
 Juelsgaard Intellectual Property
and Innovation Clinic

Mills Legal Clinic
Stanford Law School
Crown Quadrangle
559 Nathan Abbott Way
Stanford, CA 94305-8610
jipic@law.stanford.edu
650.724.1900

Before the

U.S. COPYRIGHT OFFICE

LIBRARY OF CONGRESS

In the Matter of Software-Enabled Consumer Products Study

Docket No. 2015-6

Comments of Engine Advocacy

 Sydney B. Lakin

Wangshu Tai

Brian Weissenberg

 Certified Law Students

Phil Malone

Jef Pearlman

 Counsel for Petitioners

 ii

Table of Contents

I. Embedded Software in Everyday Devices Creates Tremendous Opportunities for

Innovation and Increased Consumer and Social Value .. 1

II. NOI Question 3: Whether and to what extent innovative services are being

enabled and/or frustrated by the application of existing copyright law to software

in everyday products. .. 2

A. Background of Interaction Between Copyright Law & Embedded Software 2

B. Allowing Copyright in APIs and Interoperability Software Would Frustrate

Innovation and Competition ... 5

1. Oracle v. Google has upended long-settled expectations about the free

use of APIs to interoperate and compete. .. 6

2. Free reuse and reimplementation of APIs is critical to innovation and

competition in the expanding market for software-enabled devices. 7

C. The Inability of Users to Modify the Software in Devices They Own Hampers

Innovation, Prevents Interoperability, Reduces Security, and Undermines

Settled Expectations of Ownership ... 9

1. The inability of users to modify embedded software prevents user

innovation and enhanced interoperability. ... 10

2. The inability of users to tinker with or modify embedded software also

prevents the investigation and improvement of device security and

privacy. .. 11

3. Licensing rather than sale of embedded software undermines settled

consumer expectations of ownership and impairs consumers’ freedom to

sell a device they “bought.” ... 11

III. NOI Question 4: Whether, and to what extent, legitimate interests or business

models for copyright owners and users could be undermined or improved by

changes to the copyright law in this area. ... 13

IV. Conclusion .. 14

 1

Engine Advocacy (“Engine”) submits this comment in response to the Copyright Office’s

Notice of Inquiry and Request for Public Comment for its Software-Enabled Consumer Products

Study.

Engine supports the growth of technology entrepreneurship through economic research,

policy analysis, and advocacy on local and national issues. Engine works with the White House,

Congress, federal agencies, state and local governments, and also international advocacy

organizations to educate and inform them of the changing face of American high-tech

entrepreneurship and issues vital to fostering technological innovation.

Engine may be contacted through the above-identified counsel.

I. Embedded Software in Everyday Devices Creates Tremendous Opportunities for

Innovation and Increased Consumer and Social Value

Not long ago, consumer software was typically found in standalone applications and

operating systems that ran primarily on desktop or laptop computers. Limited categories of

software-enabled consumer products existed, including early video game consoles, calculators,

and microwaves, but these were the exception rather than the rule. Today, however, software is

everywhere. It is embedded not just in our phones (which really are far more like laptop

computers than like traditional landline phones), but in our refrigerators, light bulbs and other

home devices, in our cars and tractors, in our pacemakers and other medical devices, in our kids’

dolls and other toys, and in many thousands of other everyday products. As the “Internet of

Things” rapidly expands, embedded software and software-enabled consumer products will

become truly ubiquitous.

The increasing prevalence of software-enabled products and the rise of the Internet of

Things offers great value to consumers, businesses, and other users of the vast array of

innovative products in which such software will be found. It also offers tremendous opportunities

to innovators, entrepreneurs, startups, and other businesses. Some will produce the software-

enabled devices and some will provide the embedded software. But countless others will develop

and sell products, software, and services that connect and interoperate with the embedded

software and devices to enhance, extend, and enrich the user experience. The promise is a host of

new platforms and ecosystems that will unleash waves of innovations. This will result in greater

competition among products and developers and vastly increased consumer choice and social

value.

As has been the case with the Internet itself, however, realizing the full measure of this

promise depends on the continued opportunity for what many have called “permissionless

innovation.”1 Permissionless innovation means that any user, innovator, or startup can create

new software programs, devices, and services that are able to connect, interoperate, and interact

with the software embedded in a device without the need to first seek permission or a license

from the developer of the original device. A bedrock of the traditional software industry has been

1 Henry Chesbrough & Marshall Van Alstyne, Permissionless Innovation, 58 Commc’n of the ACM. 24, 24 (2015)

(“‘Permissionless innovation,’ is the freedom to explore new technologies or businesses without seeking prior

approval. It has already produced an explosion of goods and services in the IT industry.”)

 2

the availability and openness of application programming interfaces (“APIs”) or other interfaces

and software for interoperation, that permit compatibility and interoperability. The same

principle is critical to realizing the full promise of embedded software and the Internet of Things.

Social and consumer value is also enhanced by the ability of consumers, user

communities, and researchers to test, tinker with, improve, repair, transfer, and resell their

software-enabled products in a manner similar to other products they purchase and own.

