Material Testing Techniques For Existing Masonry

Michael Schuller, P.E.

International Symposium
Seismic Retrofit of Unreinforced Masonry
Heritage Churches in the Philippines

National Museum of the Philippines January 13 - 14, 2016

Atkinson-Noland & Associates, Inc.

New York | Boulder

mschuller@ana-usa.com

Nondestructive Evaluation In Situ Tests Laboratory Testing

- Typical applications
- Planning (or specifying) an investigation
 - Interpreting and using data
 - Validation and proof testing

INTERPRETATION

- Experience
- Software
- Complementary methods
- Calibration
- Probe

What information do you need?

- As-built conditions
 - Geometry
 - Connections
- Current condition
 - Deterioration, corrosion
 - Distress, cracking, delamination
- Engineering properties
 - Strength
 - Stiffness

Nondestructive Evaluation (NDE)

- Visual
- Surface hardness
- Metal location
- Pulse velocity
- Impact-echo
- Tomographic imaging
- Sounding
- Microwave radar
- Infrared thermography
- X-ray
- Borescope

Visual Evaluation: Condition Survey

- Historical Information
 - Review drawings
 - Research history
 - Interviews
- Visual
 - Measurements
 - Plumb, level
 - Photographs

Rebound Hardness

Rebound of an elastic mass depends on the hardness of the surface upon which it impinges

Ernst Schmidt, 1948
"Schmidt Hammer"

Rebound Hardness

Uses:

- Material uniformity
- Deteriorated or poor quality zones
- Characteristic changes over time
- Compressive strength?
 - → ASTM C805-75: "This method is not intended as an alternative for strength determination"

Rebound Hardness

Relating rebound number to strength

- ±15% (lab)
- ±25% (realistic)

Zoldners, Calibration and Use of Impact Test Hammer, ACI Journal, 54(2) 1957.

Rebound hardness applications

- General indication of material properties
- Locate deterioration
- Evaluate fire-damaged masonry, concrete
- Qualify pointing mortar for repair
 - Quality assurance following repointing
- Evaluate mortar in new construction

Sounding

Near-surface delaminations and spalls

Pachometer

- Used for locating embedded metals
 - Pulse induction method
 - Detects any conductive metal

www.elcometer.com

Metal detection

- Reinforcement
- Anchors
- Flashing

- Conduit
- Pipes
- Electrical

Photo by Zach Rice

Pachometer - limitations

- Most devices made for evaluating concrete
 - Max. detection depth 15 to 20 cm
- Measurements affected by:
 - Near-surface or adjacent metals
 - Variations in base material
 - Electromagnetic fields
 - Large metal watches

Pulse Velocity

- Stress wave transmission
 - Ultrasonic
 - Sonic (mechanical pulse)
- Parameters of interest
 - Arrival time: velocity
 - Amplitude: attenuation
 - Frequency: attenuation, reflections from subsurface anomalies

Pulse Velocity Testing

Poisson, 1848

Theory of compression waves in solids:

$$V^{2} = \frac{E_{d}}{\rho} \frac{(1-\nu)}{(1+\nu)(1-2\nu)}$$

$$E_{d} = \text{dynamic modulus}$$

$$\rho = \text{density}$$

$$\nu = \text{Poisson's ratio}$$

→ An *indicator* of strength, quality

- Aerojet Corporation, 1967
 - Investigation of sonic testing of masonry walls

Pulse Velocity Testing

- Wave transmission affected by:
 - Dynamic modulus
 - Density
 - Interfaces between materials

Pulse Velocity Applications

Material uniformity

Churning of the Sea of Milk Gallery Angkor Wat, Cambodia

Pulse Velocity Testing

- Capabilities
 - Internal construction
 - Locate internal anomalies: voids, cracks
 - Quality control: repairs
- Limitations
 - Two-sided access required
 - Point-by-point measurements
 - Rough surface: coupling req'd

Microwave radar

Ground penetrating radar: GPR Surface penetrating radar: SPR

- Sensitive to dielectric variations
 - Voids
 - Cracks
 - Embedded metals
 - Moisture
 - Salts

Radar data acquisition

Source: GSSI

From Line Scans to 2d Images

Source: GSSI

Microwave radar characteristics

- Average radiated power
 - Transmitted power ~ 1% of cell phone
- Practical limits
 - 18 to 30 inches in masonry/concrete
 - ❖ 30 feet to detect objects in the earth
 - 100 feet to detect water table, bedrock in earth
 - 1000 feet in ice to detect bedrock

