocorrelation among measurement errors have not been properly accounted for.
The second contribution is also under-estimated because of the smoothing effect of data accumulation.
Finally, because the model ignores all process noise, it unrealistically lacks dynamic growth of forecast
uncertainty. By contrast, the stochastic model fitted to the raw incidence data show much greater levels
of uncertainty. Because measurement errors have been properly accounted for, confidence intervals more
accurately reflect true uncertainty in model parameters. Because the model accounts for process noise,
uncertainty expands with the forecast horizon. Finally, we recall once again that, because the process
noise terms can to some degree compensate for model misspecification, it was possible to diagnose the
latter, thus obtaining some additional qualitative appreciation of the uncertainty due to this factor.

[Figure 5 about here.]

The increasingly high expectations placed on models as tools for public policy put an ever higher pre-
mium on the reliability of model predictions and therefore on the need for accurate quantification of the
associated uncertainty. The relentless tradeoff between timeliness and reliability has with technological
advance shifted steadily in favor of more complex and realistic models. Because stochastic models with
greater realism, flexibility, and transparency can be routinely and straightforwardly fit to outbreak data,
there is less and less scope for older, less reliable, and more opaque methods. In particular, the practices
of fitting deterministic models and fitting models to cumulative case report data are prejudicial to accu-
racy and can no longer be justified on pragmatic grounds. We propose the following principles to guide
modeling responses to current and future infectious disease outbreaks:

1. Models should be fit to raw, disaggregated data whenever possible and never to temporally accu-
mulated data.

2. When model assumptions, such as independence of errors, must be violated, careful checks for the
effects of such violations should be performed.

3. Forecasts based on deterministic models, being by nature incapable of accurately communicating
uncertainty, should be avoided.

4. Stochastic models should be preferred to deterministic models in most circumstances because they
afford improved accounting for real variability and increased opportunity for quantifying uncer-
tainty. Post hoc comparison of simulated and actual data is a powerful and general procedure that
can be used to distinguish model misspecification from real stochasticity.

In closing, we are troubled that screening for lack of model fit is not a completely standard part of
modeling protocol. At best, this represents a missed opportunity, as discrepancies between the data and
off-the-shelf models may suggest effective control measures. At worst, this can lead to severely biased
estimates and, worryingly, overly confident conclusions. Fortunately, effective techniques exist by which
such errors can be diagnosed and avoided, even in circumstances demanding great expedition.
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Methods

Data

Weekly case reports in Guinea, Liberia, and Sierra Leone were digitized from the WHO situation report
dated from 1 October 2014 1 (Fig. 3). To compare our predictions to those of previous reports (Gomes
et al., 2014), we also aggregated those data to form a regional epidemic curve for “West Africa”. In
Guinea, this outbreak was taken to have started in the week ending 5 January 2014 and in Sierra Leone
in that ending 8 June 2014. In Liberia, the outbreak was notified to WHO on 31 March 20142, but few
cases were reported until June; therefore, the week ending 1 June was deemed the start of the Liberian
outbreak for simulation purposes. The data in Fig. 4 was downloaded from the repository maintained by
C. M. Rivers3 and ultimately derived from reports by the health ministries of the republics of Guinea,
Sierra Leone, and Liberia.

Model formulation

The models used were variants on the basic SEIR model model, using the method of stages to allow for
a more realistic (Erlang) distribution of the incubation period (Lloyd, 2001; Wearing et al., 2005). The
equations of the deterministic variant are:

dS

dt
= −R0γSI

N
dE1

dt
=
R0γSI

N
−mαE1

dEi

dt
= mα(Ei−1 − Ei), i = 2, . . . ,m

dI

dt
= mαEm − γI

dR

dt
= γI

Here, R0 represents the basic reproduction number; 1/α, the average incubation period; m, the shape pa-
rameter for the incubation period distribution; 1/γ, the average infectious period; and N , the population
size, assumed constant (Table B1).

[Figure 6 about here.]

