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Lincolnshire Earthquake, UK (2009)
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Dharahara Tower, Kathmandu, Nepal (2015)




What drives collapse?

1. Elastic resonance?
2. Direct overturning

3. Vibration / walk apart / dis-integration



Important considerations for towers

Global geometry:
m Slenderness
m Size/scale

Details:

m Openings (particularly bell towers)

m Quality of construction

m Potential connection to (stiff) church?



Case Study #1: Christchurch Cathedral
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Relation to Philippines

m How to properly reconstruct?
— maintain heritage
— ensure seismic safety



Case Study #2: Lincolnshire, UK
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Stone Masonry Spire, Waltham on the Wolds, UK




What drives collapse?

1. Elastic resonance?
2. Direct overturning

3. Vibration / walk apart / dis-integration
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Analytical Elastic Analysis

Euler-Bernoulli Beam
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What drives collapse?

1. Elastic resonance?
— Amplifies response
— More important for slender structures

2. Direct overturning

3. Vibration / walk apart / dis-integration



Lincolnshire, UK: Chrischurch, NZ:
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Acceleration [g]

Vulnerability to direct overturning

Slenderness:
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Rocking Block: Impulse Response
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Stone Spire, Lincolnshire
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Hand Calculation

Geometry:

94 m

Failure mechanism:

|

a, = 0.19¢
(perfect hollow cone)



Tilt Test

m DEM:
a, = 0.179

m  Physical:
a, = 0.169

(Analytical: a, = 0.199)




Overturning — Include inertia

Cracked spire geometry: Rocking Mechanism:

CHRINTCHURCH CATHEDRAI ol A L E
AFTER THE EARTHQUAKI

Delong (2012). Engineering Structures, 40, 556-565



10 m

Spire mechanisms

2m

Pulse Acceleration, 4 . [g]

0.8 -

0.6 1

0.4 1

0.2 1

0 0.5 1 1.5 2

Pulse Duration, T’ ; [s]




DEM - Impulse Rocking Response

Delong, Vibert (2012). Engineering Structures, 40, 566-574



Impulse Response Comparison
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Direct overturning comments

m Slender = more vulnerable
m Smaller = more vulnerable

m PGA determines rocking initiation

m Length pulse (with respect to scale) causes
arger maximum rotation




Direct overturning comments

m Another way to include effective “period”
of earthquake (lItalian building code)

— Use design elastic response spectra to
approximate the effect of “period” of the
earthquake to better predict collapse



What drives collapse?

1. Elastic resonance?

2. Direct overturning -~

3. Vibration / walk apart /
dis-integration
— Difficult to model
— Practical solutions (connections)




Seismic response
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Seismic response

Pulse acceleration, a, [g]
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Seismic response




What drives collapse?

1. Elastic resonance?

2. Direct overturning

3. Vibration / walk apart / dis-integration
— Interlock Is important!

— Local soil amplification important



Solution




Case Study #3: Dharahara Tower, Nepal
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Nepal Ground Motion
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Philippines: Brief Observations



Towers stocky, walls thick

Daius Dimiao




Towers stocky, walls thick

m Direct overturning
less likely

m Elastic
amplification
smaller

Punta Cruz Panglao



Baclayon Bell Tower







Bell Towers

m Tie top of walls

m Limit analysis: /] Z]

m “Columns” of bell towers




Important considerations for towers

Global geometry:
m Slenderness
m Size/scale

Details:
m Openings (particularly bell towers)
m Quality of construction (masonry, roof ties)
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