Moreover, although embedding software to make devices “smart” usually means greater

functionality, it can also create additional risks. For example, in 2014, security researchers

uncovered a loophole in the infotainment system of a Jeep Cherokee that allowed them to

remotely disable its transmission and brakes.2 But with risk comes opportunity; security

researchers should be able to explore and analyze the embedded software to detect (as in the Jeep

example or the recent Volkswagen emissions software controversy) flaws, security

vulnerabilities, hidden privacy risks, etc. Users should be able to tinker with and repair their own

devices if they choose. Again, this opportunity depends on the ability of researchers and users to

freely and openly connect with, interrogate, and test the software embedded in a variety of

devices.

II. NOI Question 3: Whether and to what extent innovative services are being enabled

and/or frustrated by the application of existing copyright law to software in

everyday products.

The application of existing copyright law threatens to significantly frustrate innovation,

competition, and consumer expectations for and enjoyment of devices they purchase as

embedded software becomes more and more a part of the devices used in everyday life. In

particular, treating APIs as copyrightable cripples permissionless innovation and interferes with

innovators’ ability to create products and services that interoperate with existing products and

platforms and/or compete effectively with them. Allowing producers of software-enabled

devices to use copyright to deny purchasers of those devices ownership of the embedded

software frustrates consumer expectations and prevents users, user communities, researchers, and

others from analyzing, improving, repairing, or reselling their devices. The result is a drag on

innovation and on the development and success of new products and services, and on consumer

choice and welfare.

A. Background of Interaction Between Copyright Law & Embedded Software

The Copyright Act of 1976 recognized that significant technological challenges lay not

far ahead. The National Commission on New Technological Uses of Copyrighted Works

(“CONTU”) sought to understand these challenges and prescribe solutions, and Congress

accepted CONTU’s recommendation that copyright protection be extended to computer

programs in 1980. In 1998, Congress enacted the Digital Millennium Copyright Act (DMCA) in

part to address circumvention of technical protection measures while recognizing the need for

copying for maintenance, repair, reverse engineering, and other appropriate purposes.

2 Andy Greenberg & Kim Zetter, How the Internet of Things Got Hacked, http://www.wired.com/2015/12/2015-the-

year-the-internet-of-things-got-hacked/.

 3

With the advent of embedded software, the licensing regime of the digital space began to

clash with the ownership culture of the physical world. Chamberlain v. Skylink and Lexmark v.

Static Control Components foreshadowed many of the challenges facing embedded software

today. In Chamberlain, Skylink produced a replacement garage door opener remote that could

interoperate with Chamberlain’s garage door opener. In developing the remote, Skylink had to

circumvent the original system through reverse engineering. Chamberlain filed suit, alleging that

“all such uses of products containing copyrighted software to which a technological measure

controlled access are now per se illegal under the DMCA unless the manufacturer provided

consumers with explicit authorization.”3 Skylink responded that, “in the absence of an explicit

restriction, consumers must be free to infer that they have purchased the full range of rights that

normally accompany consumer products—including those containing copyrighted embedded

software.”4

The court rejected Chamberlain’s theory of authorization, holding that the DMCA does

not “divest the public of the property rights that the Copyright Act has long granted to the

public” and, therefore, individuals were permitted to “use (emphasis added) the copy of . . .

copyrighted software embedded in the” garage door openers they purchased.5 This ruling,

however, avoided the key question of license versus ownership; the next company in

Chamberlain’s position could meet the burden of proving unauthorized access by inserting “a

single copyrighted sentence or software fragment to its product, wrap(ping) the copyrighted

material in a trivial ‘encryption’ scheme.”6

In the same year, the Sixth Circuit faced a similar question in Lexmark v. Static Control

Components. Lexmark, a printer and toner cartridge manufacturer, sold a printer and cartridge

duo; embedded in the printer was its Printer Engine Program (PEP) and in its cartridge, the

Toner Loading Program (TLP). In order to start printing, the PEP had to establish

communication with TLP and performed several routines. SCC copied Lexmark’s TLP and

created “a cartridge microchip that bypassed each of these measures” and sold that chip to third-

party cartridge refillers.7 Lexmark sued SCC, claiming that its “bypassing of the authentication

sequence circumvented technological measures that protected access to two copyrighted works—

the PEP and TLP programs—and thus violated Section 1201.”8 The court rejected SCC’s 1201

argument on the narrow ground that PEP code was unencrypted and that TLP was not

copyrightable. Again, the court avoided the critical question.

In each of these cases, manufacturers embedded software in their consumer products and

sought to use copyright law “offensively” rather than for the intended purpose of the DMCA, “to

3 Chamberlain Group, Inc. v. Skylink Techs., Inc., 381 F.3d 1178, 1193 (Fed. Cir. 2004).
4 Id at 1187.
5 Id at 1204.
6 Id., at 1201.
7 Michael A. Carrier, Innovation for the 21st Century: Harnessing the Power of Intellectual Property and Antitrust

Law, 185 (2010).
8 Lexmark Int’l, Inc. v. Static Control Components, Inc., 387 F.3d 544, 552 (6th Circ. 2004).