Applications in Historic Structures

- Locating below-ground features
 - Gravesites, pipes, disturbed earth
- Determining thickness of floors or walls
- Locating bond stones and header courses
- Identifying voids or rubble fill within walls
- Imaging metal inclusions in concrete and masonry
- Mapping moisture content in materials
- Quality assurance in localized repairs

SPR: as-built information

Figure 3 – GPR scan 030 from location #7

Christ Church, Greenwich, CT

SPR: quality assurance

- How do you make sure a wall is injected properly?
 - Microwave radar
 - Borescope

SPR Evaluation

Beware of:

- Large metal inclusions
- Moisture variations
- Salts

Moisture Meter

Use complementary methods:

- Metal detectors
- Moisture meters
- Borescope examination

Infrared Thermography

- Measures infrared radiation emission from surfaces
- Surface temperature: 0.1° C resolution
- Variations in
 - Material density
 - Construction
 - Moisture

Infrared Thermography

- Difference in heat transfer characteristics
 - Voids
 - Material variations

Infrared Thermography

Moisture content variations

Borescope Evaluation

Use for verification/proofing of conditions discovered using NDE methods

In Situ Tests

- Engineering properties
 - Existing stress: ASTM C1196
 - Compressive strength: ASTM C1197
 - Shear strength: ASTM C1531
 - Anchor capacity: ASTM E488

Flatjack Testing

Flatjacks: thin hydraulic pressure cell

In Situ Stress Test

Direct measure of compression stress at test location

- Measure dead load stress
- Stress distribution in arch, vault
- Stress gradient across wall: bending moment
- Long term monitoring

In Situ Deformability ASTM C1197

Determine stiffness, strength, in place

In Situ Shear Test

- ASTM C1531, Standard Test Methods for Determination of Masonry Mortar Joint Shear Strength Index
- International Existing Building Code
 - IEBC Section A106.3.3.1
 - Data analysis and use

Laboratory Analysis

- Why?
- Where to sample?
 - Original, deteriorated, typical
- How much material?
- Budget?

Laboratory Analysis

- Material analysis
 - Binocular microscope
 - Scanning electron microscope
 - X-ray diffraction (minerals)
 - FTIR (elemental composition)
 - Chemical analysis

Metal Identification

- Tension strength
 - ASTM A370
- Chemical makeup
 - Optical spectroscopy
- Metallography
 - Microscopic examination

Photomicrograph of Corroded Edge: Uniform and Pitting Corrosion. (Original 250X, 2% Nitol Etch)

Mortar: Petrographic and Chemical Analysis

- Mix Proportions
- Lime, Cement Content
- Air Content
- Aggregate Type
- Binder composition
- Image analysis: deterioration mechanism

ASTM C856, Standard Practice for Petrographic Examination of Hardened Concrete ASTM C1324, Test Method for Examination and Analysis of Hardened Masonry Mortar

BRADFORD HOUSE

SAMPLE 1: New building, exterior south elevation

SAMPLE 2: Original building, south elevation

SAMPLE 3: New building, exterior east elevation

The gradation range specified for masonry mortar in ASTM C-144 is indicated in dashed lines.

0.1 Particle Size, mm 1

0.01

Mortar Analysis

Aggregate type, gradation

Planning an Investigation How best to employ NDE

- What information do you need?
 - As-built conditions
 - Damage mapping
 - Material properties
- Assemble a priori information
 - Original documents
 - Photographs
 - Prior reports

Planning an investigation

- How many tests?
- Confidence limits, expected accuracy
 - New construction: 3 specimens = 1 test
 - How variable is the construction/condition?
 - Different construction eras
 - Different materials
 - Deterioration/damage

International Existing Building Code

ASCE 41: Seismic Evaluation and Rehabilitation of Existing Buildings

Some final thoughts... The client should consider:

- Experience required to interpret test data
- Many NDE methods are affected by secondary phenomena (moisture, salts, boundary conditions)
- Be suspicious of the single-method approach
- Verify findings with other methods
- Will the repairs be expensive?
 - Verify conditions visually first

More Information

- APT: Association for Preservation Technology
 - **Preservation Engineering Technical Committee**
 - **Documentation Technical Committee**
 - Preservation Briefs: NDE for wood, masonry
- TMS: The Masonry Society
 - **Existing Masonry Committee**

www.masonrysociety.org

Material Testing Techniques For Existing Masonry

Michael Schuller, P.E. mschuller@ana-usa.com

International Symposium
Seismic Retrofit of Unreinforced Masonry
Heritage Churches in the Philippines

National Museum of the Philippines January 13 - 14, 2016

Atkinson-Noland & Associates, Inc.

New York | Boulder

