
➔ Contents

Pro 3D Camera
System Reference Guide

Thank you for your purchase.

This small investment will make your life so much easier.

4 Cameras
1 Player Controller
Over 70 Settings

Easy Editor
Save Custom Settings Presets

API Documentation

Contents

❖ Overview
❖ The RPG Camera
❖ The FPS Camera
❖ The Top Down Camera
❖ The RTS Camera
❖ The Player Controller
❖ Shake Settings
❖ Camera Data Presets
❖ The Obstruction Handler
❖ Settings Detail
❖ API Docs and Examples
❖ Version Notes

➔ Contents

 Don’t assume you need to use all of these cameras in
each project. While you are only modifying a single camera
script - it was designed to give you options across all of
your projects. Some cameras share functionality, but you
can mostly stick to one camera based on the style you are
shooting for. Below is a legend of the editor that comes
with the package.

Position

Orbit

Input

Pan

Pro 3D Camera

 Pro Camera 3D was designed with the user in mind.
You will be able to work in a clean, organized editor that
offers you only the settings you care about - reducing
redundancy and clutter as much as possible. You will have
four popular camera styles to choose from with over 50
settings to play around with.

Use the RPG camera to follow closely
behind the target. Complete with smoothing
and orbiting options.

Use the FPS camera to gain a Point-of-View
perspective - great for shooters and
simulations.

Use the Top Down camera to follow the
target from a distance while getting a
breathtaking view of the environment.

Use the RTS camera if you want the player
to pan environments without any particular
target to focus on.

 One of the unique features with this camera package is
the ability to produce infinite amounts of camera data. So if
you have multiple RPG preferences, you can switch
between the RPG data sets effortlessly until you decide
the data you prefer the most.

Collision

Shake

Creator

Obstruction

Handler

Player

Controller

➔ Contents

The RPG Camera

 The RPG camera is great for close quarters
third-person-view perspective situations.

 Settings offered for this camera:

Adjust camera position offset, zooming,
smoothing, and optionally zoom directly
into the FPS camera.

Adjust angle thresholds, orbit speeds, and
utilize the auto-return feature.

Modify input settings for orbiting and
zooming.

Toggle wall collision and occlusion and
modify the collision layer.

 What kind of game are you making? You may want to
use the RPG camera if your genre is:

➔ Stealth
➔ RPG/MMORPG
➔ Racing
➔ Third Person Shooter

 These are just some suggestions, of course, and you
could use any camera for any genre!

➔ Contents

The FPS Camera

 The FPS camera is useful for point-of-view projects.

 Settings offered for this camera:

Adjust camera position offset, bounce
options, smoothing, and optionally zoom
directly out into the RPG camera.

Adjust X/Y axis sensitivities and smoothing
options for responsive or groggy look
speeds.

 What kind of game are you making? You may want to
use the FPS camera if your genre is:

➔ First Person Shooter
➔ Survival
➔ Racing
➔ Simulation

 These are just some suggestions, of course, and you
could use any camera for any genre!

➔ Contents

Top Down Camera

 The Top Down camera is the way to go when you want
the player to catch a bird’s-eye glimpse of your
environment while following the target.

 Settings offered for this camera:

Adjust zooming and smoothing options.

Adjust angle thresholds, orbit speeds, and
utilize the auto-return feature.

Modify input settings for orbiting and
zooming.

 What kind of game are you making? You may want to
use the Top Down camera if your genre is:

➔ Platformer
➔ Third Person Shooter
➔ RPG

 These are just some suggestions, of course, and you
could use any camera for any genre!

➔ Contents

The RTS Camera

 The RTS camera is great if you want the player to pan
environments without any particular target to focus on.

 Settings offered for this camera:

Adjust camera zooming, movement
boundaries, and elasticity settings.

Adjust angle thresholds and orbit speeds.

Modify pan speed and pan drag after input
is released. Also determine if panning
should be inverted or not.

Modify input settings for orbiting, panning
and zooming.

 What kind of game are you making? You may want to
use the RTS camera if your genre is:

➔ Tower Defense
➔ Real-time Strategy
➔ Simulation

 These are just some suggestions, of course, and you
could use any camera for any genre!

