TESSELLATIONS OF MODULI SPACES AND THE MOSAIC
OPERAD

SATYAN L. DEVADOSS

ABSTRACT. We construct a new (cyclic) operad of mosaics defined by poly-
gons with marked diagonals. Its underlying (aspherical) spaces are the sets
ng(R) which are naturally tiled by Stasheff associahedra. We describe them
as iterated blow-ups and show that their fundamental groups form an operad
with similarities to the operad of braid groups.
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1. THE OPERADS

1.1. The notion of an operad was created for the study of iterated loop spaces [13].
Since then, operads have been used as universal objects representing a wide range
of algebraic concepts. We give a brief definition and provide classic examples to

highlight the issues to be discussed.

Definition 1.1.1. An operad {O(n) | n € N} is a collection of objects O(n) in a
monoidal category endowed with certain extra structures:
1. O(n) carries an action of the symmetric group S,,.

2. There are composition maps
(1.1) On)@0(k1)®@---®@0(kn) — O(k1 + -+ kn)
which satisfy certain well-known axioms, cf. [14].

This paper will be concerned mostly with operads in the context of topological

spaces, where the objects O(n) will be equivalence classes of geometric objects.

Example 1.1.2. These objects can be pictured as trees (Figure la). A tree is
composed of corollas! with one external edge marked as a root and the remaining
external edges as leaves. Given trees s and ¢, basic compositions are defined as
s 0; t, obtained by grafting the root of s to the i*" leaf of ¢. This grafted piece of

the tree is called a branch.

LA corolla is a collection of edges meeting at a common vertex.
1
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FIGURE 1. Trees, Bubbles, and Polygons

Example 1.1.3. There is a dual picture in which bubbles replace corollas, marked
points replace leaves, and the root is denoted as a point labeled co (Figure 1b).
Using the above notation, the composition s o; ¢ is defined by fusing the oo of the
bubble s with the i*® marked point of t. The branches of the tree are now identified

with double points, the places where bubbles intersect.

1.2. Taking yet another dual, we can define an operad structure on a collection
of polygons (modulo an appropriate equivalence relation) as shown in Figure lc.
Each bubble corresponds to a polygon, where the number of marked and double
points become the number of sides; the fusing of points is associated with the gluing
of faces. The nicest feature of polygons is that, unlike corollas and bubbles, the

iterated composition of polygons yields a polygon with marked diagonals (Figure 2).

=

FIGURE 2. Polygon composition

Unlike the rooted trees, this mosaic operad is cyclic in the sense of Getzler and
Kapranov [7, §2]. The most basic case (Figure 3) shows how two polygons, with
sides labeled a and b respectively, compose to form a new polygon. The details of

this operad are made precise in §2.2.

GO-C0-(D

FIGURE 3. Mosaic composition
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1.3. In the work of Boardman and Vogt [1, §2.6], an operad is presented using m
dimensional cubes I™ C R™. An element C(n) of this little cubes operad is the
space of an ordered collection of n cubes linearly embedded by f; : I™ — I™,
with disjoint interiors and axes parallel to I™. The f;’s are uniquely determined
by the 2n-tuple of points (a1,by,...,an,b,) in I"™, corresponding to the images of
the lower and upper vertices of I"™. An element o € S,, acts on C(n) by permuting

the labeling of each cube:
(ala blv cey Qn,y bn) = (aa(l)aba(l)a <5 Qo(n), ba(n))

The composition operation (1.1) is defined by taking n spaces C(k;) (each having k;
embedded cubes) and embedding them as an ordered collection into C(n). Figure 4

shows an example for the two dimensional case when n = 4.
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FIGURE 4. Little cubes composition

Boardman showed that the space of n distinct cubes in R™ is homotopically
equivalent to Config™ (R™), the configuration space on n distinct labeled points in
R™.2 When m = 2, Config"(R?) is homeomorphic to C" — A, where A is the thick
diagonal {(x1,...,z,) € C*|34,4,i # j, x; = x;}. Since the action of S,, on C* — A
is free, taking the quotient yields another space (C™ — A)/S,,. Tt is well-known that
both these spaces are aspherical, having all higher homotopy groups vanish [4]. The

2The equivariant version of this theorem is proved by May in [13, §4].
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following short exact sequence of fundamental groups results:
m1(C" — A) — m ((C" = A)/S,) - Sp.

But m of C" — A is simply P,,, the pure braid group. Similarly, m; of C* — A
quotiented by all permutations of labelings is the braid group B,,. Therefore, the

short exact sequence above takes on the more familiar form:
P, — B, »S,.

We will return to these ideas in §6.

2. THE MODULI SPACE

2.1. The moduli space of Riemann spheres with n punctures,
My (C) = Config"(CP')/PGly(C),

has been studied extensively [10]. It has a Deligne-Mumford-Knudsen compactifi-
cation Mj (C), a smooth variety of complex dimension n — 3. In fact, this variety
is defined over the integers; we will look at the real points of this space. These are

the set of fixed points of M (C) under complex conjugation.

