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This paper constructs a general equilibrium model with two types
of people where asset price fluctuations are caused by random
shocks to the price level that reallocate consumption across gener-
ations. In this model, asset prices are volatile, and price-earnings
ratios are persistent, even though there is no fundamental uncer-
tainty and financial markets are sequentially complete. I show that
the model can explain a substantial risk premium while generating
smooth time series for consumption and financial assets across
types. In my model, asset price fluctuations are Pareto inefficient
and there is a role for treasury or central bank intervention to
stabilize asset prices.

There is a large literature in finance that seeks to reconcile features of financial
data with features of aggregate time series (Gabaix, 2012). Typically, these ex-
planations combine some version of the rare disasters hypothesis of Rietz (1988)
and Barro (2006) with the variable long-run risk model of Bansal and Yaron
(2004). To successfully explain financial data in an equilibrium model, the theo-
rist must explain why the price of risk is highly volatile, while consumption data
are smooth.

Most equilibrium explanations of financial data are based on the assumption
that all shocks to the economy are fundamental. For example, in the long-run
risk model of Bansal and Yaron (2004), consumption growth is exogenous and has
a small highly persistent component. In the rare disaster model of Rietz (1988)
and Barro (2006) there is, occasionally, a large negative shock to the aggregate
endowment.

This paper explores an alternative approach. I build on the work of David Cass
and Karl Shell (1983), by constructing a model where asset price fluctuations are
caused by non-fundamental shocks to people’s beliefs. Cass and Shell presented
this idea in a two-period real model. I show that a calibrated version of their
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model can explain real world data.
I construct a general equilibrium model with two types of people where asset

price fluctuations are caused by random shocks to the price level that reallocate
consumption across generations. In this model, asset prices are volatile and price-
earnings ratios are persistent even though there is no fundamental uncertainty and
financial markets are sequentially complete. I refer to the random variable that
drives asset prices in equilibrium as a belief shock. Because I am interested in
the ability of non-fundamental shocks to explain asset prices, my model has no
fundamental uncertainty of any kind.

My work differs in three ways from standard asset pricing models. First, I allow
for birth and death by exploiting Blanchard’s (1985) concept of perpetual youth.
Second, there are two types of people that differ in the rate at which they discount
the future. Third, my model contains an asset, government debt, denominated in
dollars. All three assumptions are necessary to generate my main results.

I model a government with two branches; a central bank and a treasury. The
central bank operates an interest rate peg and the treasury adjusts the tax rate
periodically to ensure the government remains solvent. Because debt is denomi-
nated in dollars, this policy leads to indeterminacy of the initial equilibrium price
level. For every initial price in a certain set, there is a different allocation of the
present value of taxes between current and future generations. For each alloca-
tion of taxes, there is a different non-stationary perfect foresight equilibrium price
sequence. Each of these sequences converges to the same steady-state equilibrium.

I exploit the indeterminacy of the set of perfect foresight equilibria to construct
a rational expectations equilibrium in which non-fundamental shocks cause asset
price fluctuations. The people in my model believe the future price level is a
random variable, driven by a belief shock, and they write financial contracts
contingent on its realization. In equilibrium, their beliefs turn out to be correct.
Because the unborn cannot buy or sell contracts traded before they are born,
belief shocks have real effects that reallocate resources between people of different
generations.

I am pursuing an alternative explanation for asset price fluctuations because
I am ultimately interested in a normative question. Should the treasury and
or the central bank intervene in asset markets to reduce volatility? If all asset
market fluctuations are caused by the responses of a representative agent to un-
avoidable endowment shocks, the government should not seek to intervene. If
instead, a large component of asset price fluctuations is due to Pareto inefficient
re-allocations of consumption goods between people of different generations, there
is a potential role for an active financial policy, of the kind discussed in Farmer
and Zabczyk (2016), to stabilize those fluctuations.

I. Antecedents

An active body of scholars seek to explain asset price data using the represen-
tative agent model. Some of the modifications to this model that have been tried
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include richer utility specifications (Abel, 1990; Constantinides, 1990; Campbell
and Cochrane, 1999; Bansal and Yaron, 2004) adding technology shocks with
exogenous time-varying volatility (Bansal and Yaron, 2004), and assuming that
technology is occasionally hit by rare disasters (Rietz, 1988; Barro, 2005, 2006;
Wachter, 2013; Gourio, 2012; Gabaix, 2012). Here, I take an alternative approach.

I build on the idea that non-fundamental shocks can have real effects when there
is incomplete participation in asset markets. David Cass and Karl Shell (1983)
refer to non-fundamental shocks as ‘sunspots’ and Costas Azariadis (1981) and
Roger Farmer and Michael Woodford (1997) call them ‘self-fulfilling prophecies’.
Although the term ‘sunspot’ is widely understood by economic theorists, I have
found that it represents a source of confusion when explaining the idea to a lay
audience and I use the term ‘belief shock’ in this paper to mean non-fundamental
uncertainty that may have real effects.

My work is closely related to four working papers, Farmer (2002b,c, 2014) and
Farmer et al. (2012). Farmer (2002c) develops a version of Blanchard’s (1985)
perpetual youth model with capital and aggregate uncertainty, Farmer (2002b)
adds nominal government debt to explain asset price volatility and Farmer et al.
(2012) construct a model with multiple types.1 The current paper relies on all
three of these pieces; perpetual youth, nominal debt and multiple types.2

The idea of constructing stationary stochastic rational expectations equilibria
by randomizing over multiple steady states is due to Azariadis (1981). The first
paper to exploit randomizations across indeterminate perfect foresight paths in
a monetary model is by Farmer and Woodford (1997). Farmer et al. (2015)
show how to solve models with indeterminacy using standard solution methods
by redefining a belief shocks to be a new fundamental and I draw on a non-linear
extension of their technique in this paper.

This is not the only paper to explore heterogeneous-agent models to understand
asset pricing data. Challe (2004) generates return predictability in an overlap-
ping generations model and Guvenen (2009) constructs a production economy
that he solves computationally. Constantinides and Duffie (1996) exploit cross-
section heterogeneity of the income process to show that uninsurable income risk
across consumers can potentially explain any observed process for asset prices
and Kubler and Schmedders (2011) construct a heterogeneous-agent overlapping
generations model with sequentially complete markets. By dropping the rational
expectations assumption, they are able to generate substantial asset price volatil-
ity. In a related paper, Feng and Hoelle (2014) generate large welfare distortions
from sunspot fluctuations.

1Farmer et al. (2012) claim to generate equilibria, driven by non-fundamental shocks. That claim is
incorrect as their model fails to equate the marginal rates of substitution of each type of agent in every
state and consequently, the paper does not fulfill its claim to generate sunspot equilibria. I am grateful
to Markus Brunnermeir and Valentin Haddad for discussions on this point.

2An earlier version of the current paper appeared with the title “Global Sunspots and Asset Prices in
a Monetary Economy” (Farmer, 2015). The current version is different, in a number of important ways
and for that reason I have changed the title.
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Gârleanu et al. (2012) build a two-agent life-cycle model where the agents have
recursive preferences but a common discount factor and they show that this model
generates inter-generational shifts in consumption patterns that they call ‘dis-
placement risk’. In a related paper Gârleanu and Panageas (2014) study asset
pricing in a continuous time stochastic overlapping generations model. These pa-
pers focus on fundamental equilibria and they adopt the common assumption of
Epstein-Zin preferences (Epstein and Zin, 1989, 1991). Gârleanu and Panageas
(2016) introduce non-fundamental shocks in a real model where there are multiple
equilibria as a result of an investment technology in which newborn people are
born with new production techniques. Their work is the closest to mine and has
a lot in common with the ideas I discuss here.