The stochastic variant was implemented as a continuous-time Markov process approximated via a multi-
nomial modification of the τ -leap algorithm (He et al., 2010) with a fixed time step ∆t = 10−2 wk.

To complete the model specification, we model the observation process. Between times t − ∆t and t,
where ∆t represents the reporting period, we write Ht = ∆NE→I(t − ∆t, t) for the complete number

1http://www.who.int/csr/disease/ebola/situation-reports/en/
2http://www.afro.who.int/en/clusters-a-programmes/dpc/epidemic-a-pandemic-alert-and-response/

outbreak-news/4072-ebola-virus-disease-liberia.html
3https://github.com/cmrivers/ebola
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of new infections during that time period. When we are fitting to cumulative case counts, we change
the definition accordingly to Ht = ∆NE→I(0, t). When using either type of data, we modeled the
corresponding case report, Ct, as a negative binomial: Ct ∼ NegBin(ρHt, 1/k). Thus E[Ct|Ht] = ρHt

and Var[Ct|Ht] = ρHt + kρ2H2
t , where ρ is the reporting probability and k the reporting overdispersion.

Descriptions of the methods used in the simulation study and in the model-based inferences drawn from
actual data are given in the Supplementary Materials.
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Figure 1: Results from simulation study fitting deterministic models to stochastically simulated data.
500 simulated data sets of length 39 wk were generated by the stochastic model described in the Methods
section at each of three levels of the measurement error overdispersion parameter, k. The deterministic
model was fit to both raw (blue) and accumulated (red) incidence data. (A) Estimates of R0. True value
used in generating the data is shown by the dashed line. (B) Estimates of k. (C) Widths of nominal 99%
profile likelihood confidence intervals (CI) for R0. (D) Actual coverage of the CI, i.e., probability that
the true value of R0 lay within the CI. Ideally, actual coverage would agree with nominal coverage (99%,
dashed line).
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Figure 2: Likelihood profiles for R0 based on the stochastic model fit to raw data (blue) vs. the deter-
ministic model fit to cumulative incidence data (red). Each point represents the maximized log likelihood
at each fixed value of R0 relative to overall maximum. The maximum of each curve is achieved at the
maximum-likelihood estimate (MLE) of R0; the curvature is proportional to estimated precision. The
horizontal line indicates the critical value of the likelihood ratio at the 95% confidence level. While
the (improper) use of cumulative data produces relatively small differences in the MLE for R0, it does
produce the illusion of high precision.
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Figure 3: Model diagnostics. The time series plots show the data (blue) superimposed on 10 typical
simulations from the fitted model (grey). While the overall trend is captured by the model, the simulations
display more high-frequency (week-to-week) variability than does the data. The insets confirm this,
showing the autocorrelation function at lag 1 week (ACF(1)) in the data (blue) superimposed on the
distribution of ACF(1) in 500 simulations (grey). For Guinea, Liberia, and the aggregated regional data
(“West Africa”), the ACF(1) of the data lies in the extreme right tail of the distribution, as quantified
by the one-sided P -values shown.
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Figure 4: Four consecutive days of Ebola incidence in the republics of Liberia and Sierra Leone. In the
outbreak’s early stages, the spatio-temporal dynamics are highly erratic, contrary to the predictions of
the well-mixed model.

13



Figure 5: Forecast uncertainty for the Sierra Leone EBVD outbreak as a function of the model used
and the data to which the model was fit. The red ribbon shows the median and 95% envelope of model
simulations for the deterministic SEIR model fit to cumulative case reports; the blue ribbon shows the
corresponding forecast envelope for the stochastic model fit to raw incidence data. The data used in
model fitting are shown using black triangles.
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Figure 6: Schematic diagram of the transmission models used. λ(t) = R0 γ I(t)/N is the force of infection
(i.e., the per-susceptible rate of infection). We use the symbol ∆NE→I(t1, t2) to refer to the total number
of transitions from latent to infectious class (Em to I) occurring between times t1 and t2.
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