Definition 2.1.1. The moduli space M (R) of configurations of n smooth points
on punctured stable real algebraic curves of genus zero is a compactification of the
quotient ((RP*)™ — A)/PGly(R), where A is the thick diagonal.

Remark. This is an action of a non-compact group on a non-compact space. Geo-
metric invariant theory gives a natural compactification for this quotient, defined
combinatorially in terms of bubble trees or algebraically as a moduli space of real
algebraic curves of genus zero with n points, which are stable in the sense that they

have only finitely many automorphisms.

A point of MZ(R) can be visualized as a bubble (that is, RP') with n distinct
labeled points. For a particular labeling, the configuration space of such points gives
us a fundamental domain of Mf} (R). There are n! possible labelings. However, since
there exists a copy of the dihedral group D,, in PGl2(R), and since My (R) is defined
as a quotient by PGly(R), two labeled bubbles are identified by an action of D,,.
Therefore, there are %(n — 1)! copies of the fundamental domain that make up
MG (R). Since we remove the thick diagonal, these domains are open cells.

In ﬁg (R), however, these marked points are allowed to ‘collide’ in the following
sense: As two adjacent points p; and ps of the bubble come closer together and
try to collide, the result is a new bubble fused to the old at the point of collision
(a double point), where the marked points p; and ps are now on the new bubble
(Figure 5). Note that each bubble must have at least three marked or double points

in order to be stable.
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P O8

FIGURE 5. Collision on bubbles

The mosaic operad encapsulates all the information of the bubbles, enabling one
to look at the situation above from the vantage point of polygons. Having n marked
points on a circle now corresponds to an n-gon; when two adjacent sides p; and ps
of the polygon try to collide, a diagonal of the polygon is formed such that p; and

p2 lie on one side of the diagonal (Figure 6).

SRRV

F1GURE 6. Collision on polygons

What is quite striking about M (R) is that its homotopy properties are com-

pletely encapsulated in the fundamental group.
Theorem 2.1.2. [5, §5.1] MZ(R) is aspherical.
We will return to the structure of the fundamental group in §6.

2.2. We now turn to defining the mosaic operad and relating its properties with
the structure of M2 (R). Let S* be the unit circle bounding ®, the disk endowed
with the Poincaré metric; this orients the circle. The geodesics in ® correspond to
open diameters of S' together with open circular arcs orthogonal to S'. The group
of isometries on ® is PGly(R) [15, §4].

A configuration of n distinct points on RP! defines an ideal polygon in ®, with
all vertices on the circle and geodesic sides. Let G(n,0) be the space of such con-
figurations, modulo PGl3(R), and let G(n, k) be the space of such ideal polygons
marked with £ non-intersecting geodesics between non-adjacent vertices. We want
to think of the elements of §(n, k) as limits of configurations in §(n,0) in which k
sets of points have coalesced (see discussion above). Specifying k diagonals defines
a decomposition of an n-gon into k 4+ 1 smaller polygons, and we can topologize
G(n, k) as a union of (k + 1)-fold products of G(m,0)’s corresponding to this de-

composition. For example, to the one dimensional space G(4,0) we attach zero
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dimensional spaces of the form G(3,0) x G(3,0). The combinatorics of these iden-
tifications can be quite complicated, but Stasheff’s associahedra were invented to
solve just such problems, as we will see in §2.3 below.

Henceforth, we will visualize elements of §(n, k) as n-gons with & non-intersecting
diagonals, and we write G(n) for the space of n-gons with any number of such
diagonals. Elements of G(n) inherit a natural cyclic order on their sides, and we

write G¥(n) for the space of n-gons with labeled sides.

Proposition 2.2.1. There exists a bijection between the points of My (R) and the
elements of G (n,0).

Remark. Given an element in G(n, k), we can associate to it a dual tree. Its vertices
are the barycenters of polygons, defined using the Riemann mapping theorem, and
the branches are geodesics between barycenters. The leaves are geodesics that
extend to points on RP' midway between two adjacent marked points on RP'. Tt
then follows that ﬁg(R) is a space of hyperbolic planar trees. This perspective

naturally gives a Riemann metric to M (R).

Definition 2.2.2. Given G € §%(m,l) and G; € G%(n;, k;) (where 1 < i < m),

there are composition maps
G a19by Gl a%bs " amPbm, Gm — Gt7

where Gy € G¥(—=m + > n;, m +1+ > k;). The object G; is obtained by gluing
side a; of G along side b; of G;. The symmetric group S,, acts on G,, by permuting
the labeling of the sides. These operations define the mosaic operad {G*(n, k)}.