➔ Contents

 The Player Controller

 The player controller is intended to work in conjunction with
the camera system. It is a custom player controller, which is
open source and fully extendable. It is not necessary that you
choose to use this player controller, though, if you already have
your own. The camera system will work on any object - player
controller or not. It is worth mentioning, however, that the FPS
bounce (head bob) feature relies on variables in the player
controller, such as whether the player is moving or grounded.
So this feature alone will lose functionality if using a different
player controller. It is still possible to get the bounce feature to
function either way as long as information is provided for
movement and grounding.

 Significant upgrades have been made to the player
controller. It can now handle any terrain consistently
without becoming airborne and causing buggy-looking
behavior with animations and so forth.

 For the most part, the settings in the player
controller are self explanatory. It is divided into three
sections:

➔ Movement
➔ Physics
➔ Input

 The only noteworthy section of the settings is the
capsule radius field. The controller calculates the
grounded state by Physics.CheckSphere(). This method
requires a location for the capsule’s top, the capsule’s
bottom and the capsule’s radius. Lucky for you, the
capsule top and capsule bottom is pre-calculated for
you - so you only need worry about the radius.

 It can be difficult getting the grounded state to be as
accurate as possible. For best results, set the capsule
radius field to be slightly lower than the actual capsule
collider radius attached to your player object.

➔ Contents

Shake It Up!

 You can create your own shake sequences by opening the shake
settings page.

You will need to:

➔ Name the new sequence
➔ Modify the duration
➔ Set the intensity (multiplier for the curves)
➔ Set the intensity decay (how fast intensity approaches zero)
➔ Setup the X and Y position curves

 The curves will determine how the
camera moves over time. The amplitude of
your curves will be different based on the
camera you are shaking. Curves with an
amplitude of 1 may work great for RPG and
FPS, but the RTS and Top Down cameras -
due to their distance - will need an
amplitude of 5 more more. Of course, you
can always just play with the shake intensity
and shake decay settings to unleash the
power you are looking for.

 After creating the sequence and setting
the curves, you can hit the play button and
test the shake on each of your cameras. A
button will appear at run-time for you to test
effortlessly.

 To use your shake sequence during an
event specific to your game, you will need
to call the shake method.

➔ Contents

Camera Data

 The way your new camera gathers data is through accessing
scriptable objects. The package will provide you with a few
options to get started, but when you get comfortable, you may
end up wanting to save your settings - but experiment with new
styles. To do that, you can just get into the Data folder and
duplicate one of the data objects to get a starting point. This is
useful when you want to quickly iterate different camera
settings until you find something perfect for your project.
Switching between camera data does not require any extra
effort on your part.

 You will see an option at the bottom of your camera
editor to change data presets. By accessing the
dropdown, you will see all available data options based
on the camera page you are under. In other words, if
you are on the Top Down settings page, you will see all
of your top down data in the dropdown. Simply choose
one, and voila! Your camera will make necessary
adjustments based on the data object that is selected
here.

➔ Contents

Obstruction Handler

 The obstruction handler is another optional feature that
fades out obstructions between the camera and the player,
while optionally changing the target’s color. To work properly,
the obstruction handler needs to be on the same object as the
Mesh/SkinnedMeshRenderer component of the target. It will
only fade objects that have materials with color properties.
Similarly, the target’s materials need to have color properties.

 After placing the obstruction handler component on
your object, you will need to link it to the system data
manager - which controls functions for how the camera
operates.

➔ Contents

Settings Detail

 Camera Offset Dictates the horizontal and vertical offset of the camera’s look position, relative to the
target.

RPG, FPS

Zoom Enabling this provides options for zooming in and out on the target. RPG, FPS, RTS, Top
Down

Zoom Speed How fast does the camera zoom through each zoom increment? RPG, FPS, RTS, Top
Down

Zoom Increment For each zoom input, how far should the camera zoom? Think of this like a zoom
sensitivity, but not speed.

RPG, FPS, RTS, Top
Down

Max Zoom The closest position allowed, relative to the target. RPG, FPS, RTS, Top
Down

Min Zoom The furthest position allowed, relative to the target. RPG, FPS, RTS, Top
Down

Zoom to
FPS/RPG

Allows the camera to transition back and forth between FPS and RPG camera types via
zooming.

RPG, FPS

Smooth Follow Gives the camera some drag when following the target. RPG, Top Down

Smooth Time The time taken for the camera to reach it’s destination position. RPG, Top Down

Initial Position Gives an initial position for the RTS camera. RTS

Boundaries Provides means for restricting the RTS camera to a box region. RTS

Min Bounds The minimum threshold the camera is permitted to travel on the X-Z axis. RTS

Max Bounds The maximum threshold the camera is permitted to travel on the X-Z axis. RTS

Elastic
Boundaries

Gives the camera a bounce threshold when traveling beyond the permissible boundary
region.