 4

prohibit the pirating of copyright-protected works such as movies, music, and computer

programs.”9

In the years after Chamberlain and Lexmark, courts addressed cases that grappled with

ownership status under software licenses. Vernor v. Autodesk, in the Ninth Circuit, was “one of a

number of cases to consider first sale rights in the software context.”10 The defendant purchased

“several used copies of Autodesk, Inc.’s AutoCAD Release 14 Software,” accompanied by

shrink-wrap licensing agreements, and proceeded to resell the copies on eBay.11 The court

considered whether Autodesk had transferred copyright ownership to Vernor, making his

reselling lawful under the first sale doctrine, or whether he was a mere licensee infringing

Autodesk’s copyright. The court found that Vernor could not “invoke the first sale doctrine”

because Autodesk’s shrink-wrap licensing agreement was valid and that “Autodesk’s direct

customers are licensees of their copies of the software rather than owners.”12

The Second Circuit reached a different conclusion in Krause v. Titleserv, where it held

that “formal title in a program is not an absolute prerequisite for qualifying for” 17 U.S.C.

§ 117(a)’s safe harbor.13 Courts should, instead, “inquire into whether the party exercises

sufficient incidents of ownership over a copy of the program to be sensibly considered the owner

of the copy for purposes of § 117(a).”14 This decision broadened the meaning of copyright

ownership finding that “the absence of formal title may be outweighed by evidence that the

possessor of the copy enjoys sufficiently broad rights over it to be sensibly considered its

owner.”15

In recent years, there has been a significant trend toward vendors distributing software-

enabled products governed by contracts that state that the software inside is licensed to the

purchaser of the product rather than owned by them. In one very recent example, John Deere and

General Motors advanced a view of embedded software that challenges the very idea of owning

a tractor or a car: the purchaser of a vehicle does not own it—she “receives an implied license for

the life of the vehicle to operate the vehicle.”16 Uncertainty about the ownership of software-

enabled products raises serious questions about the ability of the “owner” of the device to repair

or tinker with it or resell it, and disrupts consumers’ traditionally settled expectations about

ownership of the devices they purchase.

Beyond the relationship between consumers and the products they purchase, copyright

law may also complicate the relationship between, and interoperability of, software-enabled

products as the demand for compatibility and interoperability increases. While APIs and other

9 Lexmark at 552.
10 Kate Wevers, Court Rules That Software License Transfers Ownership, Harvard Journal of Law & Technology

(Jolt Digest) (Oct. 12, 2009), available at http://jolt.law.harvard.edu/digest/software/vernor-v-autodesk-inc.
11 Vernor v. Autodesk, Inc., 621 F.3d 1102, 1103 (9th Cir. 2010).
12 Vernor v. Autodesk, 621 F.3d 1102, 1103-1104 (9th Cir. 2010).
13 Krause v. Titleserv, 402 F.3d 119, 124 (2d Cir. 2005).
14 Id.
15 Id.
16 John Deere Reply Comment, 2015 DMCA proceeding, http://copyright.gov/1201/2015/comments-032715/

class%2021/John_Deere_Class21_1201_2014.pdf at 6.

 5

software used for interoperability and compatibility consist of functional code that should not be

copyrightable, the Federal Circuit’s recent determination in Oracle v. Google (described in detail

below) that “the structure, sequence, and organization of the 37 Java API packages [at issue] . . .

are entitled to copyright protection,”17 has introduced considerable uncertainty about that

previously settled expectation.

B. Allowing Copyright in APIs and Interoperability Software Would Frustrate

Innovation and Competition

When two devices connect and interact—”talk to” each other in some way—they use

interfaces to achieve that conversation. These interfaces frequently take the form of APIs:

APIs are the fundamental building blocks of software programs, used in every

software interaction. APIs can be somewhat abstract, so it can help to think of a

physical analogue—the Lego® brick. There are many different shapes and colors

of Lego® bricks, but they all share one thing in common: the bumps on the top of

each brick and the matching holes on the underside. These bumps and holes are

the “interface” that allow different bricks to be joined together.18

APIs played a fundamental role in the explosive growth of the personal computer and software

applications ecosystem. The PC market, though started by IBM, expanded quickly because the

open design of its PCs allowed many software and hardware peripheral manufacturers to

flourish. IBM’s BIOS (Basic Input/Output System) became the industry standard. Other PC

manufacturers were able to build computers that interoperated with existing software because

they developed their own, compatible BIOSes, developed from an interface specifications known

as the BIOS APIs.19 IBM’s challenges to the use were struck down by the courts because the

competitors did not copy the underlying BIOS source code, whereas the APIs, were an

“uncopyrightable system or method of operation,” which was later codified in 17 U.S.C.

§102(b).20

The PC application market likewise exploded, as IBM’s BIOS and another API, provided

by the Disk Operating System (DOS), were able to be used by all application developers, who

could then be confident that their software would then run on PCs made by all manufacturers.