Remark. The one dimensional case of the little cubes operad is {J(n)}, the little
intervals operad. An element J(n) is an ordered collection of n embeddings of the
interval I — I, with disjoint interiors. The notion of trees and bubbles, shown in
Figure 1, is encapsulated in this intervals operad. Furthermore, after embedding
I in R and identifying R U co with RP!, the mosaic operad {G%(n,k)} becomes a
compactification of {J(n)}.

2.3. We now define the fundamental domain of My (R) as a concrete geometric

object and present its connections with the mosaic operad.

Definition 2.3.1. Let A be the space of n — 3 distinct points {t1,...,t,—3} on
the interval [0, 1] such that 0 < t; < --- < t,_3 < 1. Identifying R U oo with RP!
carries the set {0,1,...,t,_3,1,00} of n points onto RP!. Therefore, there exists

a natural inclusion of A in M} (R). Define the associahedron K, _; as the closure
of the space A in M} (R).

Proposition 2.3.2. An interior point of K,_1 corresponds to an element of

G(n,0), and an interior point of a codim k face corresponds to an element of G(n, k).
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Proof. Since S3 C PGly(R), one can fix three of the n distinct points on RP* to be
0,1, and oo. Thus, the associahedron K,,_; can be identified with the cell tiling
M2 (R) and the proposition follows from the construction of §(n, k). O

The relation between the n-gon and K, 7 is further highlighted by a work of
Lee [12], where he constructs a polytope @, that is dual to K,,_;, with one vertex
for each diagonal and one facet for each triangulation of an n-gon. He then proves

the symmetry group of @, to be the dihedral group D,,. Restated, it becomes
Proposition 2.3.3. [12, §5] D,, acts as a group of isometries on K,_1.

Historical Note. Stasheff classically defined the associahedron K,,_; for use in ho-
motopy theory [16, §6] as a CW-ball with codim k faces corresponding to using k
sets of parentheses meaningfully on n — 1 letters.? It is easy to describe the as-
sociahedra in low dimensions: K5 is a point, K3 a line, and K, a pentagon. The
two descriptions of the associahedron, using polygons and parentheses, are com-
patible: Figure 7 illustrates K4 as an example. The associahedra have continued
to appear in a vast number of mathematical fields, gradually acquiring more and

more structure, cf. [19].

(12)(34) 0y
12(34) (12)34 O O

1(2(34)) (1234 Q O
1(234) (123)4 Q O

1((29)4) 1294 (1(239)4 O ©

FIGURE 7. K,

2.4. The polygon relation to the associahedron enables the use of the mosaic operad

structure on K, _.

Proposition 2.4.1. [16, §2] Each face of K,,—1 is a product of lower dimensional

associahedra.

In general, the codim k — 1 face of the associahedron K,,_; will decompose as

Kn1—1 X X Knk—l — K1,

3From the definition above, the n — 1 letters can be viewed as the points {0, ¢1,...,tn—3,1}.
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where > n; = m+2(k—1) and n; > 3. This parallels the mosaic operad structure
G(ni)o---oG(nk) — G(m),
where G(n;) € G (n;,0), G(m) € G&(m,k —1), and the gluing of sides is arbitrary.

Therefore, the product in Proposition 2.4.1 is indexed by the internal vertices of

the tree corresponding to the face of the associahedron.

Example 2.4.2. We look at the codim one faces of K5. The three dimensional
K35 corresponds to a 6-gon, which has two distinct ways of adding a diagonal. One
way, in Figure 8a, will allow the 6-gon to decompose into a product of two 4-gons
(K3’s). Since K3 is a line, this codim one face yields a square. The other way, in
Figure 8b, decomposes the 6-gon into a 3-gon (K3) and a 5-gon (K4). Taking the

product of a point and a pentagon results in a pentagon.

D
B

Example 2.4.3. We look at the codim one faces of Kg. Similarly, Figure 9 shows

¢
:

1

2O~

FiGURE 8. Codim one cells of K5

the decomposition of the codim one faces of Kg, a pentagonal prism and K.

OQQ
- A OQA

FiGURE 9. Codim one cells of Kg

1

3. THE TESSELLATION

3.1. We extend the combinatorial structure of the associahedra to Mg (R). Propo-
sitions 2.2.1 and 2.3.2 show the correspondence between the associahedra in My (R)

and GL(n, k). We investigate how these copies of K,,_1 glue to form My (R).
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Definition 3.1.1. Let G € G%(n,k) and d be a diagonal of G. A twist along d,
denoted by V4(G), is the element of G¥(n, k) obtained by ‘breaking’ G along d into
two parts, ‘twisting’ one of the pieces, and ‘gluing’ them back (Figure 10).

2 ...
p-1 1 p-1 1
p P —

p+1

p+1 p+1
p+2
p+2 A
' S
2_,.
1 p-1
p
\
n n
+1
n-1%, P n-1\, P
cep+2 )

FiGURE 10. Twist along d

The twisting operation is well-defined since the diagonals of an element in G%(n, k)
do not intersect. Furthermore, it does not matter which piece of the polygon is
twisted since the two results are identified by an action of D,,. It immediately
follows that V4 - V4 = e, the identity element.