RTS

Boundary
Elasticity

The threshold the camera is permitted to travel beyond the boundary region. RTS

➔ Contents

Ground Layer The layer the RTS camera looks for when determining a distance, or height, to maintain. RTS

Bounce Feature Enable this if you want to use head bobbing when running. FPS

Bounce
Frequency

The speed of the head bob. FPS

Bounce
Amplitude

The intensity of the head bob. FPS

Max X Angle The highest angle the camera can rotate ‘up and down’ around the player. RPG

Min X Angle The lowest angle the camera can rotate ‘up and down’ around the player. RPG

X Angle On the top down and RTS cameras, the angle at which the camera looks down on the
environment.

RTS, Top Down

Orbit Feature Toggles the orbit feature, which allows the player to orbit around the target. RPG, RTS, Top Down

Orbit Speed The speed at which the camera rotates around the target on the X and Y axes. RPG, RTS, Top Down

Orbit With Target
Feature

Enabling this keeps the camera aligned with default angles. RPG, Top Down

Auto Return
Angle

Enabling this will automatically align the camera's angle according to 'Default Angle'. RPG, Top Down

Default Angle The angle the camera will automatically move to. RPG, Top Down

Angle Return
Time

The time it takes for the camera to move from it's current angle to 'Default Angle'. RPG, Top Down

FPS Sensitivity The speed the camera will look around. FPS

FPS Smooth
Look

Enable this if you do not want the look speed to be instantaneous. FPS

FPS Smooth
Look Speed

The speed the camera looks around in response to input. FPS

Orbit Input The KeyCode that provides input to orbit the camera around the target. RPG, Top Down, RTS

➔ Contents

Pan Input The KeyCode that provides input to pan the camera around the environment. RTS

Zoom Input The string value Input Axis name that provides input to zoom in and out on the target. RPG, Top Down, RTS

Collision Feature Enable if you want the camera to respond to collision and occlusion events. RPG

Collision Layer The camera will collide with objects on these layers. Objects on these layers will not
occlude the target.

RPG

Collision Smooth
Time

The time taken for the camera to reach it's destination position while colliding with an
object.

RPG

Draw Collision
Lines

Enable to view the collision lines from the editor view. Collision lines represent the
location of the camera with no collision, and with collision.

RPG

Collision Padding When colliding, the camera will move forward an additional amount according to this
value.

RPG

Close Quarters
Feature

If enabled, the camera will move up and look down on the target when the target's back
is against the wall.

RPG

Close Quarters
Distance

The distance the camera is away from the target before the camera moves upward. RPG

Close Quarters
Height

The height the camera moves to when close quarters is activated. RPG

Close Quarters
Fade Feature

If enabled, the camera's target will fade to your desired alpha when the camera is within
a certain distance. This feature only works on targets whose materials use the Standard
Shader - or a variation of it.

RPG

Distance to Fade
Target

The distance the camera must be to the target before the target fades. RPG

Target Fade
Alpha

The opacity level of the target when the camera comes within the specified range. RPG

Pan Speed The distance the camera travels when responding to pan input. RTS

Pan Drag The time taken for the camera to reach the desired pan destination. RTS

Invert Pan
Direction

Enable this to invert the pan direction. When enabled, the camera will pan in the opposite
direction of the input. i.e. If dragging right, the camera will move left.

RTS

Shake Name The name of this shake sequence. This name is what will be called via the API when you
want to shake the camera with this sequence.

RPG, FPS, RTS, Top
Down

➔ Contents

Shake Duration The length of time this shake sequence will execute for. RPG, FPS, RTS, Top
Down

Shake Intensity The multiplier of the X and Y curves when shaking the camera. RPG, FPS, RTS, Top
Down

Intensity Decay The rate at which the intensity decreases. Higher values will make it appear as though
the sequence ends early.

RPG, FPS, RTS, Top
Down

Shake Curves The curves that the camera's X-Y positions will loop through for the duration of the
sequence.

RPG, FPS, RTS, Top
Down

Obstruction
Handler Feature

Enable if you want objects to fade out when they occlude the camera's target. RPG, RTS, Top Down

Obstruction
Layer

Objects on this layer will fade out when the player is occluded by them. To work, these
objects will need to use the Standard Shader (or an extension of it).