Microsoft’s Windows operating system later grew to dominance in large part because its open

APIs facilitated the development of a vast ecosystem of applications that worked with the

Windows platform. With the advent of the Internet, many more companies developed and

offered APIs. Facebook and Twitter each attracted thousands of developers to write software that

interoperate with their platforms. The incredible boom in the market for applications—evidenced

by the 1.8 and 1.5 million apps available on the Google Play and Apple App stores,

respectively—also reveals the explosion in third party innovation spurred through open APIs, as

17 Oracle America, Inc. v. Google Inc., 750 F.3d 1339, 1348 (Fed.Cir.2014).
18 Brief of Amici Curiae Rackspace US, Inc. et al. at 7, Oracle America, Inc. v. Google Inc., 872 F.Supp.2d 974

(2012) (No. 13-1021, -1022)..
19 Brief of Amicus Curiae Computer Scientists in Support of Petitioner at 6-8, Oracle America, Inc. v. Google Inc.,

750 F.3d 1339 (Fed. Cir. 2014) (No. 14-1410).
20 Id., 8.

 6

a large proportion of these apps are designed to interoperate with applications and platforms built

by larger tech companies. The modern cloud computing system was created largely relying on a

single, compatible interface—allowing for open competition and giving consumers the ability to

switch between cloud companies without hesitation.21

1. Oracle v. Google has upended long-settled expectations about the free use of

APIs to interoperate and compete.

Oracle v. Google, however, cast serious doubt on the ability of innovators, startups, and

others to use and replicate APIs in order to create interoperable products and services. In

developing its Android system, Google copied 37 API definitions originally created by Oracle’s

predecessor for use with the Java programming language. Oracle provides a number of

“packages” with Java; these packages are essentially “shortcuts” that “allow programmers to use

the pre-written code to build certain functions into their own programs, rather than write their

own code to perform those functions from scratch.”22 Each package consists of two parts—

”declaring” code, which defines the simple “shortcut” API the programmer uses, and

“implementing code,” which actually tells the computer how to perform the operations

underlying the shortcut.

The District Court applied the merger doctrine to the 7,000 lines of declaring code (which

define the API) because “there is only one way to write” them.23 With respect to the structure,

sequence, and organization (SSO) of the APIs, the court ruled in line with earlier cases like

Lotus, that they constituted “a command structure, a system or method of operation . . . not

entitled to copyright protection under Section 102(b) of the Copyright Act.”24 It also recognized

that “[d]uplication of the command structure is necessary for interoperability.”25 This decision

would have left APIs as they had been historically treated—free for anyone to use to interoperate

or re-implement to compete.

On appeal, numerous participants in the software industry strongly endorsed the

importance of this conclusion for software innovation. For example, an amicus brief filed by a

coalition of start-ups, innovators, and investors explained that interoperability is a “foundational

requirement of software innovation.”26 APIs not only make machine-to-machine communication

a lot easier (in general APIs save as much as 30% of time for startups to launch a product), but in

some cases, programmers “must use the provided APIs because the implementation details are

intentionally hidden” to protect copyrightable elements in the software.27

Nevertheless, the Federal Circuit reversed, holding that Google could have structured

Android differently and could have chosen different ways to express and implement the

21 Stephen J. Vaughan-Nichols, OpenStack vs. Cloudstack: The Beginning of the Open-Source Cloud Wars, ZDNet,

(Apr. 12, 2012).
22 Oracle America, Inc. v. Google Inc., 750 F.3d.1339, 1349 (2014).
23 Oracle America, Inc. v. Google Inc., 872 F.Supp.2d 974, 998 (2012).
24 Id. at 999-1000.
25 Id. at 977.
26 Brief of Amicus Curiae of Software Innovators, Start-ups, and Investors in Support of Affirmance, at 7. Oracle

America Inc. v. Google Inc., 872 F.Supp.2d 974 (2012) (Nos. 2013-1021, -1022).
27 Id., 7-8.

 7

functionality that it copied.28 By ruling for the first time that both SSO and the underlying

declaring code APIs are copyrightable, the court departed from the settled understanding in the

software industry. The decision disrupted the longstanding reliance that the software community

had placed upon the expectation that APIs were not copyrightable. This reliance helped the

emergence of Apple, Microsoft, Google, Yahoo!, Intel, and Oracle itself, but more recently

helped “unleash a tidal wave of innovation in personal and mobile computing, cloud computing,

e-commerce, Internet services, and now the emerging Internet of Things.29 Without free use of

software interfaces, many of many inventions would not have been created or realized in the

same way, including the home computer, operating systems, programming languages, and cloud

computing.30 Looking forward, the uncertainty surrounding the copyrightability of APIs “adds a

new layer of legal risk” to developers’ work.31 As more companies “seize on the Oracle finding

to threaten copyright litigation against a broad swath of the software industry,” individuals and

companies will be from deterred from investing in innovation that relies on APIs.32

While the impact of Oracle may be limited because the Federal Circuit’s ruling is not

binding on other circuits where future disputes are likely to be resolved, it nevertheless has

created uncertainty regarding the copyrightability of software interfaces and the future of

interoperable software generally. And as software becomes a part of everyday devices, this

uncertainty is carried along with it. It chills innovation and increases the incentives for

incumbents in almost any industry to misuse copyright law to try to exclude new entrants and

emerging competition.

