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Preface

Many years ago I made a compendium of cosmological formulas, since it was my
feeling that I often and repeatedly wasted time in re-deriving distances, volume
elements, look-back times, etc. in different model universes, while it was difficult
to find a source in the then existing literature that presented such formulas in a
satisfactory way. Some of the papers of Sandage in the early sixties came close, but
were not complete (see for example Sandage 1961a and Sandage 1961b).

Although the collection of formulas was for personal use only and, to be honest,
the very first version was actually more of an exercise for word processors (not yet
on PCs but a kind of type-writers with a bit of memory) subsequent technological
and software developments (for example LaTex, MSWord) made copying easy. I
distributed an early version of the compendium among some colleagues of the
Observatory and the Radio Astronomy Institute in Bologna.

A second version was made (in Microsoft Word and html) around 1996, which
included now a discussion of flat models with non-zero cosmological constant. I
thought that this would be fine for a long time, but new observations and
theoretical work have provoked a rapid change in our view of the structure of the
Universe. The main causes are certain observations of supernovae, which
definitely suggest a re-acceleration of the expansion of the universe, and the
incredibly fast evolving field of the CMB. Some other theoretical and observational
developments are important as well. All evidence now points to the existence of
components other than the “normal” baryonic material: the presence of dark
matter is well established, but in particular the power spectrum of the CMB
fluctuations can be reproduced by introducing yet another component, the Dark
Energy (that is a non-zero cosmological constant, or alternatively a rather
mysterious energy component exerting a negative pressure). This latter
constituent also goes under the name of Quintessence; a modern, very extensive,
discussion can be found in Peebles (2004). The equation of state of such a
component is p=wp, with w negative. This kind of model is much liked by
theoreticians, because a cosmological constant (i.e. truly constant) poses some
serious problems of interpretation; and in particular there is an enormous
discrepancy between value of the vacuum energy (thought to be the source of the
cosmological constant) and the value measured for Lambda.

I rearranged this compendium a bit, but did not yet include the Quintessence
models (lack of time). I limited the discussion to those models that have a flat
space (k=0), although I decided to retain a selection of other models that are of
interest for historical reasons only.

It is always a bit annoying -at least to me it is- if you have to use formulas without
knowing where they come from. For that reason I first give a discussion of the
derivation of the formulas, starting from the Robertson-Walker metric and the
Einstein equations. It may indeed be useful to have a quick reference guide, where
you can, for example, look up where this or that 1+z factor comes from.



The compendium itself is given in the second part (the appendices), and it is
ordered according to the different cosmological models.

Obviously I do not at all pretend to replace a textbook or a lecture course on
cosmology; what I do hope is that the compendium can provide a quick and easy
way to find the right formula. As such it is intended to be a complement to the
usual texts on cosmology, which normally deal with more important and
fundamental matters like general relativity.

It would be very surprising if there were no errors, typographical or other, in the
following list of equations. Please feel free to send me comments via E-mail
(h.deruiter@ira.inaf.it); you can find this compendium on the WEB: see my Home
Page, at:

http://www.ira.inaf.it/~deruiter.

You may find this compendium as a file in pdf format, which you can, if you so
wish, freely download.

This version was written and completed in June 2005; note that my WEB and E-
mail addresses have changed.



1 Introduction

An observational extra-galactic astronomer always needs to have at hand some
cosmological tools, for example for the conversion of observed parameters like
apparent magnitudes, fluxes, angular diameters to the corresponding intrinsic
parameters. Obviously to do that you will have to adopt a particular cosmological
model. Often you will see in an astronomical paper some remark like ““we used a
model with Ho = 50 km s1 Mpc! and qo=1/2". In recent years non-standard
models (that is with non-zero cosmological constant) have become very popular,
in the first place because flat models with positive A are a natural consequence of
the inflationary-universe theory, and second, because there are now also good
observational reasons why such models are feasible. This makes it al the more
important to know how to compute distances, look-back times.

This article is organized as follows. First, in this chapter I give some general
background information on the various parameters that are relevant for our
problem, and use as a starting point (1) the Robertson-Walker metric and (2) the
Einstein equations. I decided these are good starting points: no discussion is given
of their derivation (I would have to rewrite a textbook on gravitational cosmology,
which is far beyond my capacity), nor do I discuss other than homogeneous and
isotropic models.

Specific models are then described in Chapters 3 (the standard Friedmann model),
4 (flat models) and 5 (other models).

These chapters make this guide longer than it could have been, but they can be
useful for retracing the origin of a formula.

A list of symbols used is given in Appendix A. The compendium of formulas (the
ultimate reason for the existence of this guide) is given in Appendices B, C, and D.