RPG, RTS, Top Down

Obstruction Fade
Speed

The speed at which objects fade when they occlude the player from the camera view. RPG, RTS, Top Down

Min Obstruction
Alpha

The alpha of the object's shader color property when fading out. Lower values will make
the obstructions easier to see through.

RPG, RTS, Top Down

Change Target
Color

Enable if you want the camera's target to change color when objects occlude him. RPG, RTS, Top Down

Obstructed Color The color of the target when objects occlude him. RPG, RTS, Top Down

Target Color
Intensity

The intensity of the color property of the target's occluded color. RPG, RTS, Top Down

Target Fade
Speed

The speed that the target's color changes when occluded. RPG, RTS, Top Down

Forward Velocity The speed that the player moves on it's Z axis. RPG, FPS, RTS, Top
Down

Turn Velocity The speed that the player turns left and right. RPG, FPS, RTS, Top
Down

Jump Velocity The speed with which the player jumps. RPG, FPS, RTS, Top
Down

Gravity The acceleration rate at which the player is pulled toward the ground when airborne. RPG, FPS, RTS, Top
Down

Run Angle Limit The maximum angle the player can run against. A good value for this is 140. RPG, FPS, RTS, Top
Down

➔ Contents

Capsule Radius Used to determine if the player is grounded. This value should be slightly lower than the
capsule collider radius that is on your player. This value will be different based on your
player model.

RPG, FPS, RTS, Top
Down

Ground Layer Objects on this layer will set the player to grounded if the player is on them. RPG, FPS, RTS, Top
Down

Input Delay This is the delay from when a button is pressed to when a response is triggered. RPG, FPS, RTS, Top
Down

Forward Axis The string value from input settings that will move the player forward. RPG, FPS, RTS, Top
Down

Turn Axis The string value from input settings that will turn the player left and right. RPG, FPS, RTS, Top
Down

Jump Axis The string value from input settings that will allow the player to jump. RPG, FPS, RTS, Top
Down

API Docs and Examples
The following functions and properties are created for your convenience. It is expected
that some of these settings will be modified at runtime as a result of a game feature or
via settings menu. If there is something else you would like to modify at runtime - and
think it would be runtime safe - email me at contentdev@darrenoneale.com and we can
discuss any additional API features for future updates.

Functions Properties

OffsetCamera
SetCameraTarget
SetCameraType
SetSensitivity
SetDistance
SetObstructionHandlerActive
SetOrbitInput
SetOrbitSpeedX
SetOrbitSpeedY
ShakeCamera

ActiveCamera
BounceFrequency
CameraOffsetX
CameraOffsetY
IsColliding
InvertPan
LookSpeed
MaxBounds
MinBounds
PanInput
PanSpeed
SensitivityX
SensitivityY

mailto:contentdev@darrenoneale.com

➔ Contents

Functions

OffsetCamera

void CameraControl.OffsetCamera(float x, float y)

➔ Modifies the RPG camera offset vector
➔ X and Y values locked [-10, 10]
➔ Permanently modifies data to X and Y
➔ Data can be readjusted from the editor

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.OffsetCamera(2, 1); //Shifts the camera two units to the right relative to the target
 }

SetCameraTarget

void CameraControl.SetCameraTarget(Transform t)

➔ Assigns the camera’s focus to a new target ‘t’
➔ Attempts to assign a new PlayerController variable
➔ If the new target does not have a PlayerController component, some functionality

may be lost

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.SetCameraTarget(transform); //assigns the camera to this game object
 }

➔ Contents

SetCameraType

void CameraControl.SetCameraType(CameraType cam)

➔ Changes the type of camera being used
➔ Initializes the camera settings for ‘cam’
➔ Hides the target if FPS is chosen

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 }
 void Update()
 {
 if (Input.GetKeyDown(KeyCode.T))
 {
 camNum++;
 if (camNum > 3)
 camNum = 0;
 switch (camNum)
 {
 case 0: camControl.SetCameraType(CameraControl.CameraType.RPG); break;
 case 1: camControl.SetCameraType(CameraControl.CameraType.FPS); break;
 case 2: camControl.SetCameraType(CameraControl.CameraType.RTS); break;
 case 3: camControl.SetCameraType(CameraControl.CameraType.TOP_DOWN); break;
 }
 }
 }

