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Dharahara Tower, Kathmandu, Nepal (2015)



What drives collapse?

1. Elastic resonance?

2. Direct overturning

3. Vibration / walk apart / dis-integration



Important considerations for towers

Global geometry:
 Slenderness
 Size/scale

Details:
 Openings (particularly bell towers)
 Quality of construction
 Potential connection to (stiff) church?



Case Study #1: Christchurch Cathedral
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Relation to Philippines

 How to properly reconstruct?
– maintain heritage 
– ensure seismic safety



Case Study #2: Lincolnshire, UK



Lincolnshire Earthquake, 2009



Stone Masonry Spire, Waltham on the Wolds, UK



What drives collapse?

1. Elastic resonance?

2. Direct overturning

3. Vibration / walk apart / dis-integration
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 Euler-Bernoulli Beam

 Mode shape

Analytical Elastic Analysis
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What drives collapse?

1. Elastic resonance?
– Amplifies response
– More important for slender structures

2. Direct overturning

3. Vibration / walk apart / dis-integration



Lincolnshire, UK: Chrischurch, NZ:
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Rocking Block: Impulse Response
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Stone Spire, Lincolnshire
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Hand Calculation
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Failure mechanism:



Tilt Test

 DEM: 
ag = 0.17g

 Physical:
ag = 0.16g

(Analytical: ag = 0.19g)



Overturning – Include inertia

DeJong (2012). Engineering Structures, 40, 556-565
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Rocking Mechanism:Cracked spire geometry:
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DEM - Impulse Rocking Response

DeJong, Vibert (2012). Engineering Structures, 40, 566-574
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Direct overturning comments

 Slender = more vulnerable
 Smaller = more vulnerable

 PGA determines rocking initiation
 Length pulse (with respect to scale) causes 

larger maximum rotation



Direct overturning comments

 Another way to include effective “period” 
of earthquake (Italian building code)

– Use design elastic response spectra to 
approximate the effect of “period” of the 
earthquake to better predict collapse 



What drives collapse?

1. Elastic resonance?

2. Direct overturning

3. Vibration / walk apart /    
dis-integration

– Difficult to model
– Practical solutions (connections)



Seismic response
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Seismic response



What drives collapse?

1. Elastic resonance?

2. Direct overturning

3. Vibration / walk apart / dis-integration
– Interlock is important!

– Local soil amplification important



Solution



Case Study #3: Dharahara Tower, Nepal





Nepal Ground Motion



Rai et al. 
(2015)



Philippines: Brief Observations



Towers stocky, walls thick

Loay Baclayan Daius Dimiao



Towers stocky, walls thick

 Direct overturning 
less likely

 Elastic 
amplification 
smaller

Punta Cruz Panglao



Baclayon Bell Tower

Photo by A. MandingPhoto by S. Kelley



Dimiao



Bell Towers

 Tie top of walls

 Limit analysis:

 “Columns” of bell towers



Important considerations for towers

Global geometry:
 Slenderness
 Size/scale

Details:
 Openings (particularly bell towers)
 Quality of construction (masonry, roof ties)
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