Proposition 3.1.2. Two elements, G1,G2 € G*(n, k), representing codim k faces
of associahedra, are identified in MZ(R) if there exist diagonals dy,...,d, of Gy
such that

(Va, -V )(G1) = Ga.

Proof. As two adjacent points p; and p, on RP! collide, the result is a new bubble
fused to the old at a point of collision p3, where p; and po are on the new bubble.
The location of the three points p; on the new bubble is irrelevant since Sz C
PGIl3(R). In terms of polygons, this means V4 does not affect the cell, where d is
the diagonal representing the double point p3. In general, it follows that the labels
of triangles can be permuted without affecting the cell. Let G be an n-gon with
diagonal d partitioning G into a square and an (n — 2)-gon. Figure 11 shows that
since the square decomposes into triangles, the cell corresponding to G is invariant
under the action of V4. Since any partition of G by a diagonal d can be decomposed

into triangles, it follows by induction that V4 does not affect the cell. O
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~
N\ 3 3
/> 2 —~~—> 1<—> 24\
1 3
/3 /2 1
d| |2 — d| |2
3\1 1 3 1
\» 2 <> 3 > 24/
3
— /2 1

FIGURE 11. V, does not affect the cell

Theorem 3.1.3. There exists a surjection
Kn-1xp, Sp — MS(R),

which is a bijection on the interior of the cells. In particular, %(n — 1)! copies of
K, _1 tessellate M3 (R).

Proof. The bijection on the interior of the cells follows immediately from the discus-
sion in §2.1. The map is not an injection since the boundaries of the associahedra

are glued according to Proposition 3.1.2. O

3.2. In Figure 12, a piece of ﬁg (R) represented by labeled polygons with diagonals
is shown. Note how two codim one pieces (lines) glue together and four codim two
pieces (points) glue together. Understanding this gluing now becomes a combina-
torial problem related to G%(n, k).

Notation. Let A(z,X) be the number of codim z cells in a CW-complex X. For a
fixed codim yo cell in M (R), and for y1 < y2, let A™(y1,y2) be the number of codim
y1 cells in MP(R) whose boundary contains the codim g cell. Note the number
A™(y1,y2) is well-defined by Theorem 3.1.3.

1 n—3 n—1+k
A(k’K"‘l)_k—H< k )( k )

Proof. This is obtained by just counting the number of n-gons with & non-intersecting
diagonals, done by A. Cayley in 1891 [3]. O

o)

Proof. The boundary components of a cell corresponding to an element in G¥(n, k)

Lemma 3.2.1.

Lemma 3.2.2.

are obtained by adding non-intersecting diagonals. To look at the coboundary cells,

diagonals need to be removed. For each diagonal removed, two cells result (coming
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FIGURE 12. A piece of M(R)

from the twist operation); removing ¢ diagonals gives 2¢ cells. We then look at all

possible ways of removing ¢ out of k& diagonals. O

Theorem 3.2.3.

_ o n even
(3.1) xMg(R)) = {(—1)"23(71 —2)(n—4)M?% n odd.

Proof. Tt is easy to show the following;:
Ak, NG (R)) - A (0, k) = A(0, NG} (B)) - Ak, Kopoy).

Using Theorem 3.1.3 and Lemmas 3.2.1 and 3.2.2, we solve for A(k, M%(R)); but

this is simply the number of codim & cells in M (R). Therefore,
n—3

— - 1 n—3\ (n—1+k
Ma(R) = (-1 (n — .
X( O( )) kzo( ) 2k+1 k+ 1 k k
This equation can be reduced to the desired form. O

Remark. Professor F. Hirzebruch has kindly informed us that he has shown, using
techniques of Kontsevich and Manin [11], that the signature of M (C) is given by

(3.1). He remarks that the equivalence of this signature with the Euler number
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of the space of real points is an elementary consequence of the Atiyah-Singer G-

signature theorem.

4. THE HYPERPLANES

4.1. Another approach to m(}(R) is from a top-down perspective using hyper-
plane arrangements as formulated by Kapranov [8, §4.3] and described by Davis,
Januszkiewicz, and Scott [5, §0.1].

Definition 4.1.1. Let V™ C R""! be the hyperplane defined by Yz; = 0. For
1 <1< j<n-—1let H} C V" be the hyperplane defined by z; = z;. The
braid arrangement is the collection of subspaces of V" generated by all possible

intersections of the H{;

If 3" denotes the collection of subspaces { {3}, then H" cuts V" into (n — 1)!
simplicial cones. Let S(V™) be the sphere in V™ and let P(V™) be the projective
sphere in V" (that is, RP"~3). Let B" to be the intersection of H" with P(V");

the arrangement B" cuts P(V™) into (n — 1)! open n — 3 simplices.

