
TESSELLATIONS OF MODULI SPACES AND THE MOSAIC
OPERAD

SATYAN L. DEVADOSS

Abstract. We construct a new (cyclic) operad of mosaics defined by poly-
gons with marked diagonals. Its underlying (aspherical) spaces are the sets

Mn
0 (R) which are naturally tiled by Stasheff associahedra. We describe them

as iterated blow-ups and show that their fundamental groups form an operad
with similarities to the operad of braid groups.
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1. The Operads

1.1. The notion of an operad was created for the study of iterated loop spaces [13].
Since then, operads have been used as universal objects representing a wide range
of algebraic concepts. We give a brief definition and provide classic examples to
highlight the issues to be discussed.

Definition 1.1.1. An operad {O(n) | n ∈ N} is a collection of objects O(n) in a
monoidal category endowed with certain extra structures:

1. O(n) carries an action of the symmetric group Sn.
2. There are composition maps

(1.1) O(n) ⊗ O(k1) ⊗ · · · ⊗ O(kn) → O(k1 + · · · + kn)

which satisfy certain well-known axioms, cf. [14].

This paper will be concerned mostly with operads in the context of topological
spaces, where the objects O(n) will be equivalence classes of geometric objects.

Example 1.1.2. These objects can be pictured as trees (Figure 1a). A tree is
composed of corollas1 with one external edge marked as a root and the remaining
external edges as leaves. Given trees s and t, basic compositions are defined as
s ◦i t, obtained by grafting the root of s to the ith leaf of t. This grafted piece of
the tree is called a branch.

1A corolla is a collection of edges meeting at a common vertex.

1
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Figure 1. Trees, Bubbles, and Polygons

Example 1.1.3. There is a dual picture in which bubbles replace corollas, marked
points replace leaves, and the root is denoted as a point labeled ∞ (Figure 1b).
Using the above notation, the composition s ◦i t is defined by fusing the ∞ of the
bubble s with the ith marked point of t. The branches of the tree are now identified
with double points, the places where bubbles intersect.

1.2. Taking yet another dual, we can define an operad structure on a collection
of polygons (modulo an appropriate equivalence relation) as shown in Figure 1c.
Each bubble corresponds to a polygon, where the number of marked and double
points become the number of sides; the fusing of points is associated with the gluing
of faces. The nicest feature of polygons is that, unlike corollas and bubbles, the
iterated composition of polygons yields a polygon with marked diagonals (Figure 2).

Figure 2. Polygon composition

Unlike the rooted trees, this mosaic operad is cyclic in the sense of Getzler and
Kapranov [7, §2]. The most basic case (Figure 3) shows how two polygons, with
sides labeled a and b respectively, compose to form a new polygon. The details of
this operad are made precise in §2.2.

a bba

Figure 3. Mosaic composition
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1.3. In the work of Boardman and Vogt [1, §2.6], an operad is presented using m

dimensional cubes Im ⊂ Rm. An element C(n) of this little cubes operad is the
space of an ordered collection of n cubes linearly embedded by fi : Im ↪→ Im,
with disjoint interiors and axes parallel to Im. The fi’s are uniquely determined
by the 2n-tuple of points (a1, b1, . . . , an, bn) in Im, corresponding to the images of
the lower and upper vertices of Im. An element σ ∈ Sn acts on C(n) by permuting
the labeling of each cube:

(a1, b1, . . . , an, bn) �→ (aσ(1), bσ(1), . . . , aσ(n), bσ(n)).

The composition operation (1.1) is defined by taking n spaces C(ki) (each having ki

embedded cubes) and embedding them as an ordered collection into C(n). Figure 4
shows an example for the two dimensional case when n = 4.

f
2

f
3

f
4

1
f

Figure 4. Little cubes composition

Boardman showed that the space of n distinct cubes in Rm is homotopically
equivalent to Confign(Rm), the configuration space on n distinct labeled points in
Rm.2 When m = 2, Confign(R2) is homeomorphic to Cn −∆, where ∆ is the thick
diagonal {(x1, . . . , xn) ∈ Cn |∃i, j, i 	= j , xi = xj}. Since the action of Sn on Cn−∆
is free, taking the quotient yields another space (Cn −∆)/Sn. It is well-known that
both these spaces are aspherical, having all higher homotopy groups vanish [4]. The

2The equivariant version of this theorem is proved by May in [13, §4].
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following short exact sequence of fundamental groups results:

π1(Cn − ∆) � π1((Cn − ∆)/Sn) � Sn.

But π1 of Cn − ∆ is simply Pn, the pure braid group. Similarly, π1 of Cn − ∆
quotiented by all permutations of labelings is the braid group Bn. Therefore, the
short exact sequence above takes on the more familiar form:

Pn � Bn � Sn.

We will return to these ideas in §6.

2. The Moduli Space

2.1. The moduli space of Riemann spheres with n punctures,

Mn
0 (C) = Confign(CP

1)/PGl2(C),

has been studied extensively [10]. It has a Deligne-Mumford-Knudsen compactifi-
cation Mn

0 (C), a smooth variety of complex dimension n − 3. In fact, this variety
is defined over the integers; we will look at the real points of this space. These are
the set of fixed points of Mn

0 (C) under complex conjugation.