1.1 The metric of Space-Time

I only use the metric of a homogeneous and isotropic space-time, often called the
Robertson-Walker metric:

dr’ +r’*d@* +r’sin’6dg’
2\ 2
()
4
The variables 1, 6, ¢ are co-moving coordinates; this means that the expansion of the
universe is represented by R=R(t). The co-moving coordinates (r, 6, ¢) do not
depend on time and therefore an object will have fixed values of its co-moving
coordinates.
The parameter k can be negative, zero, or positive, but without loss of generality

we can assign it the possible values -1, 0, or +1. If k=—1 space is negatively curved,
while k=+1 corresponds to a positive curvature; for k=0 space is flat.

ds* =c*dt* —R*(t)

5



There is another, more useful, form of the metric, obtained by changing the
coordinate r to ®, according to:

SiInw = 2

1+
4

For k=+1, o=r if k=0, while for k=-1, we set

sinh @ = >

-

4

This can be written more compactly as:

ko r

S

==
Jk 1+%

Remembering that by definition sin(ix)/i = sinh x, and cos(ix) = cosh x. Moreover
we can take the limit k — 0 in order to find the correct equations for the case k=0.
Using this compact form we can now write the equation for the metric as:

sin \/Za)]z
Jk

(d* +sin” Gdg*))

ds® =c*dt* —R* () {dw* +[

This is the form we will always use in the following,.

1.2 The redshift

From the metric given in Chapter 2.1 we immediately can find an expression for
the redshift as a function of R. Write Ro for the value of the scale parameter at the
present epoch and R; for the value it had at the time of emission of a photon. Then
the photon will be redshifted by

R
l+z7=-"
Rl

Proof: for a photon ds=0, and since o of the emitting source is fixed, while we can
choose 6=¢=0, then:

o dt
w=c| —
.+ R




where t1 and to are respectively the times of emission and reception of the
beginning of the wave packet. For the end of the wave packet we get:

to+Atg

Jdt
w=c | —
R

t+AL

and Ato/At1 = Ro/Ri1. But At is related to the frequency of the photon (v o< 1/At),
and it follows that:

em RO

R,

I+z=

14

obs

1.3 Distances

It is up to us to define a coordinate distance, and good candidates would be 7, or
sin(V(k)w/\k). Of course we would prefer a coordinate distance that has a close
relation with the observations. A distance that makes sense is the luminosity
distance, which is defined from S=P/4nD? (S is flux, P luminosity), and therefore
we search for an expression for D in terms of a coordinate distance. A detailed
discussion can be found in McVittie (1965), p. 163--165.

In the usual definition of flux (energy flow per unit area) we take the area of a
sphere around the power source and divide the emitted power by this area. In
Euclidean space the area of the sphere at distance D, where the observer is on the
spherel, is found as:

2T

A= j j D’ sin(6)d6d¢ = 47D>
00

However, in the metric given in Chapter 2.1 space is not necessarily flat and we
therefore must take the area of the pseudo-sphere around the source:

2 . 2 ‘ -
4= ng(sm\/sz e dDeclp= 4ﬂR5(M’]
00 JE JE

where the o factor takes account of the curvature of space. The above suggests that
a relation between flux and power might be:

S:EZ
A

P
47R? sinVkw) 1k

Clearly a useful coordinate distance is sin{V(k)o}/\(k), and we call this the
geometric distance rg.

! We put the observer at @ and the source at zero, but in the end put back the observer at zero; this can be
done because space-time is homogeneous and isotropic



We have not finished yet however, because there are two more effects we still
have to take into account. Call €em = hvem the energy of an emitted photon. In a
time interval Atem there are n photons emitted, so that the emitted power is Pem =
€emN/ Atem.

First effect (the energy effect): the wavelength of a photon is redshifted, or
Vobs=Vem/ (1+2), so that €obs = €em/ (1+2).

Second effect (the number effect): photons will arrive at a slower rate. At the
source n photons were counted in the interval Atem; but Atem = Atobs/ (1+2), so that
the same photons are observed to arrive in an (1+z) times longer interval.

Taking the two effects together and calling the ““observed" power (from flux and
geometric distance) Pobs, we have:

Pobs = gohx X - = Pem /(1+ Z)z'
A obs
Finally:
_ P
4r(1+2)° R2r

We can introduce here the luminosity distance D as:

D =(1+2)Ryr,

The derivation given above concerns bolometric fluxes and powers; if we observe
in a limited frequency band we also have to take into account that the observed
and emitted bandwidths are different by a factor (1+z), and that the flux at
frequency v refers to the power emitted at v(1+z).

1.4 Angular Size

The usual formula for angular size A8 is: A6 = L/de, where L is the linear size and
dy the distance, which we now have to specify.