II. Data I Would Like to Explain

In Figure 1 I have plotted annual data on five aggregate time series for the
period from 1948 through 2008. The top left panel is the average twelve month
percentage increase in the CPI and the bottom left panel depicts the ratio of
consumption to GDP. The raw data are from the Bureau of Economic Analysis.
The top right panel plots the one-year real return on a short bond and the one-year
real holding return to the S&P 500. The bottom right panel is Robert Shiller’s
Cyclically Adjusted Price Earnings Ratio, (CAPE). These data are from Shiller’s
website (Shiller, 2014).

A number of features of these data are striking. The consumption to GDP ratio
is almost constant. In contrast, the cyclically adjusted price-earnings ratio varied
from a low of 7, in 1982 to a high of 44, in 1999. In a market economy, the value
of the stock market reflects the present discounted value of future dividends and,
in an endowment economy, dividends are equal to consumption. A representative
agent endowment economy has a very difficult time explaining these data with
any simple, plausible, model of preferences.

The volatility of stock prices, relative to any measure of the income flow gener-
ated by stock ownership, was pointed out by Shiller (1981) and Leroy and Porter
(1981) who refer to the problem of explaining the volatility of asset prices as the
excess volatility puzzle. Any explanation of excess volatility must explain why
the state dependent price that people are willing to pay for a risky claim, the so
called stochastic discount factor, can be so volatile.

In the model I construct in this paper, fluctuations in the stochastic discount
factor are one and the same thing as fluctuations in the inflation factor and the
volatility of inflation is of the same order of magnitude as that depicted in Figure
1.

A second feature that stands out in these data is the smoothness of the real
return to holding treasury securities, this is the dashed line in the top right panel,
compared to the volatility of the stock market return; this is the solid line. These
series do not just differ in volatility, they also differ in their means.

In Table 1, I record the average risky and safe interest rates for the period from
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Figure 1. Sixty Years of US Data

Variable Symbol Value
Stock Market Return rr 6.5%
Return to a One-Year Bond rs 1.9%
Sharpe Ratio S 0.29

Table 1—Safe and Risky Returns in the Data

1948 through 2008. The average return to holding the stock market was 6.5%,
the average real return to holding a one-year treasury was 1.9% and the standard
deviation of the stock market return was 16. These data imply that the premium
for holding a risky asset was equal to 4.6% and the risk adjusted excess return,
the so called Sharpe ratio, was equal to 0.29. As pointed out by Mehra and
Prescott (1985), a risk premium of this magnitude is a puzzle for representative
agent macro models with standard preference assumptions.

One approach to solving the excess volatility and the equity premium puzzles is
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to combine exotic preference specifications (Backus et al., 2005) with assumptions
about the long-run properties of fundamentals. In the rest of the paper, I will
explore a different approach. I build a model that explains these features of data
as belief shocks that re-allocate consumption between generations.

III. Structure and Assumptions

I describe an endowment economy with no fundamental uncertainty in which
there are complete financial markets and where money is used as a unit of ac-
count. I show that this model has a continuum of non-stationary perfect foresight
equilibria in which asset prices are described by a persistent difference equation
that converges slowly to a steady state. I construct a set of stationary rational
expectations equilibria by randomizing across these equilibria.

A. Structure

Time proceeds in a sequence of periods indexed by t = 1, 2, . . .∞. There
are two types of people and a measure 1 of each type. People survive into the
subsequent period with age-independent probability, π, that is the same for each
type. A person of type i ∈ {1, 2} receives an endowment of µi units of a unique
consumption good in every period in which he is alive. I refer to the consumption
good as an apple and I assume that

µ1 + µ2 = 1.

This assumption implies the aggregate endowment of apples of the people born
at date t, summed over types, is equal to 1.

Every period a measure 1 − π of type i people from each generation dies and
is replaced by a measure 1− π of new people of the same type. This assumption
implies there is a measure 1 of each type alive in every period and the social
endowment of apples is constant and equal to 1.

The claim to a person’s endowment can be traded in the financial markets. It is
a random sequence of payments that I refer to as a tree. The earnings of a single
tree is a stochastic process because its owner may die. The earnings of a unit
measure of trees is a deterministic variable, equal to the fraction, π, of people.

People maximize the present discounted sum of expected future utility, where
utility is represented by a homogeneous Von-Neumann Morgenstern utility func-
tion, ui, discounted by a factor, βi. I assume that type 1 people are more patient
than type 2 people; that is,

0 < β2 < β1 < 1.

The assumptions that survival probabilities are age independent and utility
functions are homogeneous allows me to summarize the consumption of each type
of person by a linear function of their aggregate wealth. The assumption that
people have different discount factors is important and is key to understanding
the mechanism for persistence of asset prices.
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B. Financial Intermediaries, Annuities, and Life Insurance

In a model with birth and death one must make an assumption about the dis-
persion of a person’s assets when he dies. I follow Blanchard (1985), by assuming
the existence of a perfect annuities market.

Although the endowment is constant, the present value of tax liabilities is a
random variable. People alive at date t trade a complete set of financial securities,
mediated by a set of financial intermediaries. The assets of financial intermediaries
consist of a portfolio of state-contingent one-period consumption loans to type 2
people. Their liabilities consist of state-contingent one-period consumption loans
from type 1 people.

In a rational expectations equilibrium, a newly born type 1 person becomes
a lender and a newly born type 2 person becomes a borrower. A young type 1
person starts out life by consuming less than his endowment. If he has a long
life, a type 1 person eventually consumes more than his endowment as he earns
additional income from his accumulated assets. A young type 2 person starts out
life by consuming more than his endowment. If he has a long life, a type 2 person
eventually consumes less than his endowment as he repays his accumulated debts.

In addition to acting as intermediaries between buyers and sellers of financial
assets, financial intermediaries provide life insurance to cohorts. The size of the
endowment owned by any given cohort shrinks geometrically by a factor π ∈ (0, 1)
as the members of the cohort die. The present value of the endowment owned
by any individual in the cohort is a random variable. Financial intermediaries
provide perfect insurance against idiosyncratic shocks to the length of life.

To implement the efficient insurance contract, financial intermediaries offer an-
nuities contracts to savers and life-insurance contracts to borrowers. A saver
receives a discount in state ε when he buys a state-contingent claim to one apple
in state ε′. That claim costs him πQ(ε, ε′), where Q(ε, ε′) is the price of the claim
and π is the price of an annuity that pays 1 apple to the financial institution in
the event that the person dies and 0 apples if he lives.

On the other side of this market there is a borrower. A borrower receives a
loan of πQ(ε, ε′) in state ε in return for a promise to repay one apple in state ε′.
The amount he can borrow against a promise to repay 1 apple is reduced by a
fraction, π. The fraction π represents the price of a life-insurance contract that
pays the debt of the borrower in the event of his death. Because there are complete
markets for aggregate shocks, and because I assume free entry to the financial
services industry, financial intermediaries make zero profits in equilibrium.

C. Financial Markets and Tax Liabilities

In this subsection I explain the source of uncertainty and I discuss the market
structure that allows people to insure against shocks. All shocks in the model arise
from non-fundamental shifts in beliefs. In a rational expectations equilibrium,
belief shocks are reflected in different realizations of the dollar price of apples
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that are anticipated by participants in the financial markets. Importantly, new-
born people of both types are unable to participate in the financial markets that
open before they are born.