Definition 2.1.1. The moduli space Mn
0 (R) of configurations of n smooth points

on punctured stable real algebraic curves of genus zero is a compactification of the
quotient ((RP1)n − ∆)/PGl2(R), where ∆ is the thick diagonal.

Remark. This is an action of a non-compact group on a non-compact space. Geo-
metric invariant theory gives a natural compactification for this quotient, defined
combinatorially in terms of bubble trees or algebraically as a moduli space of real
algebraic curves of genus zero with n points, which are stable in the sense that they
have only finitely many automorphisms.

A point of Mn
0 (R) can be visualized as a bubble (that is, RP1) with n distinct

labeled points. For a particular labeling, the configuration space of such points gives
us a fundamental domain of Mn

0 (R). There are n! possible labelings. However, since
there exists a copy of the dihedral group Dn in PGl2(R), and since Mn

0 (R) is defined
as a quotient by PGl2(R), two labeled bubbles are identified by an action of Dn.
Therefore, there are 1

2 (n − 1)! copies of the fundamental domain that make up
Mn

0 (R). Since we remove the thick diagonal, these domains are open cells.
In Mn

0 (R), however, these marked points are allowed to ‘collide’ in the following
sense: As two adjacent points p1 and p2 of the bubble come closer together and
try to collide, the result is a new bubble fused to the old at the point of collision
(a double point), where the marked points p1 and p2 are now on the new bubble
(Figure 5). Note that each bubble must have at least three marked or double points
in order to be stable.



TESSELLATIONS OF MODULI SPACES AND THE MOSAIC OPERAD 5

Figure 5. Collision on bubbles

The mosaic operad encapsulates all the information of the bubbles, enabling one
to look at the situation above from the vantage point of polygons. Having n marked
points on a circle now corresponds to an n-gon; when two adjacent sides p1 and p2

of the polygon try to collide, a diagonal of the polygon is formed such that p1 and
p2 lie on one side of the diagonal (Figure 6).

Figure 6. Collision on polygons

What is quite striking about Mn
0 (R) is that its homotopy properties are com-

pletely encapsulated in the fundamental group.

Theorem 2.1.2. [5, §5.1] Mn
0 (R) is aspherical.

We will return to the structure of the fundamental group in §6.

2.2. We now turn to defining the mosaic operad and relating its properties with
the structure of Mn

0 (R). Let S1 be the unit circle bounding D, the disk endowed
with the Poincaré metric; this orients the circle. The geodesics in D correspond to
open diameters of S1 together with open circular arcs orthogonal to S1. The group
of isometries on D is PGl2(R) [15, §4].

A configuration of n distinct points on RP1 defines an ideal polygon in D, with
all vertices on the circle and geodesic sides. Let G(n, 0) be the space of such con-
figurations, modulo PGl2(R), and let G(n, k) be the space of such ideal polygons
marked with k non-intersecting geodesics between non-adjacent vertices. We want
to think of the elements of G(n, k) as limits of configurations in G(n, 0) in which k

sets of points have coalesced (see discussion above). Specifying k diagonals defines
a decomposition of an n-gon into k + 1 smaller polygons, and we can topologize
G(n, k) as a union of (k + 1)-fold products of G(m, 0)’s corresponding to this de-
composition. For example, to the one dimensional space G(4, 0) we attach zero
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dimensional spaces of the form G(3, 0) × G(3, 0). The combinatorics of these iden-
tifications can be quite complicated, but Stasheff’s associahedra were invented to
solve just such problems, as we will see in §2.3 below.

Henceforth, we will visualize elements of G(n, k) as n-gons with k non-intersecting
diagonals, and we write G(n) for the space of n-gons with any number of such
diagonals. Elements of G(n) inherit a natural cyclic order on their sides, and we
write GL(n) for the space of n-gons with labeled sides.

Proposition 2.2.1. There exists a bijection between the points of Mn
0 (R) and the

elements of GL(n, 0).

Remark. Given an element in G(n, k), we can associate to it a dual tree. Its vertices
are the barycenters of polygons, defined using the Riemann mapping theorem, and
the branches are geodesics between barycenters. The leaves are geodesics that
extend to points on RP1 midway between two adjacent marked points on RP1. It
then follows that Mn

0 (R) is a space of hyperbolic planar trees. This perspective
naturally gives a Riemann metric to Mn

0 (R).

Definition 2.2.2. Given G ∈ GL(m, l) and Gi ∈ GL(ni, ki) (where 1 ≤ i ≤ m),
there are composition maps

G a1◦b1 G1 a2◦b2 · · · am◦bm Gm �→ Gt,

where Gt ∈ GL(−m +
∑

ni, m + l +
∑

ki). The object Gt is obtained by gluing
side ai of G along side bi of Gi. The symmetric group Sn acts on Gn by permuting
the labeling of the sides. These operations define the mosaic operad {GL(n, k)}.
Remark. The one dimensional case of the little cubes operad is {I(n)}, the little
intervals operad. An element I(n) is an ordered collection of n embeddings of the
interval I ↪→ I, with disjoint interiors. The notion of trees and bubbles, shown in
Figure 1, is encapsulated in this intervals operad. Furthermore, after embedding
I in R and identifying R ∪∞ with RP1, the mosaic operad {GL(n, k)} becomes a
compactification of {I(n)}.
2.3. We now define the fundamental domain of Mn

0 (R) as a concrete geometric
object and present its connections with the mosaic operad.

