How to be a successful PhD student

By Cin-Ty Lee
5 Jan, 2012

© Cin-Ty Lee, 2011
Ph. D. = philosophiae doctor

Knowledge, understanding & societal contribution
Year 1 of graduate school

- You know nothing
- You don’t even know where you are going
- And the journey is steep
Post-oral exams

• You know something
• You have identified a problem you are working on
• Still, no end in sight

© Cin-Ty Lee, 2011
After your experiments are done

• You know a lot and you’re wiser
• You can see the finish line
• You know what you have to write to finish

© Cin-Ty Lee, 2011
Searching for questions

Bottle of topics

© Cin-Ty Lee, 2011
Year 1 of graduate school

• You know nothing
• You don’t even know where you are going
• And the journey is steep

© Cin-Ty Lee, 2011
Build your arsenal of knowledge

-build foundation first

© Cin-Ty Lee, 2011
Arsenal grows sand grain by sand grain
• Read
• Take classes
• Talk to colleagues

• Build a reference collection
• Make a scrapbook

© Cin-Ty Lee, 2011
How do you identify a problem or ask a question?

Aack! I know a lot but all my knowledge is fragmentary!
Understand Landscape of Knowledge
-make connections

Connections = hypothesis = question/problem

© Cin-Ty Lee, 2011
Luck favors the prepared mind

-Louis Pasteur
Begin with a connection
--connections lead to other connections
--ideas begin to flourish and branch out
--pick some research directions and follow them
But you don’t want to pick too many problems/questions

- You will get lots of grass, but in the winter, they will all die back down
Build up your knowledge tree

What type of tree are you?

© Cin-Ty Lee, 2011
The good and the bad of questions

-bad question
 ill-defined, no answer, too difficult

-good question
 well-posed
 leads to testable hypotheses
 difficulty is within reason
Bad questions/problems for a PhD thesis

What is the origin of life?

I want to solve global warming

I want to end world hunger

What is gravity?

How do mountains form?

Why do animals sleep? Dream?

I want to cure cancer.

These are certainly worthy questions/goals, but they are unrealistic ways to begin as they are ill-posed, too ambitious, too vague, or simply have no answer for mortals like us. Start small.

© Cin-Ty Lee, 2011
Ill-posed question: Why do rivers meander?

Why shouldn’t rivers meander?

© Cin-Ty Lee, 2011
Better posed question

What are the physical parameters that define whether a river meanders or flows straight?
Who cares about this question?

Implications

• Where should I build my house, bridge, farm?
• How do I control flooding?
• How do I preserve river eco-systems?
• Taps our fundamental curiosity
A good question should lead to a good hypothesis

In outer bend, the river is erosive. On inner bend, the river deposits sand.

© Cin-Ty Lee, 2011
Hypothesis:

In outer bend, the river is erosive. On inner bend, the river deposits sand.
Hypothesis:
In outer bend, the river is erosive. On inner bend, the river deposits sand.

\[V_{\text{out}} = \frac{R_{\text{out}}}{R_{\text{in}}} V_{\text{in}} \]

\[V_{\text{out}} > V_{\text{in}} \]
Hypothesis:

In outer bend, the river is erosive. On inner bend, the river deposits sand.
What have we done?

• Followed our curiosity with a question
• Made observations from nature
• Developed a testable hypothesis

What’s next?

• Testing the hypotheses by constructing an experiment
What if our hypothesis is wrong?

Well, you won’t know until you try to test it.

If you’re wrong, you still learned something.

Better to have learned something than to have done nothing at all.
Don’t be afraid to try things.

Don’t be afraid to make mistakes.

Learn from your mistakes.
Post-oral exams

- You know something
- You have identified a problem you are working on
- Still, no end in sight
Thinking and executing your proposed study

• Motivation – why is the problem interesting?

• What is the hypothesis?

• How will you solve the problem?

• What did you find?

• What do your results mean?

• What is the next step?
Progression of your science is nonlinear
--be prepared to make mistakes
--be prepared to reconsider your hypotheses, methods
When is too much data enough?
When do you stop?
After your experiments are done

- You know a lot and you’re wiser
- You can see the finish line
- You know what you have to write to finish
Outline of a paper

1. Introduction
 • Motivation, context, background
 • Hypotheses
2. Methods
 • Experimental setup
 • Analytical techniques
 • Numerical techniques
3. Results
 • Data and observations
4. Discussion
 • Comparison to other work
 • Meaning of your observations
5. Conclusions/Summary
 • Brief overview
 • Outlook for future work

© Cin-Ty Lee, 2011
Outline structures

- Flow should be unidirectional (like a river)
- there should not be flashbacks!
Some more words of wisdom

Sometimes, if you’re excited, if you think it’s beautiful, then that’s all that matters.

Pursue your love.
Don’t forget about the big picture
Don’t forget about the big picture

Van Gogh painting
Pay attention to details & get the holistic experience

© Cin-Ty Lee, 2011
Balance work and play to be creative

Time spent on personal life

Time spent on research

Threshold of minimum research

Deviation from 1:1

Working too hard

Research is not for you

Creativity/Productivity Index

Optimum!

Deviation from life in balance

© Cin-Ty Lee, 2011
The going will be rough
But it’s worth it!
-you made it
-you can do anything now!
You now have your PhD.

But it’s only the first of many more hills!

What is the origin of life?
I want to solve global warming
I want to end world hunger
What is gravity?
How do mountains form?
Why do animals sleep? Dream?
I want to cure cancer.

© Cin-Ty Lee, 2011
One last word…

Pay back by teaching others and bringing everyone up with you.

Share your knowledge and your enthusiasm.