Each period, the price level is a function of a publicly observable random vari-
able, ε, drawn from a time-invariant distribution χ with support Ω. The variable
ε might represent the opinions of the editors of an influential newspaper or the
views of a financial journalist. The mapping from ε to p is common knowledge.

At date t, type 1 and type 2 people are aware that prices will fluctuate in
period t+ 1 and they trade a complete set of Arrow securities where security ε′ is
a promise to pay one apple in period t+ 1 if and only if state ε′ occurs. I denote
the price, at date t in state ε for delivery of an apple at date t+ 1 in state ε′ by

Q(ε, ε′). I refer to the function Q̃(ε, ε′) ≡ Q(ε,ε′)
χ(ε′) as the pricing kernel.

A price level shock has real effects because it changes the net present value of
tax liabilities. A person born into a state with a low price p, relative to nominal
debt, BN , will be born with a high tax liability. Once born, he is perfectly insured
against all future fluctuations in p. But he cannot insure against the state of the
world he is born into.

Price fluctuations result in wealth transfers between generations. Because differ-
ent types of people have different propensities to consume out of wealth, random
wealth transfers trigger persistent fluctuations in the stochastic discount factor.

D. Government

There is a government with two branches; a central bank and a treasury. The
central bank operates an interest rate peg by standing ready to buy or sell one-
period dollar-denominated pure-discount bonds for price Q̄N .3 This policy is
equivalent to setting the money interest rate, i, at i = 1

Q̄N
− 1.

It is well known that dynamic monetary models with an interest-rate peg lead
to indeterminacy of equilibrium. One might hope that this problem is just a the-
oretical curiosity. Alas, that is not the case. Jordi Gaĺı and Mark Gertler (2000)
have shown that, in the period before 1979, the US Federal Reserve operated a
passive monetary policy that is predicted, in New Keynesian models, to lead to
indeterminacy of the price level.4

The US Federal Reserve Board and the Bank of England have pegged the money
interest rate at, or close to, zero, for the past eight years. Japan has had a zero
interest rate for several decades. And during the Great Depression, the short-term
interest rate in the United States was at or close to zero for more than a decade. I
conclude that it is not unrealistic to study a model in which the central bank pegs

3Although I model monetary policy, my model is one where no one actually holds money as a means
of exchange. Michael Woodford has popularized the idea of modeling what he calls the “cashless limit”,
Woodford (2003). I adopt that strategy here. Although bonds are denominated in dollars, the dollar
serves only as a unit of account.

4A passive monetary policy is an interest rate rule in which the central bank responds to inflation by
raising or lowering the interest rate by less than one-for-one (Leeper, 1991).
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the interest rate at a fixed number. An interest rate peg at zero is an extreme
example of a passive monetary policy, and it is a policy that has characterized
the operation of real-world monetary policy for much of recent world history.

The treasury begins the period with debt of B(ε) = BN

p(ε) , where BN is debt

denominated in dollars and p(ε) is the dollar price of an apple. It operates the
tax-transfer policy,

(1) T (ε) = p(ε)τ + (1− δ)BN ,

where τ is a real valued tax or transfer levied on, or distributed equally to, all
persons alive at that date. A positive value of τ denotes a tax and a negative
value denotes a transfer. The dollar value of this tax-transfer is equal to p(ε)τ ,
where p(ε) is the dollar price of an apple.

The treasury levies an additional tax of (1−δ)BN , where BN is the outstanding
value of government liabilities and δ ∈ [0, 1]. This feature of tax policy represents
adjustments to the tax rate made to prevent government debt from becoming too
large as a fraction of GDP.5

The real value of government debt follows the equation

E
[
Q̃′(ε, ε′)B(ε′)

]
= B(ε)− τ − (1− δ)B(ε).

Period t+1 debt is a random variable, conditional on date t information, because
the price level in period t+ 1 is a function of ε′.

Building on Woodford (1994), an extensive literature has developed which ar-
gues that, under some circumstances, government debt will remain bounded even
in the case when the government makes no active attempt to remain solvent.
This argument, called the fiscal theory of the price level (FTPL), is used to select
a unique equilibrium in monetary models in which the price level is otherwise
indeterminate.

I find the arguments that have been presented for the FTPL to be unpersua-
sive. If the FTPL held in practice, I do not believe that legislatures would be as
concerned with budget balance as they have proven to be in the real world. In
Section (IV.D) I will present an alternative way of dealing with the problem of
how to determine what actually happens in models where there is a continuum
of perfect foresight competitive equilibria.

In summary, the model I construct has a continuum of perfect foresight equi-
libria because the interest rate rule of the central bank is passive and because
the treasury actively adjusts the tax rate to prevent the real value of debt from
exploding.

5An example of a policy of this kind in the real world is the Omnibus Budget Reconciliation Act
of 1993, which raised top US marginal tax rates and helped to stabilize the debt to GDP ratio. Before
the passage of the Act, the top individual tax rate of 31% applied to all income over $51,900. The Act
created a new bracket of 36% for income above $115,000, and 39.6% for income above $250,000.
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E. Individual Choice Problems

A person of type i solves the problem,

PROBLEM 1:

vi[a
s
i (ε)] = max

{asi (ε′)}ε′∈Ω

{
ui[c

s
i (ε)] + βiπE

[
vi(a

s
i (ε
′)
]}
,

πE
[
Q̃(ε, ε′)asi (ε

′)
]

+ csi (ε) ≤ µi[1− T (ε)] + asi (ε),

asi (εs) = 0.

Here, the symbol vi is the value function, T (ε) ≡ τ + (1− δ)B(ε) is a tax on the
endowment and ui, given by the expression,

ui(x) =

{
x1−ρi
1−ρi if ρi > 0 , ρi 6= 1,

log(x) if ρi = 1,

is a Von-Neumann Morgenstern utility function.

The symbol asi (ε) is the value of financial assets, held as Arrow securities, by
a person of type i born at date s at the beginning of period t. In addition to
his financial assets, this person receives an after-tax income of µi[1 − T (ε)] and
he may borrow against future after-tax income which has a net-present value of
µiH(ε).

During the period, each person may allocate his wealth to consumption, csi (ε),
or to the accumulation of a portfolio of Arrow securities, asi (ε

′), ε′ ∈ Ω, where
security ε′ costs πQ(ε, ε′).

I show in Appendix (A) that, when people solve this problem, their consump-
tions in consecutive states satisfy the Euler equation,

(2) Q̃(ε, ε′) = βi

(
csi (ε)

csi (ε
′)

)ρi
,

and optimal consumption is a linear function of wealth,

(3) Xi(ε)c
s
i (ε) = asi (ε) + µiH(ε),

where, H(ε) is the after-tax price of a tree, asi (ε) is financial wealth and Xi(ε) is
the inverse propensity to save. Xi(ε) is defined by the recursion,

(4) Xi(ε) = 1 + πβ
1
ρi
i E

[
Q̃(ε, ε′)

ρi−1

ρi Xi(ε
′)

]
.

The absence of arbitrage opportunities implies the after-tax price of a tree
is related to the pricing kernel and the future price of a tree by the valuation
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equation,

H(ε) = 1− [τ + (1− δ)B(ε)] + πE
[
Q̃(ε, ε′)H(ε′)

]
,

where T (ε) ≡ [τ + (1 − δ)B(ε)], the real value of taxes, is found by dividing
Equation (1) by p(ε).