2. Free reuse and reimplementation of APIs is critical to innovation and

competition in the expanding market for software-enabled devices.

APIs have been and are indispensable to interoperability in standalone software platforms

and products, and will be equally indispensable to software-enabled consumer devices.

Increasingly, software-enabled devices interoperate with and rely on other platforms and devices,

often from other developers or manufacturers. For example, in the medical device field, one of

the world’s leading semiconductor manufacturers has described “[t]he implementation of ‘plug

and play’ communication in the medical device field” as “a reality.”33 Going forward, a

“designer will be able to spend more and more of their time and resources on the application and

less time on the communication protocols,” which would ultimately “lead[] to a more productive,

safer and less expensive medical device market.”34 But interoperability relies on public as well as

28 Oracle America, Inc. v. Google Inc., 750 F.3d.1339, 1368 (2014)
29 Brief of Amicus Curiae Hewlett-Packard Company, Red Hat, Inc., and Yahoo! Inc. in Support of Petitioner at 14.

Oracle America, Inc. v. Google Inc., 750 F.3d 1339 (Fed. Cir. 2014) (No. 14-410).
30 Brief of Amici Curiae Computer Scientists in Support of Defendant-Cross Appellant and Affirmance at 4, Oracle

America, Inc. v. Google Inc., 872 F.Supp.2d 974 (2012) (Nos. 2013-1021, -1022).
31 Jeff John Roberts, Supreme Court’s API ruling puts a cloud over software industry, Fortune.com (June 29, 2015),

available at http://fortune.com/2015/06/29/supreme-court-oracle-api/.
32 Id.
33 Andrew Leone, Medical Device Interoperability: An Embedded Solution, http:///www.st.com/web/en/resource/

technical/document/white_paper/WP_MEDICAL_INTEROPERABILITY_2011_01_01_A.pdf.
34 Id. at 5.

 8

private efforts.35 The rise of the information economy depended not just on industry participants’

decisions to provide open APIs, but on proper judicial demarcation between what is

copyrightable and what is not.

A shift to copyright protection for APIs and other functional interoperability systems and

methods would inhibit innovators’ ability to create and consumers’ ability to choose the best

technologies, and for those technologies to achieve success in the market. Instead, incumbents

with control of the interfaces to their established products may be able to “‘trap’ the industry in

an . . . inferior standard.”36 With consumers and developers “locked in” to its interface, and

competitors blocked from offering a competing service using the same interface, one or a

handful of incumbent companies can become gatekeepers to the platforms or devices they

produce. If a new technology lacks “compatibility with preexisting software” because it cannot

obtain a license or it is prohibitively expensive to do so, “the costs and possible limited

availability of software will make consumers hesitant to buy the new [technology], even if it is

superior.”37 Superior technologies are thus shut out from finding a widespread audience or

entering the market altogether.

This chilling effect on innovation can be far-reaching, particularly in secondary markets.

Innovators and startups looking to develop software-enabled products in adjacent markets that

need to interoperate with or improve upon the underlying platform will face similar issues—they

cannot “plug into” the system without paying a licensing fee or creating their own platform from

scratch. The requirement to “ask permission” and pay a licensing fee will itself serve to limit

new innovation because any marginal increase in the cost to a startup of developing and

launching a new product will reduce startup activity and innovation. Once again, existing firms

may become gatekeepers, this time to secondary markets. For example, the maker of “smart”

locks would be able to select who can make the doorknobs that work with their locks, or deny

third parties compatibility altogether, choosing to make and use only their own. This control of

innovation in downstream markets prevents innovation and prevents consumers from having

access to a wider array of efficient and valuable improvements or complements to their products.

The barriers to entry by innovators and startups created by unnecessary and inappropriate

copyright protection are of particular concern to the software interfaces in embedded software,

“access to which is essential due to network effects and standardization.” 38 Compatibility is

necessary to achieve networks “through which users can exchange files [and] standardization of

user interfaces [which] prevents user ‘lock-in’ because users do not have to learn a new user

interface in order to switch application programs.”39 This, in turn, gives consumers a broader

choice of software and hardware and lowers the barriers to entry to the software industry, which

ultimately leads to more innovation and competition, better products and lower prices.

35 John Palfrey & Urs Gasser, Interop: the Promise and Perils of Highly Interconnected Systems 15 (Basic Books

2012).
36 Peter S. Menell, Tailoring Legal Protection for Computer Software, 39 Stan. L. Rev. 1329, 1342 (1986).
37 Timoty S. Teter, Merger and the Machine: An Analysis of the Pro-Compatibility Trend in Computer Software

Copyright Class, 45 Stan. L. Rev. 1061, 1067, April 1993.
38 Max Planck Institute for Intellectual Property and Competition Law, Copyright, Competition and Development, 7

(Dec. 2013).
39 Teter at 1067.