SetSensitivity

void CameraControl.SetSensitivity(float x, float y)

➔ Modifies FPS sensitivity
➔ Values locked [10, 500]
➔ Permanently modifies data to ‘x’ and ‘y’
➔ Data can be readjusted from the editor

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.SetSensitivity(200, 200);
 }

➔ Contents

SetDistance

void CameraControl.SetDistance(float _dist)

➔ Sets a target distance for the current camera to move to.
➔ _dist is locked between the current camera's max and min zoom values [maxZoom,

minZoom]

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.SetDistance(20); //moves camera 20 units away at the camera's smooth speed
 }

SetObstructionHandlerActive

void CameraControl.SetObstructionHandlerActive(bool _active)

➔ Sets the obstruction handler to be active based on the value '_active' that was
passed.

➔ All components with the obstruction handler will be set to _active.
➔ If _active is set to false, all existing obstructions will fade in and be removed.
➔ Does nothing if obstruction data cannot be found.

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.SetObstructionHandlerActive(true); //activates all Obstruction Handlers in the project
 }

➔ Contents

SetOrbitInput

void CameraControl.SetOrbitInput(CameraType forCam, CameraData.InputOption input)

➔ Modifies orbit input based on the current active camera
➔ Permanently modifies data ‘orbitInput’
➔ Data can be readjusted from the editor

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.SetOrbitInput(CameraControl.CameraType.RPG,CameraData.InputOption.RIGHT_MOUSE);
 }

SetOrbitSpeedX

void CameraControl.SetOrbitSpeedX(CameraType forCam, float speed)

➔ Modifies X orbit speed based on the current active camera
➔ Value locked [0.1, 50]
➔ Permanently modifies data 'xOrbitSpeed'
➔ Data can be readjusted from the editor

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.SetOrbitSpeedX(CameraControl.CameraType.RPG, 24);
 }

ShakeCamera

void CameraControl.ShakeCamera(string _shakeName)

➔ Shakes the camera based on shake data specified by '_shakeName'
➔ Will exit upon failing to locate shake information

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.ShakeCamera("RPGShake1"); //RPGShake1 must exist in settings
 }

➔ Contents

Properties

activeCamera

CameraControl.CameraType CameraControl.activeCamera

➔ Get
➔ Returns the camera currently in use by the camera control system.

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 Debug.Log("The active camera is "+camControl.activeCamera); //The active camera is RPG
 }

bounceFrequency

float CameraControl.bounceFrequency

➔ Get/Set
➔ Modifies FPS Bounce Frequency
➔ Value locked [0.01f, 10]
➔ Permanently modifies 'bounce frequency' data
➔ Data can be readjusted from the editor

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 }
 void Update()
 {
 if (Input.GetKeyDown(KeyCode.UpArrow))
 camControl.bounceFrequency += 0.1f;
 if (Input.GetKeyDown(KeyCode.DownArrow))
 camControl.bounceFrequency -= 0.1f;
 }

➔ Contents

cameraOffsetX

float CameraControl.cameraOffsetX

➔ Get/Set
➔ Modifies RPG Camera Offset X
➔ Value locked [-10, 10]
➔ Permanently modifies 'offset x' data
➔ Data can be readjusted from the editor

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.cameraOffsetX = -3;
 }

isColliding

bool CameraControl.isColliding

➔ Get
➔ Returns true if the camera is in a collision state.

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 if (camControl.isColliding)
 Debug.Log("The camera is colliding.");
 }

➔ Contents

invertPan

bool CameraControl.invertPan

➔ Get/Set
➔ Toggles RTS camera invertPan
➔ Permanently modifies 'invertPan' data
➔ Data can be readjusted from the editor

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.invertPan = true;
 }

lookSpeed

float CameraControl.lookSpeed

➔ Get/Set
➔ Modifies time taken for FPS camera to look
➔ Value locked [-0.01, 30]
➔ Permanently modifies 'lookSpeed' data
➔ Data can be readjusted from the editor

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.lookSpeed = 10;
 }

➔ Contents

maxBounds

Vector2 CameraControl.maxBounds

➔ Get/Set
➔ Modifies the minimum X-Z position of the RTS camera
➔ Permanently modifies 'minBoundary' data
➔ Data can be readjusted from the editor

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.maxBounds = new Vector2(100, 100);
 }

panInput

CameraData.InputOption CameraControl.panInput

➔ Get/Set
➔ Modifies pan input for the RTS camera
➔ Permanently modifies 'panInput' data
➔ Data can be readjusted from the editor