IV. Rational Expectations Equilibrium

In this section I define a rational expectations equilibrium and I show that it
can be characterized by seven stochastic difference equations in seven aggregate
variables.

A. Definition of Equilibrium

A government policy is a triple {QN , τ, δ}. A rational expectations equilibrium
is a government policy, a stochastic process for {p,Q}, and a consumption alloca-
tion for each person at each date such that; 1) people of all generations and at all
dates choose consumption and assets to solve Problem (1): 2) The sum of finan-
cial assets over all people alive at every date t equals government debt: 3) The
consumption of all people alive at every date t is equal to the social endowment:
4) The real value of government debt follows a stationary stochastic process: and
5) The value of debt is less than the value of after-tax human wealth at every
date.

An equilibrium is a complicated object that involves a wealth distribution across
types and cohorts that evolves through time. Because preferences are homoge-
neous and because life-expectancy is independent of age, the evolution of aggre-
gate variables is independent of this distribution. In the remainder of the paper,
I exploit this independence to describe the properties of aggregate variables in
equilibrium. I generate artificial data, driven by belief shocks, and I show these
data mimic the properties of the US data from 1948 through 2008 that I displayed
in Figure 1.

B. Definition of Aggregate Variables

I will characterize the behavior of the variables Ci(ε), Ai(ε), Xi(ε), B(ε), H(ε)
and Q(ε, ε′). Ci(ε) is the consumption of all type i people at date t in state ε.
Ai(ε) is the sum of the value of the ε Arrow securities owned by all type i people
at the beginning of period t. Xi(ε) is the inverse propensity to save out of wealth
of type i people. B(ε) is the real value of government debt. H(ε) is the after-tax
price of a tree and Q(ε, ε′) is the price of an Arrow security at date t in state ε
for delivery of an apple at date t+ 1 in state ε′.

Consumptions of types 1 and 2 are linked by the goods market clearing equation

C1(ε) + C2(ε) = 1,
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and the Arrow security holdings of types 1 and 2 are related to the outstanding
value of government debt by the asset market clearing equation,

A1(ε) +A2(ε) = B(ε).

In my description of equilibrium I define

C(ε) ≡ C1(ε), and A(ε) ≡ A1(ε),

and I do not explicitly model C2(ε) or A2(ε). These variables are implicitly
defined by goods and asset market clearing.

C. Seven Equations that Characterize Equilibrium

Using the facts that consumption is linear in wealth and that the newborn
cohort does not own financial assets, one may derive the following expression
which connects the aggregate consumptions and financial assets of each type in
consecutive states,6

Q̃(ε, ε′) =

 Ci(ε)πβ
1
ρ i
i

πCi(ε′) + (1− π)Xi(ε)−1Ai(ε′)

ρi

.

I call this the modified Euler equation.
Using the goods and asset market clearing equations, and the definitions, of

C(ε) and A(ε), the modified Euler equations for each type are given by equations

(5) Q̃(ε, ε′) =

 C(ε)πβ
1
ρ 1
1

πC(ε′) + (1− π)X1(ε)−1A(ε′)

ρ1

,

and

(6) Q̃(ε, ε′) =

 [1− C(ε)]πβ
1
ρ 2
2

π[1− C(ε′)] + (1− π)X2(ε)−1[B(ε′)−A(ε′)]

ρ2

.

In addition to equations (5) and (6), we may add up the policy function, Equa-
tion (3), over all type 1 people to give,

(7) X1(ε)C(ε) = A(ε) + µ1H(ε).

We also know, from the no-arbitrage pricing of assets, that the price of a tree

6For the derivation of this result, see Appendix (B), which draws on the results of Farmer et al.
(2011).
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is related to its own future price, and to the stochastic discount factor, Q̃(ε, ε′),
by the equation,

(8) H(ε) = 1− [τ + (1− δ)B(ε)] + πE
[
Q̃(ε, ε′)H(ε′)

]
,

and government debt is related to its own future values by the budget equation,

(9) B(ε) = [τ + (1− δ)B(ε)] + E
[
Q̃(ε, ε′)B(ε′)

]
.

To complete the dynamic equations of the model, the inverse savings propensi-
ties are described by the equations,

(10) X1(ε) = 1 + πβ
1
ρ1
1 E

[
Q̃(ε, ε′)

ρ1−1
ρ1 X1(ε′)

]
,

and

(11) X2(ε) = 1 + πβ
1
ρ2
2 E

[
Q̃(ε, ε′)

ρ2−1
ρ2 X2(ε′)

]
.

Equations (5), (6), (7), (8), (9), (10) and (11) constitute a system of seven
equations in the seven unknown variables C, A, B, H, X1, X2 and Q′. These
equations are also associated with three boundary conditions that I turn to next.

D. Boundary Conditions, Indeterminacy and Belief Shocks as Fundamentals

The model has three boundary conditions. One of these is a terminal condition;
the other two are initial conditions.

The terminal condition asserts that the variablesH andB must remain bounded.
This rules out paths that remain consistent with equations (5) – (11) for a finite
number of periods but that eventually become unbounded. An unbounded path
for H is inconsistent with market clearing because it leads to an infinite demand
for commodities and an unbounded path for B would mean that either the gov-
ernment or the private sector has become insolvent. Neither variable can become
unbounded in equilibrium.

The first of the two initial conditions is given by the expression,

(12) A1 = ā,

where ā is the net financial assets owned by type 1 people in the first period of
the model. This initial value may be positive or negative.
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The second initial condition is given by the equation,

(13) B1 =
BN

1

p1
.

This equation asserts that the initial value of government debt, measured in units
of apples, depends on the period 1 price level. In models where the central bank
sets an interest rate peg, there is an open set of possible values for p1, all of which
are consistent with the existence of a non-stationary perfect foresight equilibrium
and all of which converge to the same steady state (Sargent and Wallace, 1975).

How should we deal with the existence of multiple equilibria? I believe it is a
mistake to think of the price level as an initial condition. A better way to think of
price level determination is that the price in period t+ 1, call this p′, is different
from the date t belief of what p′ will be; call this pE

′
. The date t price, p, is

connected to the belief about the date t+ 1 price, pE
′
, by the Fisher equation,

p =
pE
′
Q̄N

Q′
.

This way of formulating the ‘problem’ of multiple equilibria identifies clearly
why the economist is unable to make a clear prediction: He has failed to explain
how beliefs are determined. In a model with multiple equilibria, it is not enough
to assert that people have perfect foresight. The economist must write down an
equation to determine beliefs. The perfect foresight assumption is a consistency
requirement which asserts that beliefs should be correct in the steady state of
a perfect foresight model. It is not a substitute for a formal description of how
beliefs are formed.

This argument can be extended to a world where there are shocks, either to
preferences and endowments, or simply to beliefs. In a model where there are
multiple perfect foresight equilibria, there is no reason that people should hold
point expectations. In this paper I assume instead that pE

′
is drawn from a known

probability distribution, χ. When people believe that the period t + 1 price is a
random variable, the period t price is determined by the equation,

p(ε) =
Q̄N

E
[
Q̃(ε,ε′)
pE(ε′)

] .
I propose to resolve the indeterminacy of equilibrium by introducing a new

random variable, pE(ε′), which has a probability distribution χ and a support, Ω.
pE(ε′) is the price that people think will occur in period t+ 1 and state ε′. The
variable pE(ε′) is a new fundamental that has the same methodological status as
preferences or endowments.