Definition 4.1.2. Let b* be a codim k irreducible cell of P(V") if (k;rl) hyperplanes

of H™ intersect there.*

Example 4.1.3. We look at the case when n = 5. Figure 13 shows the ‘scars’ on
the manifolds made by H?. On P(V?), there are four places where three hyperplanes

intersect, corresponding to the four codim two irreducible points.

FIGURE 13. S(V5) — P(V?)

Definition 4.1.4. Replace b* with sb*, the sphere bundle associated to the normal
bundle of b¥ C P(V"). This process yields a manifold with boundary. Then
projectify sb® into pb®, the projective sphere bundle. This defines a manifold
without boundary, called the blow-up of P(V™) along b*.

4The use of the word irreducible comes from [5] in reference to Coxeter groups.



TESSELLATIONS OF MODULI SPACES AND THE MOSAIC OPERAD 13

Remark. Replacing b* with sb* for any dimension k creates a new manifold with
boundary. However, blowing up along b* defines a new manifold for all dimensions
except codim one. That is, for codim one, projectifying sb* into pbk annuls the

process of replacing b¥ with sb”.

Proposition 4.1.5. [8, §4.3] The iterated blow-up of P(V™) along the cells {b*}
in increasing order of dimension yields M3 (R). It is inessential to specify the order

in which cells {b*} of the same dimension are blown up.

Therefore, the compactification of M (R) is obtained by replacing the set {b*}
with {pb*}. The closure of M (R) in P(V") is obtained by replacing the set {b*}
with {sb"}; this procedure truncates each n — 3 simplex of P(V") into the associa-

hedron K, _1. We explore this method of truncation in §5.4.

Example 4.1.6. The blow-up of P(V°) yielding M;(R) is shown in Figure 14.
The arrangement B5 on P(V?) ~ RP? yields six lines forming twelve 2-simplices;
the irreducible components of codim two turn out to be the points {b2,..., b3} of
triple intersection. Blowing up along these components, we get S' as a hexagon
for 5[1? and RP! as a triangle for pb?. The associahedron K, is a pentagon, and
the space M3 (R) becomes tessellated by twelve such cells (shaded), an “evil twin”
of the dodecahedron. ﬁS(R) appears as the connected sum of five real projective

planes.

FIGURE 14. P(V?®) — M}(R)

Historical Note. The diagram of MJ(R) shown in Figure 14 is first found in a
different context by Brahana and Coble in 1926 [2, §1] relating to possibilities of

maps with twelve five-sided countries.

4.2. Another way of looking at the moduli space comes from observing the inclusion
S3 € PGly(R). Since M (R) is defined as n distinct points on RP' quotiented by
PGl (R), one can fix three of these points to be 0,1, and co. From this perspective
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we see that M3(R) is a point. When n = 4, the cross-ratio is a homeomorphism
from M3(R) to RP!, the result of identifying three of the four points with 0, 1, and
o0o. In general, ﬁg (R) becomes a manifold blown up from an n — 3 dimensional
torus, coming from the (n — 3)-fold products of RP!. Therefore, the moduli space

before compactification can be defined as
(RPH)"™ — A*) /PGl (R),

where A* = {(x1,...,7,) € (RP')" | at least 3 points collide}. Compactification is
accomplished by blowing up along A*.

Example 4.2.1. An illustration of M3(R) from this perspective appears in Fig-
ure 15. From the five marked points on RP!, three are fixed leaving two dimensions
to vary, say x1 and x2. The set A is made up of seven lines {z1,22 = 0,1, 00} and
{x1 = x2}, giving a space tessellated by six squares and six triangles. Furthermore,
A* becomes the set of three points {1 = 22 = 0,1, 00}; blowing up along these
points yields the space MJ(R) tessellated by twelve pentagons. This shows M(R)

as the connected sum of a torus with three real projective planes.

1/
0
0 1 °0)

FIGURE 15. MJ(R) from the torus

Example 4.2.2. In Figure 16, a rough sketch of M{(R) is shown as the blow-up of
a three torus. The set A* associated to M§(R) has ten lines {z; = z; = 0,1, 00} and
{z1 = 29 = 3}, and three points {x1 = z2 = 23 = 0,1, 00}. The lines correspond
to the hexagonal prisms, nine cutting through the faces, and the tenth (hidden)
running through the torus from the bottom left to the top right corner. The three
points correspond to places where four of the prisms intersect.

The shaded region has three squares and six pentagons as its codim one faces. In
fact, all the top dimensional cells that form MS(R) turn out to have this property;

these cells are the associahedra K5 (see Figure 9b).
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=

FIGURE 16. MS(R)

4.3. We now introduce a construction which clarifies the structure of Mg (R).

Definition 4.3.1. [9, §4] A double cover of M?(R), denoted by M2 (R), is obtained

by fixing the n*" marked point on RP' to be co and assigning it an orientation.’