Definition 2.3.1. Let A be the space of n − 3 distinct points {t1, . . . , tn−3} on
the interval [0, 1] such that 0 < t1 < · · · < tn−3 < 1. Identifying R ∪∞ with RP1

carries the set {0, t1, . . . , tn−3, 1,∞} of n points onto RP1. Therefore, there exists
a natural inclusion of A in Mn

0 (R). Define the associahedron Kn−1 as the closure
of the space A in Mn

0 (R).

Proposition 2.3.2. An interior point of Kn−1 corresponds to an element of
G(n, 0), and an interior point of a codim k face corresponds to an element of G(n, k).
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Proof. Since S3 ⊂ PGl2(R), one can fix three of the n distinct points on RP1 to be
0, 1, and ∞. Thus, the associahedron Kn−1 can be identified with the cell tiling
Mn

0 (R) and the proposition follows from the construction of G(n, k). �

The relation between the n-gon and Kn−1 is further highlighted by a work of
Lee [12], where he constructs a polytope Qn that is dual to Kn−1, with one vertex
for each diagonal and one facet for each triangulation of an n-gon. He then proves
the symmetry group of Qn to be the dihedral group Dn. Restated, it becomes

Proposition 2.3.3. [12, §5] Dn acts as a group of isometries on Kn−1.

Historical Note. Stasheff classically defined the associahedron Kn−1 for use in ho-
motopy theory [16, §6] as a CW-ball with codim k faces corresponding to using k

sets of parentheses meaningfully on n − 1 letters.3 It is easy to describe the as-
sociahedra in low dimensions: K2 is a point, K3 a line, and K4 a pentagon. The
two descriptions of the associahedron, using polygons and parentheses, are com-
patible: Figure 7 illustrates K4 as an example. The associahedra have continued
to appear in a vast number of mathematical fields, gradually acquiring more and
more structure, cf. [19].

(12)(34)

(1(23))4

((12)3)41(2(34))

1((23)4)

12(34)

1(234)

1(23)4

(123)4

(12)34

1 2 3 4

Figure 7. K4

2.4. The polygon relation to the associahedron enables the use of the mosaic operad
structure on Kn−1.

Proposition 2.4.1. [16, §2] Each face of Kn−1 is a product of lower dimensional
associahedra.

In general, the codim k − 1 face of the associahedron Km−1 will decompose as

Kn1−1 × · · · × Knk−1 ↪→ Km−1,

3From the definition above, the n − 1 letters can be viewed as the points {0, t1, . . . , tn−3, 1}.
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where
∑

ni = m + 2(k − 1) and ni ≥ 3. This parallels the mosaic operad structure

G(n1) ◦ · · · ◦ G(nk) �→ G(m),

where G(ni) ∈ GL(ni, 0), G(m) ∈ GL(m, k− 1), and the gluing of sides is arbitrary.
Therefore, the product in Proposition 2.4.1 is indexed by the internal vertices of
the tree corresponding to the face of the associahedron.

Example 2.4.2. We look at the codim one faces of K5. The three dimensional
K5 corresponds to a 6-gon, which has two distinct ways of adding a diagonal. One
way, in Figure 8a, will allow the 6-gon to decompose into a product of two 4-gons
(K3’s). Since K3 is a line, this codim one face yields a square. The other way, in
Figure 8b, decomposes the 6-gon into a 3-gon (K2) and a 5-gon (K4). Taking the
product of a point and a pentagon results in a pentagon.

Figure 8. Codim one cells of K5

Example 2.4.3. We look at the codim one faces of K6. Similarly, Figure 9 shows
the decomposition of the codim one faces of K6, a pentagonal prism and K5.

Figure 9. Codim one cells of K6

3. The Tessellation

3.1. We extend the combinatorial structure of the associahedra to Mn
0 (R). Propo-

sitions 2.2.1 and 2.3.2 show the correspondence between the associahedra in Mn
0 (R)

and GL(n, k). We investigate how these copies of Kn−1 glue to form Mn
0 (R).
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Definition 3.1.1. Let G ∈ GL(n, k) and d be a diagonal of G. A twist along d,
denoted by ∇d(G), is the element of GL(n, k) obtained by ‘breaking’ G along d into
two parts, ‘twisting’ one of the pieces, and ‘gluing’ them back (Figure 10).

d
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Figure 10. Twist along d

The twisting operation is well-defined since the diagonals of an element in GL(n, k)
do not intersect. Furthermore, it does not matter which piece of the polygon is
twisted since the two results are identified by an action of Dn. It immediately
follows that ∇d · ∇d = e, the identity element.

Proposition 3.1.2. Two elements, G1, G2 ∈ GL(n, k), representing codim k faces
of associahedra, are identified in Mn

0 (R) if there exist diagonals d1, . . . , dr of G1

such that

(∇d1 · · · ∇dr)(G1) = G2.