I have not yet said anything about whether the belief that pE(ε′) will be drawn
from χ will be validated in equilibrium. That requires an additional assumption
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and I propose to assume that the belief about the distribution of future prices
has the same distribution as the realized distribution of future prices. The people
in my model have rational expectations.

Robert Lucas (1972) claimed that we do not need to ask how people come
to have rational expectations. We simply need to assume that they are clever
enough not to be consistently fooled. In my view, in a stationary environment,
if the steady state equilibrium is locally determinate, this argument makes a lot
of sense and I will make that assumption here. By making beliefs fundamental, I
have turned a model with a continuum of indeterminate equilibria, into a model
with a unique determinate equilibrium. In my model, beliefs are both fundamental
and rational at the same time.7

V. Simplifying the Model

In this section I simplify the model by finding two variables that summarize the
behavior of the other five. I call the variables that summarize the dynamics, the
state variables and I call the remaining variables, the auxiliary variables. Because
of the functional dependencies among the seven variables, there is no unique way
of choosing state variables.

The behavior of people at date t in state ε depends on two factors. The first, is
their belief about future prices. This is coded into their willingness to pay more
or less for a claim to the future endowment and is summarized by the value of
the variable H. The second is the value of the Arrow securities held by type 1
people which depends on the consumption of type 1 and type 2 people in period
t − 1. The easiest way to code that behavior into the model is to introduce the
period t− 1 value of consumption, I call this CL, as an additional state variable.
It is defined by the equation,

C(ε) = C ′L(ε).

A. Three Auxiliary Functions

To characterize equilibria I will reduce the dimension of the problem still further
by finding three functions, fA, fQ and fB, that explain A, Q, and B as functions
of CL, H,X1 and X2. This reduces the model to system of equations with a 2× 1
vector of state variables, x, where x ≡ {H,CL} and a 3 × 1 vector of auxiliary
variables, y, where y ≡ {X1, X2, C}.

Using Equation (7), the function fA is defined as

(14) A = fA(C,H,X1) ≡ X1C − µ1H.

Replacing A by fA(C,H,X1) in Equation (5), lagged one period, gives the func-

7This argument says nothing about how a particular equilibrium is enforced. In other work (Farmer,
2002a) I have shown how to implement a given rational expectations equilibrium with a belief function.
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tion, fQ : [0, 1]2 × R2
+ → R+,

(15) Q̃ = fQ(CL, C,H,X1) ≡

 CLπβ
1
ρ1
1

πC + (1− π)X1
−1fA(C,H)

ρ1

.

Finally, the function fB : [0, 1] × [0, 1] × R3
+ → R, is implicitly defined by the

expression,

(16)

 πβ
1
ρ1
1 CL

πC + (1− π)X1
−1fA(C,H,X1)

ρ1

=

 πβ
1
ρ2
2 (1− CL)

π(1− C) + (1− π)X2
−1[fB(CL, C,H,X1, X2)− fA(C,H,X1)]

ρ2

.

For given values of CL, C, H, X1 and X2, B ≡ fB(CL, C,H,X1, X2), is the real
value of government debt that equates the marginal rates of substitution of types
1 and 2.

It is important to note that Equation (16) holds for all pairs of states {ε, ε′}.
The fact that B′ is a function of ε′ is recognized in advance by type 1 and type
2 people in period t who equate their marginal rates of substitution by trading a
complete set of Arrow securities.

B. Solving the Model

Let S ≡ R+ × [0, 1] be the state space and let Y ≡ R2
+ × [0, 1] be the control

space. Using the functions fA, fQ, and fB, together with equations (8) – (11), I
define a function S × Y × S × Y → R5,

F̃ (CL, H,C,X1, X2, C
′
L, H

′, C ′, X ′1, X
′
2)

≡

H − 1 + τ + (1− δ)fB(CL, C,H,X1, X2)− πfQ(C,C ′, H ′, X ′1)H ′

fQ(C,C ′, H ′, X ′1)fB(C,C ′, H ′, X ′1, X
′
2)− fB(CL, C,H,X1, X2)

+τ + (1− δ)fB(CL, C,H,X1, X2)

X1 − 1− πβ
1
ρ1
1 fQ(C,C ′, H ′, X ′1)

ρ1−1
ρ1 X ′1

X2 − 1− πβ
1
ρ2
2 fQ(C,C ′, H ′, X ′1)

ρ2−1
ρ2 X ′2

C − C ′L
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More compactly,

F (x, y, x′, y′) ≡ F̃ (CL, H,C,X1, X2, C
′
L, H

′, C ′, X ′1, X
′
2).

A rational expectations equilibrium is characterized by functions f : S×Ω→ S
and g : S → Y that satisfy the functional equation,

(17) E{F (x, g(x), f(x, ε′), g[f(x, ε′])} = 0.

I now turn to the problem of solving this functional equation numerically using
a local approximation.

C. Approximating the Rational Expectations Equilibrium with Perturbation Methods

Define a steady state to be a state vector x̄ and a control vector ȳ that satisfies
the equation

F (x̄, ȳ, x̄, ȳ),

and let J̄1 and J̄2 be the Jacobian matrices of F with respect to [x, y] and [x′, y′]
evaluated at {x̄, ȳ}.

Local uniqueness of a solution to Equation (17) requires that two of the gener-
alized eigenvalues of the matrix pencil {J̄1, J̄2} are inside the unit circle.8 That
condition guarantees that there is a two-dimensional stable manifold g(x) with
the property that for any x1 ∈ N (x̄) all initial conditions y1 = g(x1) that begin
on the stable manifold, converge asymptotically to the steady state {x̄, ȳ}.

To a first approximation, g coincides with the linear subspace spanned by the
two eigenvectors associated with the two stable eigenvalues and f coincides with
the linearized dynamics of x on the stable manifold. When F is differentiable,
higher order approximations may be obtained by extending the solution along the
stable manifold using second, third and higher order derivatives.

To study the properties of rational expectations equilibria, in the next section I
provide numerical values for the model parameters and approximate the solution
using perturbation methods around a steady-state equilibrium.

VI. The Properties of a Calibrated Model

A. Two Different Calibrations

To study the properties of the model, I calibrated it in two different ways. In
both calibrations I chose common values for π, β1, β2, µ1, τ and δ. These values

8The matrix pencil of the matrices {J̄1, J̄2} is the matrix valued function L(λ) = J̄1−λJ̄2, for λ ∈ C.
The generalized eigenvalues of {J̄1, J̄2} are solutions to the polynomial equation |J̄1 − λJ̄2| = 0, and the
generalized eigenvectors, v, are solutions to the equation J̄1v = λJ̄2v, where v is a vector and λ is a scalar
(Gantmacher, 2000, Chapter XII). Both v and λ may take complex values. The generalized eigenvalue
problem is used to solve linearized systems where J̄1 and or J̄2, or both, are singular. It is widely applied
to the solution of linear rational expectations models. See Sims (2001) for a description of the method.
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are reported in Table 2. The values are not chosen systematically to match first
and second moments of US data. They are designed to show that a model, with
the features I have built into it, has promise as a theoretical vehicle to replicate
data if one were to conduct a more serious econometric exercise.

In the first calibration I set the risk aversion parameter of both types to 1. This
corresponds to logarithmic preferences. In the second calibration I set the risk
aversion parameter of both types to 8. I experimented by making the risk aversion
of type 1 people different from the risk aversion of type 2 people but I found that
differences in risk aversion across types made little qualitative difference to the
results.