Example 4.3.2. Figure 17 shows the polygon labelings of MA(R) and MA(R),
being tiled by six and three copies of K3 respectively. In this figure, the label 4 has
been set to co. Note that the map J;Eé(R) — M§(R) is the antipodal quotient.

FIGURE 17. MA(R) — ME(R)

The double cover can be constructed using blow-ups similar to the method de-
scribed above; instead of blowing up the projective sphere P(V™), we blow-up the
sphere S(V™). Except for the anomalous case of Mg(R), the double cover is a
non-orientable manifold. Note also that the covering map ﬁg (R) — M2 (R) is the

antipodal quotient, coming from the map S(V"*) — P(V"). Being a double cover,

5Kapranov uses the notation S™~3 to represent this double cover.
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Jﬁg(R) will be tiled by (n — 1)! copies of K, 1.5 It is natural to ask how these

copies glue to form J;E(’)’(R).

Definition 4.3.3. A marked twist of an n-gon G along its diagonal d, denoted by
ﬁd(G), is the polygon obtained by breaking G along d into two parts, reflecting the
piece that does not contain the side labeled co, and gluing them back together.

The two polygons at the right of Figure 10 turn out to be different elements in
JVE{} (R), whereas they are identified in My (R) by an action of D,,. The following is

an immediate consequence of the above definitions and Theorem 3.1.3.

Corollary 4.3.4. There exists a surjection
Kno1 X7, Sn — M3(R)

which is a bijection on the interior of the cells.
Remark. The spaces on the left define the classical A, operad [7, §2.9].

Theorem 4.3.5. The following diagram is commutative:

(Kn—l X Sn)/% - MS(R)

! !

(Kn—l X Sn)/v - Mg(R)
where the vertical maps are antipodal identifications and the horizontal maps are a

quotient by Z,.

Proof. Look at K, _1 X S, by associating to each K,,_1 a particular labeling of an
n-gon. We obtain (K, 1 xS,)/g by gluing the associahedra along codim one faces
using v (keeping the side labeled oo fixed). It follows that two associahedra will
never glue if their corresponding n-gons have oo labeled on different sides of the
polygon. This partitions S,, into S,,_1 - Z,,, with each element of Z,, corresponding
to oo labeled on a particular side of the n-gon. Furthermore, Corollary 4.3.4 tells
us that each set of the (n — 1)! copies of K,_; glue to form J\N/[BL(IR) Therefore,
(Kn-1 X Sp)/e = (Kno1 X Sn-1)/g X Z, = MG(R) X Zn. O

5. THE BLow-UPSs

5.1. The spaces M} (R) and RP"~# differ only by blow-ups, making the study of
their structures crucial. Looking at the arrangement B™ on P(V"), there turn out
to be n — 1 irreducible points {b"3} in general position. In other words, these
points can be thought of as vertices of an n — 3 simplex with an additional point at

the center. Between every two b™~3 points of B", there exists a b”~* line, resulting

6These copies of K,,_1 are in bijection with the vertices of the permutohedron Pn_1 [9].
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in (Z:é) such irreducible lines. In general, k irreducible points of B" span a k — 1

dimensional irreducible cell; restating this, we get

Proposition 5.1.1. The number of irreducible components b* in B™ equals
n—1

5.1 .

e (i)

The construction of the braid arrangement shows that around a point b" 3 of
P(V™), the structure of B™ resembles the barycentric subdivision of an n—3 simplex.

We look at some concrete examples to demonstrate this.

Example 5.1.2. In the case of mg(R), Figure 14a shows the b2 cells in general
position; there are four points, three belonging to vertices of a 2-simplex, and one
in the center of this simplex. Between every two of these points, there exists a b!;
we see six such lines. Since these lines are of codim one, they need not be blown
up. Figure 14b shows the structure of a blown up point b? in ﬁg (R). Notice that
sb? is a hexagon and pb? is a triangle. It is no coincidence that these correspond
exactly to MA(R) and MA(R) (see Figure 17).

Example 5.1.3. For the three dimensional MS(R), the b3 cells and the b2 cells
need to be blown up, in that order. Choose a codim three cell b®; a neighborhood
around b will resemble the barycentric subdivision of a 3-simplex. Figure 18 shows
four tetrahedra, each being made up of six tetrahedra (some shaded), pulled apart
in space such that when glued together the result will constitute the aforementioned

subdivision. The barycenter is the point b3.

A

FIGURE 18. Barycentric subdivision of a 3-simplex

The left-most piece of Figure 19 shows one of the tetrahedra from Figure 18.
The map f; takes the barycenter b® to sb® whereas the map fo takes each b? going
through the barycenter to sb?. When looking down at the resulting ‘blown up’

tetrahedron piece, there are six pentagons (shaded) with a hexagon hollowed out in
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w%@@

A b é

FiGURE 19. Blow-up of vertex and lines

the center. Taking sb? to pb? turns these hexagons into triangles. Putting the four
‘blown up’ tetrahedra pieces together, the faces of sb3 make up a two dimensional
sphere tiled by 24 pentagons, with 8 hexagons (with antipodal maps) cut out. This
turns out to be JT/[S (R); projectifying sb® to pb® yields M5 (R) as shown in Figure 20.