Proof. As two adjacent points p1 and p2 on RP1 collide, the result is a new bubble
fused to the old at a point of collision p3, where p1 and p2 are on the new bubble.
The location of the three points pi on the new bubble is irrelevant since S3 ⊂
PGl2(R). In terms of polygons, this means ∇d does not affect the cell, where d is
the diagonal representing the double point p3. In general, it follows that the labels
of triangles can be permuted without affecting the cell. Let G be an n-gon with
diagonal d partitioning G into a square and an (n − 2)-gon. Figure 11 shows that
since the square decomposes into triangles, the cell corresponding to G is invariant
under the action of ∇d. Since any partition of G by a diagonal d can be decomposed
into triangles, it follows by induction that ∇d does not affect the cell. �
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Figure 11. ∇d does not affect the cell

Theorem 3.1.3. There exists a surjection

Kn−1 ×Dn Sn → Mn
0 (R),

which is a bijection on the interior of the cells. In particular, 1
2 (n − 1)! copies of

Kn−1 tessellate Mn
0 (R).

Proof. The bijection on the interior of the cells follows immediately from the discus-
sion in §2.1. The map is not an injection since the boundaries of the associahedra
are glued according to Proposition 3.1.2. �

3.2. In Figure 12, a piece of M5
0(R) represented by labeled polygons with diagonals

is shown. Note how two codim one pieces (lines) glue together and four codim two
pieces (points) glue together. Understanding this gluing now becomes a combina-
torial problem related to GL(n, k).

Notation. Let Λ(x, X) be the number of codim x cells in a CW-complex X. For a
fixed codim y2 cell in Mn

0 (R), and for y1 < y2, let Λn(y1, y2) be the number of codim
y1 cells in Mn

0 (R) whose boundary contains the codim y2 cell. Note the number
Λn(y1, y2) is well-defined by Theorem 3.1.3.

Lemma 3.2.1.

Λ(k, Kn−1) =
1

k + 1

(
n − 3

k

) (
n − 1 + k

k

)
.

Proof. This is obtained by just counting the number of n-gons with k non-intersecting
diagonals, done by A. Cayley in 1891 [3]. �

Lemma 3.2.2.

Λn(k − t, k) = 2t

(
k

t

)
.

Proof. The boundary components of a cell corresponding to an element in GL(n, k)
are obtained by adding non-intersecting diagonals. To look at the coboundary cells,
diagonals need to be removed. For each diagonal removed, two cells result (coming
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Figure 12. A piece of M5
0(R)

from the twist operation); removing t diagonals gives 2t cells. We then look at all
possible ways of removing t out of k diagonals. �

Theorem 3.2.3.

(3.1) χ(Mn
0 (R)) =

{
0 n even
(−1)

n−3
2 (n − 2)((n − 4)!!)2 n odd.

Proof. It is easy to show the following:

Λ(k, Mn
0 (R)) · Λn(0, k) = Λ(0, Mn

0 (R)) · Λ(k, Kn−1).

Using Theorem 3.1.3 and Lemmas 3.2.1 and 3.2.2, we solve for Λ(k, Mn
0 (R)); but

this is simply the number of codim k cells in Mn
0 (R). Therefore,

χ(Mn
0 (R)) =

n−3∑
k=0

(−1)n−3−k (n − 1)!
2k+1

1
k + 1

(
n − 3

k

) (
n − 1 + k

k

)
.

This equation can be reduced to the desired form. �

Remark. Professor F. Hirzebruch has kindly informed us that he has shown, using
techniques of Kontsevich and Manin [11], that the signature of Mn

0 (C) is given by
(3.1). He remarks that the equivalence of this signature with the Euler number
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of the space of real points is an elementary consequence of the Atiyah-Singer G-
signature theorem.

4. The Hyperplanes

4.1. Another approach to Mn
0 (R) is from a top-down perspective using hyper-

plane arrangements as formulated by Kapranov [8, §4.3] and described by Davis,
Januszkiewicz, and Scott [5, §0.1].

Definition 4.1.1. Let V n ⊂ Rn−1 be the hyperplane defined by Σxi = 0. For
1 ≤ i < j ≤ n − 1, let Hn

ij ⊂ V n be the hyperplane defined by xi = xj . The
braid arrangement is the collection of subspaces of V n generated by all possible
intersections of the Hn

ij .

If Hn denotes the collection of subspaces {Hn
ij}, then Hn cuts V n into (n − 1)!

simplicial cones. Let S(V n) be the sphere in V n and let P(V n) be the projective
sphere in V n (that is, RPn−3). Let Bn to be the intersection of Hn with P(V n);
the arrangement Bn cuts P(V n) into 1

2 (n − 1)! open n − 3 simplices.

Definition 4.1.2. Let bk be a codim k irreducible cell of P(V n) if
(
k+1
2

)
hyperplanes

of Hn intersect there.4

Example 4.1.3. We look at the case when n = 5. Figure 13 shows the ‘scars’ on
the manifolds made by H5. On P(V 5), there are four places where three hyperplanes
intersect, corresponding to the four codim two irreducible points.