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.panInput = CameraData.InputOption.LEFT_MOUSE;
 }

➔ Contents

panSpeed

float CameraControl.panSpeed

➔ Get/Set
➔ Modifies pan speed for the RTS camera
➔ Value locked [0.1, 500]
➔ Permanently modifies 'panSpeed' data
➔ Data can be readjusted from the editor

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.panSpeed = 340;
 }

sensitivityX

float CameraControl.sensitivityX

➔ Get/Set
➔ Modifies responsiveness to FPS mouse input
➔ Value locked [10, 500]
➔ Permanently modifies 'XSensitivity' data
➔ Data can be readjusted from the editor

 using Pro3DCamera;
 CameraControl camControl;
 void Start()
 {
 camControl = Camera.main.GetComponent<CameraControl>();
 camControl.sensitivityX = 200;
 }

➔ Contents

 Version Notes
V3.0

New
General

➔ Mobile support/development discontinued. (I am unable to test on multiple
devices)

➔ Editor window to modify over 70 settings across 4 different cameras
➔ The editor window speaks for itself - each setting has an info button next to it.

When clicked, information about that setting can be viewed.
➔ A new test environment has been created to present extreme collision scenarios

and obstacles for the player controller.
➔ API access for accomplishing various tasks on the camera at run-time

❏ Adjust camera offset
❏ Set new targets for the camera
❏ Change the camera type
❏ Set FPS sensitivity
❏ Modify orbiting and panning input
❏ Modify orbiting and panning speeds
❏ Shake the camera
❏ Set min and max bounds for the RTS camera
❏ & Much More!

Cameras

➔ You can now choose to have the camera auto-revert to certain angles when not
orbiting. For instance, the RPG camera angle can always rotate back to being
behind the target - or any X-Y angle combo that you choose.

➔ You can now seamlessly transition between the RPG and FPS cameras when
zooming in and out

➔ RTS camera now has settings for restricting camera location to boundaries
➔ RTS camera now has elasticity settings. You can choose to have the RTS camera

“bounce” back to the boundary when the user releases pan input
➔ You can now set the initial position for the RTS camera - since it does not have a

target to rely on.

Player Controller
➔ The test environment now uses Unity Technologies’s character asset, Ethan.

➔ Contents

Special Features
➔ New shake feature. Create your own camera shake sequences from the editor by

modifying position curves, intensity, and decay values. Give them names and call
them from the API method.

Collision

➔ You can easily add padding to your camera when it collides, pushing it forward
based on the padding value you choose. This can reduce the amount of clipping
in close quarters situations. Using high padding will never push the camera
through the target.

➔ A toggleable feature has been added to the collision settings where when the
camera is backed against a wall, it will get pushed upward and look down on the
target. Distance to determine when this is activated, and the height the camera
moves up to, are both values that can be tweaked.

➔ The camera’s smoothing rate when colliding and not colliding are now
independent of each other and can be modified from either the position settings
or the collision settings.

➔ A new toggleable feature has been added where the camera’s target will fade
when the camera is too close. The user defines how close is “too close” and how
much fade will be applied to the target. For now, fading can only be done on
targets whose materials use the Standard Shader or some variation of it.

Improved
General

➔ Improved workflow. You no longer need to worry about saving camera data.
➔ All features and settings can be modified from an easy editor - accessible through

the camera control script.
➔ Camera data is now handled more safely on the lower level (c++) side, through the

use of scriptable objects
➔ Consolidated cameras into one script

Cameras

➔ Transitions between different cameras at run-time has been smoothed out

Collision
➔ Collision detection has been greatly improved - with more unique cases being

cared for in volatile, clip-prone scenarios.

➔ Contents

Player Controller
➔ PlayerController handles bumpy terrain and hills more properly. The forward

vector is based on the normal of the ground below, meaning the speed of the
player will not be limited by slope of terrain.

➔ A maximum slope is set (so the player cannot run up walls). This value can be
tweaked from the Player Controller section in the editor.

➔ To check for grounded, the player controller now uses Physics.CheckSphere().
This method has been tested against other methods and proves to be reliable.

Special Features

➔ The obstruction handler settings can be modified from the editor. There is now an
API method which will allow you to set this feature to be active at runtime - since
this feature operates independently of the camera control system. See the
method here.