 9

To illustrate these far-reaching effects, consider the rapidly-growing home automation

industry—specifically, “smart” light bulbs. “Smart” light bulb manufacturers with “penetration

pricing strategy or powerful brand name recognition” have the ability to grab a wide audience,

who will in turn adopt their interface platforms. In an Oracle v. Google world, competitors

attempting to enter the marketplace—perhaps with more energy-efficient or more flexible

technology—could be stuck with two bad options they would not otherwise face: license the

interface by asking permission from the existing bulb companies or build a completely new

interface that is incompatible with the pre-existing products. The established companies can

choose to effectively shut out new competitors by withholding these software licenses. New

competitors are then forced to create new, non-interoperable software interfaces, and consumers

are forced to make a longer-term choice of technologies based on who has market power rather

than who has the best technology for their particular needs. Stymied by this artificially-created

fragmented market, established companies increase their market share in the “smart” light bulb

industry with no need to innovate or, really, to compete.

This market control will continue to seep outward to secondary markets. Companies that

produce light switches, apps, and additional programs that are meant to interoperate with the

light bulbs will need a license to “plug in” to the system. The light bulb companies are then able

to pick and choose which downstream companies can interact with their bulbs, or shut them out

entirely, favoring their own light switches and apps. These companies are able to use their

control in the light bulb market to gain power over secondary markets. This same problem

affects the repair market as well. If individuals or third parties are unable to repair the software in

their light bulbs without infringing copyright, the bulb companies will also dominate the repair

market.

Previously, an existing light bulb company would not have been able to control who

could enter the market, what light switch its consumers could use, or who a consumer could call

for a repair. In a world where embedded software inhabits our most mundane items, copyright

should not be the loophole that bestows such companies with that power. Until now,

compatibility “has fostered innovation and competition—two critical policy objectives.”40

Allowing exclusive rights over software necessary for compatibility would destroy these

objectives and ensure that copyright law is used as an “anticompetitive force in the software

industry.”41

C. The Inability of Users to Modify the Software in Devices They Own Hampers

Innovation, Prevents Interoperability, Reduces Security, and Undermines Settled

Expectations of Ownership

Since Chamberlain, companies have increasingly licensed the software in their products

to consumers through click-wrap, shrink-wrap, and other licensing agreements. Licensing rather

than sale serves to negate the protections of the first sale doctrine and the computer programs

limitation, 17 U.S.C. § 109 and § 117 respectively. As licensees of the copyrighted software in

their products, consumers may be lawfully unable to copy, modify, and resell the software in

40 Michael A. Jacobs, Copyright and Compatibility, 30 Jurimetrics J. 91,93 (1989-90).
41 Brief of Amici Curiae Rackspace US, Inc. et al. at 16, Oracle, 872 F.Supp.2d 974 (Nos. 2013-1021, -1022).

 10

their devices. Such limitations come as a big surprise to most consumers and are at odds with

long-settled expectations. Owners have almost always enjoyed the right and ability to tinker with,

improve, repair and/or sell devices and other property they have purchased. Denying owners of

software-embedded devices these usual and expected rights affects far more than the activities of

casual hobbyists. Rather, it can significantly frustrate innovation in several ways.

1. The inability of users to modify embedded software prevents user innovation

and enhanced interoperability.

First, permissionless innovation extends beyond innovative entrepreneurs and companies

to individual owners of products and user communities who wish to broaden or improve their use

of those products. Users and user communities sometimes play important roles in innovation.42

Software embedded in consumer devices can increase functionality and add value, but device

manufacturers are not omniscient and cannot take into account all the needs and preferences in

the market. Even if they do, a particular target group of consumers might appear to be too small

to justify the extra R&D and production costs. Users, however, are not bound by these

limitations and may value certain modifications or adjustments enough to justify investing time

in making them. Some user innovations improve the user experience of the consumer who makes

them and increase the value of the product and embedded software for them. But other

innovations are subsequently disseminated within user communities for wider adoption and

sometimes even adopted by the manufacturer into subsequent versions of its product. For

instance, when a hobbyist shared numerous improvements to his Aibo with other owners, Sony

eventually released a development kit to facilitate user modification.43

Farm Hack is just one example of a user community where farmers around the world

share their innovations with one another. These innovations often incorporate existing

technologies and adapt them to more specific situations or activities. Fido, for instance, links text

messages with temperature sensors so that farmers can receive real-time alerts about temperature

in their greenhouse.44 This type of incremental innovation is possible largely because farmers are

able to tinker with their devices and to use APIs or other interoperability tools between various

devices and platforms. To take another example, a consumer might be inclined to modify the

software embedded in his refrigerator to link with his online calendar. Another might prefer to

develop her own app to interconnect with a home automation system and control temperature or

other conditions of her home remotely. In fact, this process is how many entrepreneurs and

startups begin: individual users identify limitations in or problems with a particular product or

service and develop a solution or add-on features, perhaps first for themselves but then often

expanding into a new business and product.