FIGURE 20. M3(R) — M3 (R)

This pattern seems to indicate that for ﬁg (R), blowing up along the point b"~3
will yield M ~}(R). But what happens in general, when a codim k cell b* is blown
up? A glimpse of the answer was seen above with regard to the hexagons and

triangles showing up in M§(R).

5.2. To better understand M (R), we analyze the structure of b* € P(V") before
blow-ups and pbk € M(’)’ (R) after blow-ups. This is done through the eyes of mosaics,
looking at the faces of associahedra surrounding each blown up component of B™.

The following is a corollary of Proposition 5.1.1.

Corollary 5.2.1. Each irreducible cell b* corresponds to a choice of k+1 elements
from the set {1,...,n—1}.

Choose an arbitrary b* and assign it such a choice, say {p1,...,prs+1}, where

pi € {1,...,n—1}. We can think of this as an n-gon having a diagonal d partitioning
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it such that k + 1 labeled sides {p1, ..., pr+1} lie on one side and n — k — 1 labeled
sides {px+2,...,Pn-1,n} lie on the other. Using the mosaic operad structure, d
decomposes the n-gon into G1 o Ga, where Gy € G%(k +2) and G> € G(n — k),
with the new sides d; of G; coming from d. Note that G; o G2 corresponds to the
product of associahedra Kjy1 X Kj,_g_1.

There are (k+1)! different ways in which {p1, ..., pr+1} can be arranged to label
G1. However, since twisting is allowed along d;, we get %(k‘ + 1)! different labelings
of G1, each corresponding to a Ky41. But observe that this is ezactly how one
gets MET2(R), where the associahedra glue as defined in §3.1. Therefore, a fixed

labeling of G5 gives ﬁ’g” (R) x K,,_k—_1; all possible labelings result in

Theorem 5.2.2. In MZ(R), each irreducible cell b* in B™ becomes
(5.2) MEF2(R) x ME~F(R).

Example 5.2.3. Since MZ(R) is a point, the blown up b2 cell becomes ﬁg_l(R),
matching the earlier observations of §5.1. Furthermore, (5.1) shows there to be

n — 1 such structures.

Example 5.2.4. Although blowing up along codim one components does not affect
the resulting manifold, we observe their presence in M3(R). From (5.1), we get
six such b’ cells which become Mg(R) after blow-ups. The Mg(R)’s are seen in
Figure 14 as the six lines cutting through RP2. Note that every line is broken into

six parts, each part being a Kj.

Example 5.2.5. The space MS(R), illustrated in Figure 16, moves a dimension
higher.” There are ten b? cells, each becoming M3(R) x M3(R). These are the

hexagonal prisms that cut through the three torus as described in Example 4.2.2.

5.3. The question arises as to why ﬁg_k(R) appears in M7 (R). The answer lies in
the braid arrangement of hyperplanes. Taking MS(R) as an example, blowing up
along each point b in BY uses the following procedure: A small spherical neighbor-
hood is drawn around b® and the inside of the sphere is removed, resulting in sb>.
Observe that this sphere (which we denote as 8) is engraved with great arcs coming
from BS. Projectifying, sb> becomes pb®, and 8 becomes the projective sphere PS.
Amazingly, the engraved arcs on P§ are B°, and P8 can be thought of as P(V?).
Furthermore, blowing up along the lines b2 of B® corresponds to blowing up along
the points b2 of B® in PS. As before, this new etching on P$ translates into an even

lower dimensional braid arrangement, B%.

7Although this figure is not constructed from the braid arrangement, it is homeomorphic to
the structure described by the braid arrangement.
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It is not hard to see how this generalizes in the natural way: For Mg (R), the iter-
ated blow-ups along the cells {b" 2} up to {b?} in turn create braid arrangements

within braid arrangements. Therefore, M2~ *(R) is seen in M (R).

5.4. So far we have been looking at the structure of the irreducible cells b* before
and after the blow-ups. We now study how the n — 3 simplex (tiling P(V™)) is
truncated by blow-ups to form K,_; (tiling M5 (R)).® Given a regular n-gon with

one side marked oo, define & to be the set of such polygons with one diagonal.

Definition 5.4.1. For G, G2 € G, create a new polygon Gy 2 (with two diagonals)
by superimposing the images of G; and G2 on each other (Figure 21). G7 and Gs

are said to satisfy the ST condition if G > has non-intersecting diagonals.

(ee] [o0) (ce]

FIGURE 21. Superimpose

Remark. Tt follows from §2.3 that elements of & correspond bijectively to the codim
one faces of K, _1. They are adjacent faces in K,,_1 if and only if they satisfy the
ST condition. Furthermore, the codim two cell of intersection in K,,_; corresponds

to the superimposed polygon.