Figure 13. S(V 5) → P(V 5)

Definition 4.1.4. Replace bk with sbk, the sphere bundle associated to the normal
bundle of bk ⊂ P(V n). This process yields a manifold with boundary. Then
projectify sbk into pbk, the projective sphere bundle. This defines a manifold
without boundary, called the blow-up of P(V n) along bk.

4The use of the word irreducible comes from [5] in reference to Coxeter groups.
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Remark. Replacing bk with sbk for any dimension k creates a new manifold with
boundary. However, blowing up along bk defines a new manifold for all dimensions
except codim one. That is, for codim one, projectifying sbk into pbk annuls the
process of replacing bk with sbk.

Proposition 4.1.5. [8, §4.3] The iterated blow-up of P(V n) along the cells {bk}
in increasing order of dimension yields Mn

0 (R). It is inessential to specify the order
in which cells {bk} of the same dimension are blown up.

Therefore, the compactification of Mn
0 (R) is obtained by replacing the set {bk}

with {pbk}. The closure of Mn
0 (R) in P(V n) is obtained by replacing the set {bk}

with {sbk}; this procedure truncates each n− 3 simplex of P(V n) into the associa-
hedron Kn−1. We explore this method of truncation in §5.4.

Example 4.1.6. The blow-up of P(V 5) yielding M5
0(R) is shown in Figure 14.

The arrangement B5 on P(V 5) � RP2 yields six lines forming twelve 2-simplices;
the irreducible components of codim two turn out to be the points {b2

1, . . . , b
2
4} of

triple intersection. Blowing up along these components, we get S1 as a hexagon
for sb2

i and RP
1 as a triangle for pb2

i . The associahedron K4 is a pentagon, and
the space M5

0(R) becomes tessellated by twelve such cells (shaded), an “evil twin”
of the dodecahedron. M5

0(R) appears as the connected sum of five real projective
planes.

Figure 14. P(V 5) → M5
0(R)

Historical Note. The diagram of M5
0(R) shown in Figure 14 is first found in a

different context by Brahana and Coble in 1926 [2, §1] relating to possibilities of
maps with twelve five-sided countries.

4.2. Another way of looking at the moduli space comes from observing the inclusion
S3 ⊂ PGl2(R). Since Mn

0 (R) is defined as n distinct points on RP1 quotiented by
PGl2(R), one can fix three of these points to be 0, 1, and ∞. From this perspective
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we see that M3
0(R) is a point. When n = 4, the cross-ratio is a homeomorphism

from M4
0(R) to RP1, the result of identifying three of the four points with 0, 1, and

∞. In general, Mn
0 (R) becomes a manifold blown up from an n − 3 dimensional

torus, coming from the (n − 3)-fold products of RP1. Therefore, the moduli space
before compactification can be defined as

((RP
1)n − ∆∗)/PGl2(R),

where ∆∗ = {(x1, . . . , xn) ∈ (RP
1)n | at least 3 points collide}. Compactification is

accomplished by blowing up along ∆∗.

Example 4.2.1. An illustration of M5
0(R) from this perspective appears in Fig-

ure 15. From the five marked points on RP1, three are fixed leaving two dimensions
to vary, say x1 and x2. The set ∆ is made up of seven lines {x1, x2 = 0, 1,∞} and
{x1 = x2}, giving a space tessellated by six squares and six triangles. Furthermore,
∆∗ becomes the set of three points {x1 = x2 = 0, 1,∞}; blowing up along these
points yields the space M5

0(R) tessellated by twelve pentagons. This shows M5
0(R)

as the connected sum of a torus with three real projective planes.

10

1

0 8

8

Figure 15. M5
0(R) from the torus

Example 4.2.2. In Figure 16, a rough sketch of M6
0(R) is shown as the blow-up of

a three torus. The set ∆∗ associated to M6
0(R) has ten lines {xi = xj = 0, 1,∞} and

{x1 = x2 = x3}, and three points {x1 = x2 = x3 = 0, 1,∞}. The lines correspond
to the hexagonal prisms, nine cutting through the faces, and the tenth (hidden)
running through the torus from the bottom left to the top right corner. The three
points correspond to places where four of the prisms intersect.

The shaded region has three squares and six pentagons as its codim one faces. In
fact, all the top dimensional cells that form M6

0(R) turn out to have this property;
these cells are the associahedra K5 (see Figure 9b).
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Figure 16. M6
0(R)

4.3. We now introduce a construction which clarifies the structure of Mn
0 (R).

Definition 4.3.1. [9, §4] A double cover of Mn
0 (R), denoted by M̃n

0 (R), is obtained
by fixing the nth marked point on RP1 to be ∞ and assigning it an orientation.5

Example 4.3.2. Figure 17 shows the polygon labelings of M̃4
0(R) and M4

0(R),
being tiled by six and three copies of K3 respectively. In this figure, the label 4 has
been set to ∞. Note that the map M̃4

0(R) → M4
0(R) is the antipodal quotient.