Concept Symbol Calibrated Values

Life expectancy 1
1−π 50 years

Survival probability π 0.98
Discount factor of type 1 people β1 0.98
Discount factor of type 2 people β2 0.94
Fraction of type 1 people µ1 0.5
Tax (−ve value denotes Transfer) τ -0.01
Debt Repayment Parameter δ 0.94
Nominal Discount Factor Q̄N 0.93

Table 2—Common Parameter Values for Two Calibrations of the Model

I chose π to be 0.98. That value implies that an average person has an age-
independent life expectancy of 50 years.

I chose the discount factor of type 1 people to equal 0.98 and the discount
factor of type 2 people to be 0.94. I chose those numbers to bracket a steady
state riskless discount factor of 0.97 which is consistent with a mean real rate of
3%. I found, in my simulations, that if the difference between β1 and β2 is too
large, the steady state may not exist. I chose a relatively large range that still
ensures the existence of a steady state.

I experimented with different values for µ1 and found that the qualitative fea-
tures of the model are similar for calibrations in the range 0.25 to 0.75. The
results I report are for µ1 = 0.5.

I chose QN = 0.93 for the monetary policy parameter which implies the cen-
tral bank targets a nominal interest rate of 7%. The only steady-state variable
influenced by QN , is the level of the inflation factor which is scaled up or down
by changes in QN .

For fiscal policy, I chose a value of τ = −0.01, which means that the treasury sets
a state-independent real transfer of 1% of GDP and I set δ = 0.94, which implies
that the treasury adjusts the tax rate each period to repay 6% of outstanding
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debt.9

B. The Steady States of the Two Calibrations

In Table 3 I report some statistics associated with my two calibrations. In
the first row I report the stable generalized eigenvalues of {J̄1, J̄2}. For both
calibrations there are two eigenvalues inside the unit circle and in each calibration,
both roots are close to 1. This fact accounts for the ability of the model to
explain persistent movements in PE ratios. The table shows that an increase in
the risk aversion parameter, from 1 to 8, increases the persistence of the state
variables. The largest root increases from 0.97, for log preferences, to 0.99, for
CRRA preferences with ρ = 8.

Variable Symbol ρ = 1 ρ = 8
Stable Generalized Eigenvalues λ1, λ2 0.96,0.97 0.98,0.99

Real Interest Rate 100( 1
Q̄
− 1) 2.9% 4.5%

Inflation Rate 100(Π̄− 1) 4.0% 2.4%

Table 3—Steady Values of the Interest Rate for Two Different Calibrations of Risk Aver-

sion

In rows 2 and 3 of the table I report steady state values of the real interest rate
100( 1

Q̄
− 1) and the inflation rate 100(Π − 1). For the logarithmic calibration,

the steady state real interest rate is 2.9% and the steady state inflation rate is
4.0%. Raising risk aversion to 8 increases the real interest rate to 4.5% with an
associated steady state inflation rate of 2.4%. In both cases, the inflation rate is
found by subtracting the real rate from the targeted nominal interest rate which
I set at 7%.

C. Two Stochastic Simulations Using the Same Draw for the Shocks

I simulated 90 years of data for the inflation rate, the stochastic discount factor,
the real safe rate of return and the real risky rate of return and I discarded the
first 30 observations to remove the influence of initial conditions. The results
of this simulation are reported in Figure 2. On all four panels, the solid curves
represent a simulation for logarithmic preferences and the dashed curves represent
a simulation for CRRA preferences with ρ = 8. For both simulations I used the
same sequence of stochastic shocks.

I simulated data using the function

x′ = f̂(x) + ηε′,

9For existence of equilibrium, it is not necessary that the tax rate be adjusted every period. It simply
needs to be adjusted occasionally to prevent debt from exploding.
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where f̂ is a second order approximation to the policy function computed using
the code from Levintal (2016) and η is a 2 × 1 vector that allocates shocks to
state variables.10 To ensure that H does not become negative, I defined the state
variable to be log(H) rather than H.

I chose the vector η = [σ, 0]T and I set σ = 0.075. A zero appears in the second
element of η to reflect the fact that CL is predetermined. The parameter σ is the
standard deviation of a belief shock that causes people to revise their view of the
current price of a tree. The implied belief about the price shock, p(ε), can be
recovered from the definition

p(ε) =
BN

B
.

The top left panel of Figure 2 reports the inflation rate, measured in percent
per year, and the top right panel is the stochastic discount factor which is a
pure number. These series are identical up to a scale normalization, because,
when the central bank pegs the nominal interest rate, fluctuations in the realized
stochastic discount factor are caused by fluctuations in the realized inflation rate.
The stochastic discount factor has a lower mean and a higher standard deviation
under CRRA preferences than under logarithmic preferences. In the simulation
reported in this figure, the realized stochastic discount factor fluctuated between
0.96 and 0.98 when preferences are logarithmic and between 0.935 and 0.998 for
the CRRA calibration.

The bottom left panel of Figure 2 is the safe interest rate, defined by the
expression

rs = 100

 1

E
[
Q̃(ε, ε′)

] − 1

 .

I computed this statistic by adding an addition auxiliary variable, Rs ≡ 1 + rs,
and an additional auxiliary equation

1

Rs
− E

[
fQ(C,C ′, H ′, X ′1)

]
= 0,

to the model.
The bottom right panel is the realized after-tax one-period holding return for

buying a measure 1 of trees in period t and selling it in period t+ 1. It is defined
by the expression

rr = 100

(
πH(ε′)

H(ε)− [1− T (ε)]
− 1

)
.

The safe return, rs, and the risky return, rr, are identical in a non-stochastic
steady state. They are very different in the stochastic steady state.

10Levintal’s code is based on Schmitt-Grohé and Uribe (2004). It allows for approximations up to
fifth order and it is faster and more efficient than the Schmitt-Grohé-Uribe code. I found no noticeable
difference in simulations using second and higher order approximations and, because the second-order
approximation is faster, I used it in my simulations.
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Figure 2. Inflation and Interest Rates for Two Different Calibrations

In US data reported in Table 1, the average yield from holding the stock market
is 4.6% higher than the average return from holding government bonds. Because
it is possible to increase the risky return by assuming more risk, it is common to
report the Sharpe ratio which is a measure of excess return normalized by risk.
The Sharpe ratio, S, is defined as,

S ≡ mean(rr − rs)
std(rr)

.
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In data reported in Table1, the Sharpe ratio is 0.29. This value is sensitive to the
definition of the risky asset and the time period over which it is computed and
alternative definitions and periods give numbers between 0.25 and 0.5 (Cochrane,
2001). In Table 4 I report the Sharpe ratio and the means of the safe and risky
returns for the simulations from Figure 2.

Variable Symbol ρ = 1 ρ = 8
Mean of Safe Rate in One Simulation r̄s 3.24% 9.92%
Mean of Risky Rate in One Simulation r̄r 3.03% 18.92%
Sharpe Ratio in One Simulation S −0.024 0.74

Table 4—Mean Safe and Risky Rates for a Single Simulation

The numbers reported in this table refer to a single draw of shocks. When
people have logarithmic preferences, this draw led to an average safe interest rate
in 60 years of data of 3.24% and an average risky rate of 3.03%. The Sharpe ratio
for this draw, for the case of logarithmic preferences, is −0.024.

When people have CRRA preferences, with risk aversion parameter ρ = 8, this
same sequence of stochastic shocks led to a mean safe return of 9.92% and a mean
risky return of 18.92%. The equity premium for this calibration is 9% and the
Sharpe ratio is 0.74. The mean returns are different from the steady-state value
of 4.5%, reported in Table 2, because the model has an eigenvalue close to 1 and
mean reversion is extremely slow. The average risky return in 60 years of data
is a random variable with a high variance that becomes very large as the largest
root of the system approaches 1.

