PROPOSED GUIDELINES FOR EARTHQUAKE-RESISTANT UNREINFORCED MASONRY HERITAGE STRUCTURES

GUIDELINES FOR EARTHQUAKE-RESISTANT UNREINFORCED MASONRY HERITAGE STRUCTURES

TYPICAL DAMAGE AND COLLAPSE SCENARIOS

TYPICAL DAMAGE AND COLLAPSE OF UNREINFORCED MASONRY

TYPICAL DAMAGE AND COLLAPSE OF UNREINFORCED MASONRY

GUIDELINES FOR EARTHQUAKE-RESISTANT UNREINFORCED MASONRY HERITAGE STRUCTURES

DESIGN PARAMETERS TO BE CONSIDERED

DESIGN PARAMETERS TO BE CONSIDERED

- Type of material
- Age
- Reconstruction/Repair History
- Method of Reconstruction
- Location
- Type of Soil at Site

DESIGN PARAMETERS TO BE CONSIDERED

- Site Soil Bearing Capacity
- Site Geology
- Seismic Source Type
- Proximity to Fault Line
- Factor of Safety
- Use of Structure/Occupancy
- Additional Loads Imposed on the Structure

GUIDELINES FOR EARTHQUAKE-RESISTANT UNREINFORCED MASONRY HERITAGE STRUCTURES

STRUCTURAL SAFETY AND CAPABILITY ASSESSMENT

STRUCTURAL SAFETY AND CAPABILITY ASSESSMENT

- Cracks
- Vegetation
- Water Intrusion Marks
- Rot
- Voids within walls
- Loose blocks/coral stones

GUIDELINES FOR EARTHQUAKE-RESISTANT UNREINFORCED MASONRY HERITAGE STRUCTURES

TESTS TO BE CONDUCTED

TESTS TO BE CONDUCTED

- Geotechnical Survey
- Seismic Survey
- Soil Suitability tests:
 - Dry Strength Test
 - Fissuring Control Test
- Material Strength tests
- Tests to Determine Material Composition
- Dynamic testing (Shaking Table, Vibrometer)
- Moisture content tests (for Timber)

PRACTICAL GEOTECHNICAL ENGINEERING

Subsurface Explorations & Sampling

Objective: to obtain sufficient data for selection of types, locations, and dimensions

- 1. Type and Spacing of Explorations
- 2. Depth of Explorations

Major Factors:

- magnitude and distribution of the load
- the nature of the subsurface conditions
- potential for liquefaction of the site

Bearing Capacity of Shallow Foundations

Foremost requirements :

adequate depth

tolerable settlements

safety against failure.

Influence of Groundwater Table

The position of the groundwater table may have a significant effect on bearing capacity of shallow foundations especially in soil liquefaction analysis.

LIQUEFACTION

- The development of high pore water pressures due to ground shaking and upward flow of water turning the sand into a liquefied condition.
- It can result in ground surface settlement or a bearing capacity failure of the foundation.

INVESTIGATION for ASSESSING SEISMIC HAZARDS

PURPOSE : to demonstrate absence of seismic hazards or adequately define the seismic hazards so that suitable recommendations for mitigation can be developed.

THREE TYPES OF FAULTS

Thrust

	Earthquake Performance Level				
Earthquake Design Level	Operational (Minor or No Damage)	(Controlled Damage)	Life Safety	Collapse Prevention	
Frequent (72 years)	K				
Occasional (225 years)		ESSENTIC	BJECTIVE		
Rare (475 years)	SAFETY C	RITICAL OBJEC	TIVE		
Very Rare (2475 years)		SCHIVE			

PERFORMANCE MATRIX (after SEAOC 1995)

PERIOD (seconds)

475 YEAR RETURN PERIOD (5% damping)

Distance from Tagbilaran to epicenter: 43 km Earthquake Magnitude: 7.2

EXAMPLE: SITE SPECIFIC SEISMICITY STUDY

MANILA TRENCH

PHILIPPINE FAULT ZONE [PFZ]

PFZ: INFANTA FAULT

IBA FAULT

VALLEY FAULT SYSTEM

LUBANG FAULT

PILUGIN STP PROJECT Pinagbuhatan, City of Pasig, Philippines

Fault lines within 150 km radius.

FAULT No.	Fault Name	Fault Type	Fault Length (km) 475YRP	Fault Length (km) 950YRP	Epicntrl Fault Distance (km)	Mw 450 YRP	Mw 2475 YRP
1	Fault #1	SS	67	100	3	6.8	7.4
2	Fault #2	SS	136	150	50	7.5	7.6
3	Fault #3	SS	125	150	60	7.5	7.6
4	Fault #4	SS	56	150	70	7.2	7.6
5	Fault #5	Subdctn	255	350	180	7.8	8.2

Мо	λm	t	Ρ[Ν≥1] = 1-e ^{-λmt}	EXPOSURE TIME	PE
5.6	0.0140	72	0.503414	50	50%
6.0	0.0045	224	0.201484	50	20%
6.8	0.0022	475	0.095163	50	10%
7.4	0.0004	2475	0.024690	50	2%

GUIDELINES FOR EARTHQUAKE-RESISTANT UNREINFORCED MASONRY HERITAGE STRUCTURES

ANALYSIS APPROACH

BASIC PRINCIPLES OF ENGINEERING

Engineering retrofitting and restoration works require a good understanding of the basic principles of structural engineering on the behavior of:

$m\ddot{v} + c\dot{v} + kv = p(t)$

on SDOF equilibrium

Soil profile type:

- The soil layers beneath a structure effects the way that structure responds to the earthquake motion.
- When period of vibration of the building is close to the period of vibration of the underlying soil, the bedrock motion is amplified.

AMPLIFICATION OF GROUND ACCELERATION

ANALYSIS APPROACH

- Complete data on material properties and interaction
- Damping properties
- Analysis is on a case-to-case basis.
- Design programs that may be used in structural modeling include, but are not limited to: SAP2000, ETABS, STAAD, etc. -provided that the model can adequately represent structural behavior

Collapse of the upper level due to instability caused by material incompatibility without adequate connection

Only the reinforced concrete columns on the nave were left standing along with the attached wooden trusses on the wings

EVOLUTION OF SEISMIC BASE SHEAR

V = 0.1 WV = ZKCWV = ZKCSW $V = \underline{ZIC} W$ RW

 $C_v I$ RT

2001 - 2010

GUIDELINES FOR EARTHQUAKE-RESISTANT UNREINFORCED MASONRY HERITAGE STRUCTURES

GENERAL RECOMMENDATIONS

GENERAL RECOMMENDATIONS

- FOOTINGS: Preferably built using stone or reinforced concrete.
- WALLS: Providing outside pilasters at wall junctions will increase seismic stability. Walls also must have vertical reinforcements.
- ROOFING: Roof structure must be light, wellconnected and adequately-connected to the walls.
- PLASTERING: This gives protection and durability to the walls, in addition to its contribution to aesthetics.
- BLOCKS/STONES: Must be of good quality and be adequately-bonded.

Bell Tower section fell in 1788 EQ.

ST. JAMES THE GREAT CHURCH Bolinao, Pangasinan

Wood trusses act as seismic dampers similar to a *muelle* or leaf springs found in *calesas* that dissipate energy by sliding together in opposite directions when force is applied. These are very effective damping mechanism that has contributed to the survival of old churches during earthquakes.

San Agustin Church after 1880 Earthquake

SALAMAT PO!