1

2

3 4 1

2

3
4

1

23

4

1

2

3 4

1
2

3
4

1
23

4

1 2

3

4

1 2

3

4

1
23

4

1
23

4

1
2

3
4

1
2

3
4

12
3

4

12
3

4

1
2 3

4

1
2 3

4

1

2
3

4

1
2

3
4

Figure 17. M̃4
0(R) → M4

0(R)

The double cover can be constructed using blow-ups similar to the method de-
scribed above; instead of blowing up the projective sphere P(V n), we blow-up the
sphere S(V n). Except for the anomalous case of M̃4

0(R), the double cover is a
non-orientable manifold. Note also that the covering map M̃n

0 (R) → Mn
0 (R) is the

antipodal quotient, coming from the map S(V n) → P(V n). Being a double cover,

5Kapranov uses the notation S̃n−3 to represent this double cover.
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M̃n
0 (R) will be tiled by (n − 1)! copies of Kn−1.6 It is natural to ask how these

copies glue to form M̃n
0 (R).

Definition 4.3.3. A marked twist of an n-gon G along its diagonal d, denoted by
∇̃d(G), is the polygon obtained by breaking G along d into two parts, reflecting the
piece that does not contain the side labeled ∞, and gluing them back together.

The two polygons at the right of Figure 10 turn out to be different elements in
M̃n

0 (R), whereas they are identified in Mn
0 (R) by an action of Dn. The following is

an immediate consequence of the above definitions and Theorem 3.1.3.

Corollary 4.3.4. There exists a surjection

Kn−1 ×Zn Sn → M̃n
0 (R)

which is a bijection on the interior of the cells.

Remark. The spaces on the left define the classical A∞ operad [7, §2.9].

Theorem 4.3.5. The following diagram is commutative:

(Kn−1 × Sn)/e∇ −−−−→ M̃n
0 (R)
 


(Kn−1 × Sn)/∇ −−−−→ Mn
0 (R)

where the vertical maps are antipodal identifications and the horizontal maps are a
quotient by Zn.

Proof. Look at Kn−1 × Sn by associating to each Kn−1 a particular labeling of an
n-gon. We obtain (Kn−1×Sn)/e∇ by gluing the associahedra along codim one faces
using ∇̃ (keeping the side labeled ∞ fixed). It follows that two associahedra will
never glue if their corresponding n-gons have ∞ labeled on different sides of the
polygon. This partitions Sn into Sn−1 · Zn, with each element of Zn corresponding
to ∞ labeled on a particular side of the n-gon. Furthermore, Corollary 4.3.4 tells
us that each set of the (n − 1)! copies of Kn−1 glue to form M̃n

0 (R). Therefore,
(Kn−1 × Sn)/e∇ = (Kn−1 × Sn−1)/e∇ × Zn = M̃n

0 (R) × Zn. �

5. The Blow-Ups

5.1. The spaces Mn
0 (R) and RP

n−3 differ only by blow-ups, making the study of
their structures crucial. Looking at the arrangement Bn on P(V n), there turn out
to be n − 1 irreducible points {bn−3} in general position. In other words, these
points can be thought of as vertices of an n− 3 simplex with an additional point at
the center. Between every two bn−3 points of Bn, there exists a bn−4 line, resulting

6These copies of Kn−1 are in bijection with the vertices of the permutohedron Pn−1 [9].
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in
(
n−1
n−3

)
such irreducible lines. In general, k irreducible points of Bn span a k − 1

dimensional irreducible cell; restating this, we get

Proposition 5.1.1. The number of irreducible components bk in Bn equals

(5.1)
(

n − 1
k + 1

)
.

The construction of the braid arrangement shows that around a point bn−3 of
P(V n), the structure of Bn resembles the barycentric subdivision of an n−3 simplex.
We look at some concrete examples to demonstrate this.

Example 5.1.2. In the case of M5
0(R), Figure 14a shows the b2 cells in general

position; there are four points, three belonging to vertices of a 2-simplex, and one
in the center of this simplex. Between every two of these points, there exists a b1;
we see six such lines. Since these lines are of codim one, they need not be blown
up. Figure 14b shows the structure of a blown up point b2 in M5

0(R). Notice that
sb2 is a hexagon and pb2 is a triangle. It is no coincidence that these correspond
exactly to M̃4

0(R) and M4
0(R) (see Figure 17).

Example 5.1.3. For the three dimensional M6
0(R), the b3 cells and the b2 cells

need to be blown up, in that order. Choose a codim three cell b3; a neighborhood
around b3 will resemble the barycentric subdivision of a 3-simplex. Figure 18 shows
four tetrahedra, each being made up of six tetrahedra (some shaded), pulled apart
in space such that when glued together the result will constitute the aforementioned
subdivision. The barycenter is the point b3.

Figure 18. Barycentric subdivision of a 3-simplex

The left-most piece of Figure 19 shows one of the tetrahedra from Figure 18.
The map f1 takes the barycenter b3 to sb3 whereas the map f2 takes each b2 going
through the barycenter to sb2. When looking down at the resulting ‘blown up’
tetrahedron piece, there are six pentagons (shaded) with a hexagon hollowed out in
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1 2
ff

Figure 19. Blow-up of vertex and lines

the center. Taking sb2 to pb2 turns these hexagons into triangles. Putting the four
‘blown up’ tetrahedra pieces together, the faces of sb3 make up a two dimensional
sphere tiled by 24 pentagons, with 8 hexagons (with antipodal maps) cut out. This
turns out to be M̃5

0(R); projectifying sb3 to pb3 yields M5
0(R) as shown in Figure 20.