To check whether a high Sharpe ratio was a freak draw from a particular re-
alization of the shocks, I simulated 100,000 time series, of length 60 years, and
for each series I computed the Sharpe ratio and the means of the safe and risky
interest rates. The results are reported in Figure 3 for two different calibrations
of the model. For both calibrations, I used the same sequence of random shocks
for every simulation.

The top panel of Figure 3 shows that, when ρ = 1, the distribution of risky rates
has a higher variance than the distribution of safe rates, but both are centered
around 3% and both distributions are approximately symmetric. The bottom
panel shows that, for the logarithmic calibration, the empirical distribution of
Sharpe ratios is centered, to a first approximation, on 0. There is, nevertheless, a
fair amount of probability mass in the interval [0.2, 0.3]. Even if preferences are
logarithmic, we still might have observed a Share ratio of 0.25 in 60 years of data,
purely by chance. The figure also illustrates that, if preferences are logarithmic,
the probability of observing a Sharpe ratio of 0.5 is close to zero.

Contrast that with the case of ρ = 8. The top panel of Figure 3 shows that
drawing a mean safe rate of 9% and a mean risky rate of 18% is indeed, an outlier.
Most of the probability mass for both safe and risky rates lies between 5% and
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Figure 3. Empirical Frequency of Interest Rates and Sharpe Ratios in 100,000 Simulations

8%. The lower panel shows that, nevertheless, a Sharpe ratio between 0.25 and 3
is not unusual and, when ρ = 8, there is fair amount of probability mass between
0.5 and 1. For this calibration, the probability of drawing a Sharpe ratio of 0.5 is
high.

I infer, from these simulations, that this model is a good candidate for helping
understand the equity premium puzzle (Mehra and Prescott, 1985).

D. Consumption, Asset Holdings and Government Debt

In Table 5 I report the type 1 and type 2 savings propensities, X̄−1
1 and X̄−1

2 ,
the steady-state values of type 1 consumption, C̄, type 1 asset holdings, Ā, and
the steady-state PE ratio, H̄. I also report the steady-state value of government
debt and two different concepts of the steady-state government budget deficit.

Consider first, the savings propensities from rows 1 and 2 of Table 5. For
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Variable Symbol ρ = 1 ρ = 8

Savings Propensity of Type 1 People X̄−1
1 3.96% 6.0%

Savings Propensity of Type 2 People X̄−1
2 7.88% 6.46%

Consumption of Type 1 People C̄ 68% 55%
Financial Assets of Type 1 People Ā 6.8 1.36
Price-earnings Ratio H̄ 20.98 15.57
Government Debt B̄ 31% 60%
Primary Budget Surplus (1− δ)B̄ + τ 0.9% 2.6%
Secondary Budget Surplus (QN − δ)B̄ + τ −1.2% −1.3%

Table 5—Steady Values of Consumption and Assets Positions

the case of logarithmic preferences, type 1 people consume 3.96% of steady state
wealth in every period while type 2 people consume 7.88%. In the CRRA case, the
mean savings propensities are much closer together, 6.0% for type 1 people and
6.46% for type 2. The increased savings propensity for type 2 people is reflected
in a difference in steady state consumption across the two calibrations.

Row 3 of Table 5 shows that, when both types have logarithmic preferences,
type 1 people consume 68% of the social endowment in the steady state. When
they have CRRA preferences, type 1 people consume 55% of the social endow-
ment. The difference occurs because, when ρ = 8, both types are not only highly
averse to fluctuations across states, they are also highly averse to fluctuations of
consumption across time. That feature reduces the willingness of type 2 people to
have a tilted consumption profile and it reduces the gains from trade that occur
from having different discount rates.

The reduced gains from trade are reflected in A, the financial asset position of
type 1 people. Row 4 of Table 5 shows that, for logarithmic preferences, type 1
people hold assets equal to 6.8 times GDP in the steady state. This falls to 1.36
when both types are averse to risk and to intertemporal substitution.

Row 5 shows the steady state after-tax price-earnings ratio. This is equal to
20.98 for logarithmic preferences and 15.57 in the CRRA case. This difference
reflects the difference in steady state real interest rates reported in Table 3.

Rows 6, 7 and 8 report the steady state value of government debt and two
different measures of the steady-state budget deficit. For the logarithmic calibra-
tion, the government holds debt equal to 31% of GDP in the steady state. For
the CRRA calibration that figure increases to 60%. In both cases the government
runs a small primary surplus. When interest payments on the steady-state debt
are deducted from the primary surplus, government, in each calibration, runs a
small secondary deficit.

The top left panel of Figure 4 reports type 1 consumption, measured as a
fraction of GDP, and the top right panel is the PE ratio for the same sequence of
random shocks used to construct Figure 2. Since the endowment is constant and
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Figure 4. Consumption and Asset Demands for Two Different Calibrations

equal to 1, the PE ratio is equal to the price of a tree. The important takeaway
from these two graphs is that the consumption of type 1 people is almost constant,
in both calibrations, but there is substantial variation in asset values. The PE
ratio varies between 10 and 25 when preferences are logarithmic and between 4
and 8 for the CRRA case. In the real world, the price earnings ratio displays
considerable persistence and has been as low as 5, in 1920, and close to 50 in the
1990s.

The bottom two panels of Figure 4 show that differences in risk aversion also
have substantial implications for both the level and volatility of the private and
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government sector asset positions. When people have logarithmic preferences,
government debt fluctuates between negative two and plus 12 as a ratio to GDP.
For CRRA preferences debt never exceeds 2 times GDP and most of the time is
between 0 and 1. The private sector asset position of type 1 people is both higher
and more volatile when both types are less risk averse.

E. A Discussion of the Results

In the introduction, I claimed that the paper relies on three features. First,
there must be birth and death. Second, there must at least two types of people,
and third, there must be nominally denominated government debt. Here, I discuss
why each of these features is important and I speculate on the ability of a model
in this class to provide a vehicle for more formal empirical work.

The assumption that there are two types of Blanchard-Yaari consumers is im-
portant to generate the mechanism that causes belief shocks to be persistent. In
a purely real version of the model, there is a unique perfect-foresight equilibrium.
That model has a single initial condition, represented by the debt of type 1 people
to type 2 people in the first period. A natural assumption to make is that that
first period private-sector debt is equal to zero.

How do people behave in this purely real world? The initial type 1 people
choose to lend part of their endowment to type 2 people. The initial interest rate
is different from its steady state value because the initial age distribution of types
is different from the steady state distribution. A population heavily weighted
to young people is associated with a different interest rate from a population
with a steady state distribution of cohorts because as people age, type 2 people
acquire debts and type 1 people acquire assets. Asymptotically, the interest rate
converges to a unique steady state.

Adding money to the model leads to steady state indeterminacy. The real
value of government debt must equal the discounted net present value of tax
receipts. For any initial price level in a certain set, there is a initial value of
debt that is consistent with an equilibrium. Government debt is net wealth to
the current generation because they must be persuaded to hold it at equilibrium
prices. But although current generations own the government debt, part of it
is repaid by future generations. Different initial price levels are associated with
different allocations of the debt burden among generations.