Where licenses prohibit users from accessing or tinkering with the embedded software in

their devices, however, individuals may be frustrated in their ability to explore and make these

sorts of valuable improvements to their devices and to achieve new interoperability with other

42 Sometimes an entire industry has begun through user innovation. For instance, the windsurfing equipment

industry really began with the footstraps that one hobbyist added onto the board. See Eric von Hippel,

Democratizing Innovation 1 (Cambridge: MIT Press 2005).
43 See Carrier, 190.
44 See http://farmhack.org/tools/fido-temperature-alarm-sends-text-messages.

 11

devices. Other users also may be denied the benefits of these innovations that could have been

shared by the person who developed them. As software-enabled devices continue to proliferate

and interoperability becomes increasingly essential, the impact of copyright license restrictions

to traditional ownership rights and expectations will become more pronounced and concerning.

2. The inability of users to tinker with or modify embedded software also

prevents the investigation and improvement of device security and privacy.

Users, whether regular consumers or sophisticated software researchers, also regularly

contribute to the investigation and improvement of the safety, security, and privacy of devices

with embedded software. “Hacker” communities have long played an important role in detecting

vulnerabilities in software. As embedded software becomes more prevalent, the role of

individual users, user communities, and security researchers also will become more significant.

Security researchers can identify security flaws and alert the appropriate developers, warn

consumers and/or provide their own fixes. Additionally, researchers can identify and lead to the

correction of software flaws or design weaknesses that compromise privacy. Finally, they can

identify privacy vulnerabilities that the software creator intended but consumers were not aware

of and did not agree to. Security research of this sort frequently requires that the software be

copied first and then analyzed. All of these activities may require copying, manipulation, or other

engagement with the software that may be prohibited by the license under which it is distributed.

The auto industry, an early adopter of embedded software, provides a number of

illustrative examples of what security researchers were capable of. In addition to the 2014 Jeep

Cherokee recall described earlier, investigators found similar problems on a Tesla Model S, a

Chevrolet Corvette, a BMW, and a Mercedes Benz.45 Analysis of the Wi-Fi-enabled Hello

Barbie showcased how cyber-privacy researchers can also spot privacy violations, whether they

are deliberate or accidental. The doll’s connection to the smartphone app was so unsafe that it

was “open to spoofing and interception of all the audio the doll records.”46 Without the ability

legally to investigate the software, vulnerabilities like these may not be discovered until they

have done irreparable damage.

3. Licensing rather than sale of embedded software undermines settled consumer

expectations of ownership and impairs consumers’ freedom to sell a device

they “bought.”

The move toward licensing software to consumers—especially software embedded in

consumer devices—rather than selling copies of it has far-reaching consequences for the way the

public purchases everyday items. As the Register recently recognized, there remains significant

inconsistency and ambiguity in the ways that the first sale doctrine, codified in 17 U.S.C. § 109,

and the computer programs limitation, codified in 17 U.S.C. § 117, are applied to embedded

software:

In past rulemaking proceedings, the Register has reviewed case law governing the

determination of ownership of a software copy for purposes of section 117 when

45 Greenberg & Zetter.
46 Id.

 12

formal title is lacking and/or a license imposes restrictions on the use of the

computer program, and has concluded that application of the law can be unclear

in some contexts. The Register observed that while Vernor v. Autodesk, Inc. and

Krause v. Titleserv, Inc. may provide some useful guidance in this area, they are

“controlling precedent in only two circuits and are inconsistent in their

approach.”47

The uncertainty over ownership of embedded software is growing. John Deere recently

asserted to the Copyright Office that, even “[i]n the absence of an express written license in

conjunction with the purchase of [a vehicle],”48 the purchaser does not own the copy of the

software that helps run the vehicle. Instead, the “owner receives an implied license for the life of

the vehicle to operate the vehicle, subject to any warranty limitations, disclaimers, or other

contractual limitations in the sales contract or documentation.”49 It is clear that this is not merely

a product of Section 1201 of the DMCA: “Even if TPMs for the vehicle software did not exist,

accessing the vehicle software in contravention of these licenses could violate copyright”50

It is no surprise that companies choose to license their software embedded in products

they otherwise sell to consumers—the first sale doctrine may not apply as a result. Indeed, 17

U.S.C. Section 109(d) clearly states that the first sale “privileges prescribed by subsections (a)

and (c) do not, unless authorized by the copyright owner, extend to any person who has acquired

possession of the copy or phonorecord from the copyright owner, by rental, lease, loan, or

otherwise, without acquiring ownership of it.” Thus, the increasing prevalence of vendors selling

devices with embedded software that is purportedly governed by a software license agreement

may serve to negate a purchaser’s rights under the first sale doctrine. And while there are some

ambiguities in the law regarding whether a software license overrides a sale of the software

copy,51 the lack of clear precedents may exert a chilling effect on consumers’ ability and

willingness to sell their devices.

Clarifying the application of the first sale doctrine to embedded software would ensure

that owners of devices with embedded software have access to at least three statutory benefits.

First, “owners” of both a device and its embedded software will be able to take advantage of the

first sale doctrine and sell or otherwise transfer both the device and its software under 17 U.S.C.

109(a). However, while this new “ownership” status would allow the device owner to sell the

device with the embedded software, it would not allow the owner to sell other copies of that

software. Second, it appears that the rental, lease, or lending restriction of 17 U.S.C.