Figure 20. M̃5
0(R) → M5

0(R)

This pattern seems to indicate that for Mn
0 (R), blowing up along the point bn−3

will yield Mn−1
0 (R). But what happens in general, when a codim k cell bk is blown

up? A glimpse of the answer was seen above with regard to the hexagons and
triangles showing up in M6

0(R).

5.2. To better understand Mn
0 (R), we analyze the structure of bk ∈ P(V n) before

blow-ups and pbk ∈ Mn
0 (R) after blow-ups. This is done through the eyes of mosaics,

looking at the faces of associahedra surrounding each blown up component of Bn.
The following is a corollary of Proposition 5.1.1.

Corollary 5.2.1. Each irreducible cell bk corresponds to a choice of k+1 elements
from the set {1, . . . , n − 1}.

Choose an arbitrary bk and assign it such a choice, say {p1, . . . , pk+1}, where
pi ∈ {1, . . . , n−1}. We can think of this as an n-gon having a diagonal d partitioning
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it such that k + 1 labeled sides {p1, . . . , pk+1} lie on one side and n− k − 1 labeled
sides {pk+2, . . . , pn−1, n} lie on the other. Using the mosaic operad structure, d

decomposes the n-gon into G1 ◦ G2, where G1 ∈ GL(k + 2) and G2 ∈ GL(n − k),
with the new sides di of Gi coming from d. Note that G1 ◦ G2 corresponds to the
product of associahedra Kk+1 × Kn−k−1.

There are (k+1)! different ways in which {p1, . . . , pk+1} can be arranged to label
G1. However, since twisting is allowed along d1, we get 1

2 (k + 1)! different labelings
of G1, each corresponding to a Kk+1. But observe that this is exactly how one
gets Mk+2

0 (R), where the associahedra glue as defined in §3.1. Therefore, a fixed
labeling of G2 gives Mk+2

0 (R) × Kn−k−1; all possible labelings result in

Theorem 5.2.2. In Mn
0 (R), each irreducible cell bk in Bn becomes

(5.2) Mk+2
0 (R) × Mn−k

0 (R).

Example 5.2.3. Since M3
0(R) is a point, the blown up bn−3 cell becomes Mn−1

0 (R),
matching the earlier observations of §5.1. Furthermore, (5.1) shows there to be
n − 1 such structures.

Example 5.2.4. Although blowing up along codim one components does not affect
the resulting manifold, we observe their presence in M5

0(R). From (5.1), we get
six such b1 cells which become M4

0(R) after blow-ups. The M4
0(R)’s are seen in

Figure 14 as the six lines cutting through RP2. Note that every line is broken into
six parts, each part being a K3.

Example 5.2.5. The space M6
0(R), illustrated in Figure 16, moves a dimension

higher.7 There are ten b2 cells, each becoming M4
0(R) × M4

0(R). These are the
hexagonal prisms that cut through the three torus as described in Example 4.2.2.

5.3. The question arises as to why Mn−k
0 (R) appears in Mn

0 (R). The answer lies in
the braid arrangement of hyperplanes. Taking M6

0(R) as an example, blowing up
along each point b3 in B6 uses the following procedure: A small spherical neighbor-
hood is drawn around b3 and the inside of the sphere is removed, resulting in sb3.
Observe that this sphere (which we denote as S) is engraved with great arcs coming
from B6. Projectifying, sb3 becomes pb3, and S becomes the projective sphere PS.
Amazingly, the engraved arcs on PS are B5, and PS can be thought of as P(V 5).
Furthermore, blowing up along the lines b2 of B6 corresponds to blowing up along
the points b2 of B5 in PS. As before, this new etching on PS translates into an even
lower dimensional braid arrangement, B4.

7Although this figure is not constructed from the braid arrangement, it is homeomorphic to
the structure described by the braid arrangement.
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It is not hard to see how this generalizes in the natural way: For Mn
0 (R), the iter-

ated blow-ups along the cells {bn−3} up to {b2} in turn create braid arrangements
within braid arrangements. Therefore, Mn−k

0 (R) is seen in Mn
0 (R).

5.4. So far we have been looking at the structure of the irreducible cells bk before
and after the blow-ups. We now study how the n − 3 simplex (tiling P(V n)) is
truncated by blow-ups to form Kn−1 (tiling Mn

0 (R)).8 Given a regular n-gon with
one side marked ∞, define S to be the set of such polygons with one diagonal.

Definition 5.4.1. For G1, G2 ∈ S, create a new polygon G1,2 (with two diagonals)
by superimposing the images of G1 and G2 on each other (Figure 21). G1 and G2

are said to satisfy the SI condition if G1,2 has non-intersecting diagonals.

