Category: Business and Environment
Topics:

· How do you deploy agile processes to large organizations?

· How to get management buy-in starting from non-Agile?

· How far can Agile scale?

· Formal QA. The developer is not the best person to perform final QA.

· Peer pressure.

· Documentation and Agile: best practices.

· How do you keep your customer “on-site”?

· What is the most important quality/characteristic of an agile team? How do you grow that quality?

· It would be cool to have an inter-company visitation program – see how others do agile.

· How would someone propose to teach agile in an academic setting?

Discussed/Recorded:

· How do you maintain and achieve agility in hardware/software co-design?

· Hardware designed up-front

· High cost of change curve for hardware … but prototype tools/boards can be used to do iterative development.

· Still issues with sync of hardware to software

· How do you transform a “blaming” organization into a “learning” org?

· Fear of estimating

· People worry if others are doing their jobs

· Symptoms of corporate culture that impedes agility

· Failing project – especially bad

· Management must change (new management?)

· Build trust – incremental successes

· Can Agile be introduced gradually to an organization?

· Do it without naming it “agile”

· Pilot project – all practices on one project

· One pair at a time

· One practice at a time

· Team room with the best hardware

· How do you define Agility?

· Embrace change

· Able to adapt to changing requirements

· Release early and often

· Iterative

· Scope doesn’t creep

· Ability of the business and environment to adapt to each other

· Agile and auditors: will they ever get along? How do we implement Agile in a regulatory environment?

· Regulatory requirements become stories or part of the work

· SOX (Sarbanes-Oxley) requires you to be able to trace the documentation back to the original request. It’s okay to do this with agile, you only need to do the minimum requirements

· How to identify the right developers for an agile team in an interview?

· Breakthrough standard Human Resources processes

· Interviewers plan ahead and have a plan

· Use Extreme Interviewing (http://www.menloinnovations.com/freestuff/whitepapers/extremeinterviewing.htm)
· A bunch of people in for a one day intensive with actual developers

· Interview for teamwork and pairing skills

· “Survivor” exercises

· Hire for talent, not skill

· Focus on finding one at a time

· Maintain the balance of new and experienced

· Make sure you have a mentor for each new person

· Better communication.

· Face to face is the best (body language)

· Video conferencing

· Telephone not as good

· Emails the worst

· Visual displays are good tools (story board)

· Tests (Test Driven Design) are a good communication tool among developers

· Anonymous collaboration

· Private message boards

Category: Basics
Topics:

· What is the criteria for success?

· Where do we even begin?

· How do you detect/prevent “throw it over the wall” behaviors?

· Responding to new requests and change in direction.

· What are effective agile project status indicators? (Metrics, etc.)

· Agile Project Manager – leader or facilitator?

· People get used to being agile one way – how to not get entrenched?

· How do you measure agility?

· How do you satisfy a customer’s need for a budget with an agile time and materials approach?

· How do you keep a keg of beer good?

Discussed/Recorded:

· TDD (Test Driven Design) and bubble up?

· Small waterfalls.

· Formal/audited processes running on top of agile processes.

Category: Tools
Topics:

· What tools are the most effective for global development teams?

· Are some languages inherently more agile?

· Are aglility and SOA related?

· Smart tools.

· What are the best IDE tools for aglility?

· Experiences with MSF/Agile and/or Microsoft Team System?

· How do you achieve agility across different programming languages (in same project)?

Discussed/recorded:

· Languages – Testability – Quicker/easy - .net, python, junit

· IDE: textmate (ruby) Eclipse Intellij, emacs, slickedit (editor and IDE)

· Global development (distributed): IM (chat), skype, unc, subversion, continuous integration

· SOA

· M$ (Microsoft prescribed tool): sometimes no choice. Add your favorite text processing/scripting language

Category: Specific Development Techniques
Topics:

· How to get agility out of team members that demand certainty.

· How do application code and test code “best practices” differ? Refactoring? Code smells?

· How do you assess completeness of test suite?

· How to deal with coworkers who refuse to practice TDD (Test Driven Design) on a TDD project?

· How to achieve a better object decomposition of a problem domain?
· Specific development techniques.

Discussed/Recorded:

· The “presenter” in MVP serves no useful purpose – discuss.

· Pro:

· Physical manifestation of a user story

· SRP enhancement/enable

· Writing present first results in emergent model and view behavior

· Con:

· Proliferation of classes

· Duplication across those classes

· Needs better tools than “traditional development”

· Anger as a tool for increasing agility. Hate-driven development?

· Anger: when you care about the code vs. shutting up. Not personal.

· “Pragmatic pairing” (vs. pairing)
· Don’t knock “hate-driven development”. It means “follow the hate,” follow the red X (in unit tests) to unimplemented stubs.

· How do you decide what to mock?

· X-driven development vs. fear-driven development

· Refactoring can be a problem - a test generation tool fixes this

· In a perfect work, every class would be fully testable with either a mock/interaction test or a state-based test. Because each object would do one thing – coordinate a set of interfaces or perform a calculation based on inputs.

ENDING COMMENTS BY PARTICIPANTS

Photos at: http://flickr.com/search/?q=xpwm
· It still worked with 26 people.

· It was hard to hear in the room due to the poor acoustics.

· Some of the pods did not record much of the conversations.

· We got to tap the brains of many participants rather than just a few like with lightning talks.

· We heard from people with diverse development experiences.

· I’m not alone!

· Beer helped. Food good.

· Should look into having the food at the beginning of our regular XPWM meetings.