In a rational expectations equilibrium, the one-period-ahead price level is a
random variable. Type 1 and type 2 people alive at date t recognize that the
future price is random and they insure each other against price level fluctuations.
A person of either type who is born into a low price state is worse off for her
entire life than a person born into a high price state. She is forever saddled with
a high tax obligation to existing generations. Once born, she is insured against
all future price level fluctuations. But she is not insured against the state of the
world she is born into.

Price level shocks generate random transfers from the newborn people to or
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from existing generations. A type 1 person who receives a wealth transfer from
the newly born, will choose to lend part of it to a type 2 person. The price shock,
in a monetary model, acts like a shift in the initial condition of the purely real
model and it sets off a persistent mean reverting movement in the discount factor.

I have shown, in this section, that this mechanism can explain many features of
real world data. The fit is not perfect. For example, the logarithmic calibration
misses features of the return data but displays large swings in PE ratios. The
CRRA model, with ρ = 8, captures rate-of-return discrepancies at the cost of
shifting and dampening fluctuations in PE ratios. But although the model is off
in some dimensions, I did not try to fit the data in a systematic way and a more
formal attempt at estimation would correct some, if not all, of the places where
the calibrated model is inaccurate.11

I conclude that a model in which asset price fluctuations are caused by belief
shocks has the potential to explain, quantitatively, many features of real world
data.

VII. Conclusion

In this paper, I have presented a theory that explains asset pricing data in a new
way. In contrast to much of the existing literature in both macroeconomics and
finance, my work is based on the idea that most asset price fluctuations are caused
by non-fundamental shocks to beliefs. My model produces data that display
volatile asset prices and a sizable risk premium. If one accepts the argument that
a simpler explanation is a better one, the fact that I am able to reproduce these
empirical facts in a model with CRRA preferences and no fundamental shocks
suggests that the model is on the right track.

My model is rich in its implications. It provides a simple theory of the pricing
kernel that can be used to price other assets. The model is open to more rigorous
econometric testing and its parameters can be estimated, rather than calibrated,
using non-linear methods. It provides a theory of the term structure of interest
rates that can be tested against observed bond yields and by adding a richer
theory, in which output fluctuates as a consequence of labor supply or because
of movements in the unemployment rate, the theory can be estimated using data
from both bond prices and equity markets. I view all of these extensions as grist
for the mill of future research. Conducting these extensions is important because
my model is not just a positive theory of asset prices; it is ripe with normative
implications.

In my baseline calibration, I chose parameters to match key features of the
data and I generated simulated data series that closely mimic observed interest
rates and asset prices in the real world. In these simulations, asset price fluctua-

11It would also be possible to solve a version of the model that separates risk-aversion from intertem-
poral elasticity of substitution by moving to Epstein-Zin preferences (Epstein and Zin, 1989) and that is
likely to improve the fit. I have chosen not to take that step here because there are already a lot of new
features in the model. It is, however, on my research agenda for a future empirical paper.
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tions cause Pareto inefficient re-allocations of wealth between current and future
generations and these re-allocations lead to substantial fluctuations in welfare.
If my model is correct, and these fluctuations are the main reason why asset
prices move in the real world, stabilizing asset prices through monetary and fiscal
interventions will be unambiguously welfare improving.
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Nicolae Gârleanu and Stavros Panageas. What to expect when everyone is ex-
pecting: Self-fulfilling expectations and asset pricing puzzles. University of
Chicago: Mimeo, 2016.
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Appendix A

In an optimum, the budget constraint must hold with equality,

(A1) csi (ε) = µi[1− T (ε)] + asi (ε)− πE
[
Q̃(ε, ε′)asi (ε

′)
]
.

From the envelope condition we have that

(A2)
∂vi

∂asi (ε)
=

∂ui
∂csi (ε)

∂csi (ε)

∂asi (ε)
≡ ∂ui
∂csi (ε)

,

where I have used the fact that, from (A1), csi (ε) is a linear function of asi (ε).
From the Euler equation, using the definition of usi ,

(A3)
∂ui
∂csi (ε)

∂csi (ε)

∂asi (ε
′)

= πβiχ(ε)
∂vi

∂asi (ε
′)
.

Using (A1) and (A2) in (A3) and the functional form for utility,

(A4) πQ̃(ε, ε′)csi (ε)
−ρi = πβic

s
i (ε
′)
−ρi .

Rearranging this equation gives

(A5) Q̃(ε, ε′) = βi

(
csi (ε)

csi (ε
′)

)ρi
,

which is Equation 2 from the solution to Problem 1.
Now conjecture that the policy function takes the form,

(A6) Xi(ε)c
s
i (ε) = µiH(ε) + asi (ε)

where

(A7) Xi(ε) = 1 + πβ
1
ρi
i E

[
Q̃(ε, ε′)

ρi−1

ρi Xi(ε
′)

]
.

and

(A8) H(ε) = 1− [τ + (1− δ)B(ε)] + πE
[
Q̃(ε, ε′)H(ε′)

]
,

From Equation (A6),

(A9) Xi(ε
′)csi (ε

′) = µiH(ε′) + asi (ε
′).

Multiplying Equation (A9) by πQ̃(ε, ε′), taking expectations and using equations
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(A1) and (A8),

(A10) πE
[
Q̃(ε, ε′)Xi(ε

′)csi (ε
′)
]

=

πE
[
Q̃(ε, ε′)µiH(ε′)

]
+ πE

[
Q̃(ε, ε′)asi (ε

′)
]
.

Next, replace csi (ε
′) by csi (ε)β

1
ρi
i Q̃(ε, ε′)

−1
ρi from (A5) and use (A1) and (A8) to

give

(A11) πcsi (ε)E
[
β

1
ρi
i Q̃(ε, ε′)

ρi−1

ρi Xi(ε
′)csi (ε

′)

]
= πE

[
Q̃(ε, ε′)µiH(ε′)

]
+ πE

[
Q̃(ε, ε′)asi (ε

′)
]

= µiH(ε) + asi (ε)− csi (ε) = [Xi(ε)− 1]csi (ε),

where the final equality uses the policy function, Equation (A5).

Cancelling csi (ε) from both sides of (A11) and rearranging terms gives

(A12) Xi(ε) = 1 + πE
[
β

1
ρi
i Q̃(ε, ε′)

ρi−1

ρi Xi(ε
′)csi (ε

′)

]
,

which establishes that the conjectured policy function, (A5) solves Problem 1
when Xi(ε) is given by Equation (A12).

Appendix B

Let coi (ε) be the consumption at date t in state ε of a representative type i person
who was alive at date t− 1 and let cyi (ε) be the consumption of a representative
newborn person of type i. Adding up over all people of type i, gives

(B1) Ci(ε) = πcoi (ε) + (1− π)cyi (ε).

A person who is alive in two consecutive periods obeys the Euler equation,

(B2) ci(ε)β
1
ρi
i = coi (ε

′)Q̃(ε, ε′)
1
ρi

Newborn people consume

(B3) cyi (ε
′) = µiXi(ε

′)−1H(ε′),
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Aggregating Equation (B2), using (B1).

(B4) Q̃(ε, ε′)
1
ρi =

Ci(ε)πβ
1
ρi
i

Ci(ε′)− (1− π)X−1
i µiH(ε′)

,

Using the fact that,
µiX

−1
i H(ε′) = Ci(ε

′)−Ai(ε′),
leads to,

(B5) Q̃(ε, ε′) =

 Ci(ε)πβ
1
ρi
i

πCi(ε′) + (1− π)Xi(ε′)−1Ai(ε′)

ρi

,

which is the modified Euler equation.