8 88

Figure 21. Superimpose

Remark. It follows from §2.3 that elements of S correspond bijectively to the codim
one faces of Kn−1. They are adjacent faces in Kn−1 if and only if they satisfy the
SI condition. Furthermore, the codim two cell of intersection in Kn−1 corresponds
to the superimposed polygon.

The diagonal of each element Gi ∈ S partitions the n-gon into two parts, with
one part not having the ∞ label; call this the free part of Gi. Define the set Si to
be elements of S having i sides on their free parts. It is elementary to show that
the order of Si is n− i (for 1 < i < n− 1). In particular, the order of S2 is n− 2,
the number of sides (codim one faces) of an n − 3 simplex. Arbitrarily label each
face of the simplex with an element of S2.

Remark. For some adjacent faces of the n − 3 simplex, the SI condition is not
satisfied. This is an obstruction of the simplex in becoming Kn−1. As we continue
to truncate the cell, more faces will begin to satisfy the SI condition. We note that
once a particular labeling is chosen, the labels of all the new faces coming from
truncations (blow-ups) will be forced.

8For a detailed construction of this truncation from another perspective, see Appendix B of [17].
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When the zero dimensional cells are blown up, two vertices of the simplex are
truncated. The labeling of the two new faces corresponds to the two elements of
Sn−2. We choose the vertices and the labels such that the SI condition is satisfied
with respect to the new faces and their adjacent faces. Figure 22 shows the case
for the 2-simplex and K4 (compare with Figure 14).

8

8

8

8

8

8

8

8

Figure 22. Truncation of K4 by blow-ups

The blow-up of one dimensional cells results in the truncation of three lines. As
before, the labels of the three new faces correspond to the three elements of Sn−3,
choosing edges and the labels such that the SI condition is satisfied with respect to
the new faces and their adjacent faces. Figure 23 shows the case for the 3-simplex
and K5 (compare with Figures 18 and 19).
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Figure 23. Truncation of K5 by blow-ups

As we iterate the blow-ups in Proposition 4.1.5, we jointly truncate the n − 3
simplex using the above process. The blow-ups of the codim k irreducible cells bk

add n − k − 1 new faces to the polytope, each labeled with an element from Sk+1.
Note that Corollary 5.2.1 is in agreement with this procedure: Each irreducible cell
bk corresponds to a choice of k + 1 labels which are used on the elements of Sk+1.
In the end, we are left with

∑ |Si| faces of the truncated polytope, matching the
number of codim one faces of Kn−1.
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6. The Fundamental Group

6.1. Coming full circle, we look at connections between the little cubes and the
mosaic operads. We would like to thank M. Davis, T. Januszkiewicz, and R. Scott
for communicating some of their results in preliminary form [6]. Their work is set
up in the full generality of Coxeter groups and reflection hyperplane arrangements,
but we explain how it fits into the notation of polygons and diagonals.

Definition 6.1.1. Let Ga, Gd ∈ S, with diagonals a, d respectively, satisfy the SI

condition. Let Gb be the element in S after removing diagonal d from ∇̃d(Ga,d).
We then say that Ga and Gb are conjugate in Gd. Figure 24 shows such a case.

8

d

a

b

8

d

8

d

Figure 24. Conjugate

Definition 6.1.2. Let Jn−1 be a group generated by elements {si}, in bijection
with the elements {Gi} of S, with the following relations:

s2
i = 1

sdsa = sbsd if Ga and Gb are conjugate in Gd

sasb = sbsa if Ga and Gb satisfy the SI condition and ∇̃a(Ga,b) = ∇̃b(Ga,b).

The machinery above is introduced in order to understand π1(Mn
0 (R)). Fix an

ordering of {1, 2, . . . , n − 1} and use it to label the sides of each element in S. We
define a map φ : Jn−1 → Sn−1 as follows: Let φ(si) be the product of transpositions
corresponding to the permuted labels of Gi under ∇̃d(Gi). Figure 25 gives a few
examples.
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Figure 25. Examples of S → S6
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It is not too difficult to show that the relations of Jn−1 carry over to Sn−1.
Furthermore, the transpositions form a set of generators for Sn−1, showing φ to be
surjective.9 This leads to the following

Theorem 6.1.3. [6, §4] ker φ × Z2 = π1(M̃n
0 (R)) × Z2 = π1(Mn

0 (R)).

6.2. The pair-of-pants product (Figure 26) takes m + 1 and 1 + n marked points
on RP1 to m+1+n marked points. The operad structure on the spaces Mn+1

0 (R),
its simplest case corresponding to the pair-of-pants product, defines composition
maps Jm × Jn → Jm+n analogous to the juxtaposition map of braids.

+ n1m +1 1m + + n

+ n1m +1 1m + + n
8

8

8

8

8

8

8

8

Figure 26. Pair-of-pants

We can thus construct a monoidal category which has finite ordered sets as its
objects and the group Jn as the automorphisms of a set of cardinality n, all other
morphism sets being empty. Note the following similarity between the braid group
Bn obtained from the little cubes operad and the ‘quasibraids’ Jn obtained from
the mosaic operad:

π1(Cn − ∆) � Bn � Sn

π1(M̃n+1
0 (R)) � Jn � Sn

There are deeper analogies between these structures which have yet to be studied.
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