The diagonal of each element G; € & partitions the n-gon into two parts, with
one part not having the oo label; call this the free part of G;. Define the set &° to
be elements of & having ¢ sides on their free parts. It is elementary to show that
the order of &% isn —i (for 1 < i < n — 1). In particular, the order of &% is n — 2,
the number of sides (codim one faces) of an n — 3 simplex. Arbitrarily label each

face of the simplex with an element of &2,

Remark. For some adjacent faces of the n — 3 simplex, the ST condition is not
satisfied. This is an obstruction of the simplex in becoming K, ;. As we continue
to truncate the cell, more faces will begin to satisfy the ST condition. We note that
once a particular labeling is chosen, the labels of all the new faces coming from

truncations (blow-ups) will be forced.

8For a detailed construction of this truncation from another perspective, see Appendix B of [17].
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When the zero dimensional cells are blown up, two vertices of the simplex are
truncated. The labeling of the two new faces corresponds to the two elements of
&"~2. We choose the vertices and the labels such that the SI condition is satisfied
with respect to the new faces and their adjacent faces. Figure 22 shows the case

for the 2-simplex and K4 (compare with Figure 14).

FIGURE 22. Truncation of K4 by blow-ups

The blow-up of one dimensional cells results in the truncation of three lines. As
before, the labels of the three new faces correspond to the three elements of G"~3,
choosing edges and the labels such that the ST condition is satisfied with respect to
the new faces and their adjacent faces. Figure 23 shows the case for the 3-simplex

and K5 (compare with Figures 18 and 19).

F1GURE 23. Truncation of K5 by blow-ups

As we iterate the blow-ups in Proposition 4.1.5, we jointly truncate the n — 3
simplex using the above process. The blow-ups of the codim k irreducible cells b*
add n — k — 1 new faces to the polytope, each labeled with an element from G**1.
Note that Corollary 5.2.1 is in agreement with this procedure: Each irreducible cell
b* corresponds to a choice of k + 1 labels which are used on the elements of GF*1.
In the end, we are left with Y |&?| faces of the truncated polytope, matching the

number of codim one faces of K, _1.
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6. THE FUNDAMENTAL GROUP

6.1. Coming full circle, we look at connections between the little cubes and the
mosaic operads. We would like to thank M. Davis, T. Januszkiewicz, and R. Scott
for communicating some of their results in preliminary form [6]. Their work is set
up in the full generality of Coxeter groups and reflection hyperplane arrangements,

but we explain how it fits into the notation of polygons and diagonals.

Definition 6.1.1. Let G,, G4 € G, with diagonals a, d respectively, satisfy the ST
condition. Let G} be the element in & after removing diagonal d from 6d(Ga,d).
We then say that G, and Gy, are conjugate in G4. Figure 24 shows such a case.

b\

J Y

F1GURE 24. Conjugate

Definition 6.1.2. Let J,_; be a group generated by elements {s;}, in bijection
with the elements {G;} of &, with the following relations:
s?=1
SdSq = spsq  if G4 and Gy are conjugate in G4
SaSp = SpSq  if G, and Gy, satisfy the ST condition and ﬁa(Ga,b) = ﬁb(Ga,b).

The machinery above is introduced in order to understand 71 (Mg (R)). Fix an
ordering of {1,2,...,n — 1} and use it to label the sides of each element in &. We
define amap ¢ : J,_1 — S,,_1 as follows: Let ¢(s;) be the product of transpositions
corresponding to the permuted labels of G; under ﬁd(Gi). Figure 25 gives a few

examples.

(15)(24) (25)(34) (45)

FI1GURE 25. Examples of & — Sg
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It is not too difficult to show that the relations of J,_1 carry over to S,_;.
Furthermore, the transpositions form a set of generators for S,,_1, showing ¢ to be

surjective.” This leads to the following
Theorem 6.1.3. [6, §4] ker ¢ x Zy = m(MZ(R)) x Zy = w1 (MZ(R)).

6.2. The pair-of-pants product (Figure 26) takes m + 1 and 1 + n marked points
on RP' to m -+ 1 +n marked points. The operad structure on the spaces Mg+ (R),
its simplest case corresponding to the pair-of-pants product, defines composition

maps  Ju, X Jn — Jmtn analogous to the juxtaposition map of braids.

m+1 1+n
o0} 2
E; )
o0}
m+1 1+ n
Q <:>
A
0]

FI1GURE 26. Pair-of-pants

We can thus construct a monoidal category which has finite ordered sets as its
objects and the group J, as the automorphisms of a set of cardinality n, all other
morphism sets being empty. Note the following similarity between the braid group
B,, obtained from the little cubes operad and the ‘quasibraids’ J,, obtained from

the mosaic operad:
m(C*—-A) — B, — §,

Wl(ﬁg-’_l(R)) — Jp > Sy

There are deeper analogies between these structures which have yet to be studied.
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