109(b)(1)(A) would not apply to a device with embedded software, since subsection

109(b)(1)(B)(i) states that the subsection does not apply to “a computer program which is

embodied in a machine or product and which cannot be copied during the ordinary operation or

47 Section 1201 Rulemaking: Sixth Triennial Proceeding to Determine Exemptions to the Prohibition on

Circumvention 160-161, available at http://copyright.gov/1201/2015/registers-recommendation.pdf (footnotes

omitted).
48 John Deere Reply Comment at 6.
49 Id. (emphasis added).
50 Id. (emphasis added).
51 See., e.g., Vernor v. Autodesk, Inc., 621 F.3d 1102 (9th Cir. 2010); cf. Krause v. Titleserv, Inc., 402 F.3d 119, 123

(2d Cir. 2005).

 13

use of the machine or product.” And third, statutory owners of a device and its software could

dispose of their lawfully owned smart devices without fear of copyright liability.

But even the first sale doctrine may not entirely solve the embedded software problem if

the owner of a device wants to tinker with its software and thereafter sell or otherwise transfer

his embedded device. As written, 17 U.S.C. Section 117(b) would presumably allow the owner

of a device with embedded software to resell the device with an exact copy of that software

included. But often the owner of a device would alter the original software to repair or adapt or

improve the device, likely resulting in a modified, not original, copy of the software running

within the device. Yet Section 117(b) may not allow the owner of that device to unilaterally

resell that device with the modified software, since “[a]daptations so prepared may be transferred

only with the authorization of the copyright owner.” Nor does the software repair provision of

Section 117(c) solve this problem, since the repair copy must be “destroyed immediately after

the maintenance or repair is completed.”

Consumers should not bear this burden of uncertainty. The era of software-enabled

devices is now well underway and the Internet of Things is more of a reality every day. A farmer

should not face copyright liability for fixing his broken tractor. A parent should not face

copyright liability for fixing a broken thermometer. A doctor should not face copyright liability

for improving the operation of a critical medical device and sharing the improvements with other

physicians or researchers.

III. NOI Question 4: Whether, and to what extent, legitimate interests or business

models for copyright owners and users could be undermined or improved by

changes to the copyright law in this area.

Copyright should not prevent the use or replication of APIs or other functional software

used for the purpose of interoperability. The legitimate interests of users and the business models

of innovators and start-ups, as well as the societal benefits from increased innovation would be

improved significantly by eliminating any uncertainty that APIs and other functional software

used for interoperability are not copyrightable.

The legitimate interests of users would also benefit from greater clarity and certainty that,

in any event, fair use protects the reuse or replication of APIs and other functional software used

for interoperability. Fair use also protects tinkering with or copying for the purpose of repairs or

testing software embedded in devices. Making such uses is transformative and poses no risk of

market substitution or harm to the underlying software work.

The legitimate interests of users also would be improved by, and the Copyright Office

should support, the enactment by Congress of provisions similar to those in the You Own

Devices Act (“YODA”)52 to ensure that users are treated as owners of the software in their

devices and can tinker with, improve, or repair those devices by analyzing, copying, and

modifying the software. The Copyright Office should move forward to ensure that appropriate

action is taken regarding several of the issues it deferred in its August 2001 Section 104

52 YODA, H.R. 862, 114th Cong. sec. 2 (2015).

 14

Report.53 That report determined that no legislative changes were needed at that time to Section

109 to ensure a right of digital first sale. However, it also correctly predicted that ‘‘[t]he time

may come when Congress may wish to consider further how to address these concerns,”54

especially “the operation of the first sale doctrine in the context of works tethered to a particular

device.”55 That time has come; the rapid spread of software-enabled devices and the

accompanying emergence of the Internet of Things have highlighted the necessity of first-sale

protection for embedded software to benefit users of those devices.

The Section 104 Report also correctly identified the possibility, now a pressing reality,

that changes to the copyright laws might eventually be needed to address software licenses and

other contractual provisions that impair consumers’ ability to exercise their usual and expected

rights over products they own.56 The “market forces” that the Report hoped might prevent

contractual restraints on consumer rights and freedom have not materialized; in fact, just the

opposite has happened, as much of the software industry has shifted to a model of licensing

embedded and standalone software rather than selling it. Legislative change is needed to address

the harm to consumers and innovation from this shift, and the Copyright Office should support

such change.

IV. Conclusion

Engine urges the Copyright Office to strongly support the tremendous opportunities for

innovators, entrepreneurs, startups, and users that are being created by the spread of software-

enabled products and the Internet of Things. The Office should strive to ensure that copyright

law does not restrict the next generations of innovative new products and services that will

depend on interoperability with a wide range of existing and emerging platforms and ecosystems

to succeed. The innovation that will result will increase participation in the market, enhance

competition among products and suppliers, and greatly expand consumer choice and social

value.

53 U.S. Copyright Office, DMCA Section 104 Report (2001).
54 Id. at 96–97.
55 Id. at xvi–xvii.
56 See id. at 162–64.