Take two points A and B with co-moving coordinates (®,0,0) and (®,6+A6,0). A
and B could be for example the two components of a double radio source. We
assume that a photon is emitted from A, and another one from B at time t;; A and
B are connected with the origin (0,0,0) by null geodetics. The local separation L at
time t; can be found by putting dt=dw=d¢=0, so that As2 = —-[.2 = —Ry2rz?A62 and:



AG = d+z)L '

Rorg
We can make the identification d¢ = Rorg/(1+z) and, if we really want, use the
standard formulas S=P/4nD? and A6 = L/de, remembering that:

D
Rorg =(1+Z)d9 :m

_ D
1+’

1.5 The Volume

The co-moving coordinates of an object are, by definition, fixed. Consequently the
number of objects (if they are not created or destroyed) per co-moving volume
remains constant and therefore this type of volume is the relevant one for
computing e.g. a luminosity function. From the metric in Chapter 2.1 we have:

sm\/;a) 46

T R

sin\/za) .
o S

dV(w,0,9) = R,dwR, in 6d¢
Jk

Integrating over o, 0 and ¢ we find the volume out to coordinate distance o:

V(a)):4er§J (MJ do

Vi

0

and we can make the change V(o) to V(z) if we know 0= o(z); the differential
volume in a redshift shell is then simply (dV/dz)dz.

1.6 How to compute w

Let a photon be emitted at time t1 and be received at to and let it have fixed
coordinates 6 and ¢. Since ds=0 we find

J'“ dr
w=c| —
, R(@)

where o(to) = 0.

If we can find, at the right-hand side, an expression in terms of Ho, qo, z then we
have solved o = o(Ho, qo, z) and distances, volumes, etc. are known in terms of Ho,
qo and z.




1.7 The scale parameter R

We have already seen that in general Ro/Ri=(1+z). The solution R=R(t) is found
from the Einstein equations which I give here without a derivation:

02
3ke* 3R
= +

et

8aGp

It follows directly that:

dR’
dt

d )4
— R3 du £
B (PRY) 2

=0

where p is the density, p the pressure, and A the cosmological constant. The
Einstein equations are obtained by equating the curvature tensor to the energy-
momentum tensor.

In the most general case the equations are very difficult to solve because we need
to know p and p (and thus an equation of state), as well as A. Although models
with non-zero pressure have been calculated (for example assuming a polytropic
relation p e p’), one normally takes p=0, so that the Einstein equations become:

2
3ke* 3R
+

87Gp = R? R?

-A

Also:

d s _d
Z (PR =——(pR*) =0
dt(p ) dR(p )

Important parameters are the Hubble parameter and the deceleration parameter:

10



1.8 Time scales

Call the present cosmic time to; it can be found by measuring Ho, i.e. to=to(Ho) the
functional relation being different for different models. (Ho)"' often called the
Hubble time, but it should be kept in mind that in Friedmann models (A=0)
always to < (Ho) ™.

Another important measure of time is the look-back time 7, defined as

t
r=1--L
tO

We see that t;=ty—1=0, and t;=0—>7=1. The name look-back time
is obvious.

11



2 The standard (Friedmann) model: A=0

2.1 General characteristics

The Friedmann models are the most important cosmological models and almost
exclusively used in observational astronomy. Since A=0, we start from the
simplified Einstein equations:

o2

87Gp ke R
_— - —
3 R*> R’

2
R R Ko
R R R’
As can be seen from above, the first equation states that A=0 implies q=c, and
therefore the Einstein equations reduce to one (the second). Note that the
Friedmann models always have q>0, because of course or ¢ or p are always >02.

The second Einstein equation provides a relation between Ro, Ho, qo:

R, = /2 LA
q9,—1 H,

for k=11. It follows that

e k=+1—>qo>"%
e k=0—>qo="%
e k=-1-50<qo<?

2.2 The solution of R and t in parametric form

The solution of the Friedmann-Einstein equation is well known from equivalent
differential equations used in mechanics. Introducing the ““development" angle y
we write R=R(y) and t=t(y).

Remembering that:

-1
o dR [ dr
dy\dy

% But negative pressure now has become a definite possibility, since the Quintessence models have been
proposed. I should get around discussing these too.
12



= _(di\*(d’R _dR/dy d’t
dy) \ay* di/dy ay?

Taking dt/dy = R/c we get:

2 2
AR —2d§R+kR2=O
dy dy

The solution is:

R =%(1—COS\/;1//).

Since t = J(R/c)d:

t

_a sinVky
O .7)

The solutions are valid for all k:

For k = -1 we use cos(ix) = cosh(x) and sin(ix)/i = sinh(x), then:

> R(k=-1) = a{cosh(y)-1},

> t(k=-1) = (a/){sinh(y)~y}

For k = +1 we have:

» R(k=+1) = a{l—cos(y)}

> t(k=+1) = (a/) {y-sin(y)}

For k = 0 we first write cos(Vky) = 1 —ky?/2 and sin(\ky)/Vk = y + ky3/6,
since higher terms in k will be zero when taking the limit k— 0. Thus:

> R(k=0) =ay?/2

> t(k=0) = ay3/(6¢)

In this case, however, the scale parameter R cannot be tied directly to (c/Ho); in
fact we might take anything we like. Eliminating y we find

62/3
R(k:()): 2 al/3C2/3t2/3 o<t2/3

As a next step we eliminate a, by using Ho = (2/3)ty, and imposing that Ro =
c/Ho. We find that a = (3/4)cto, so we can finally write:

Ean

13



2.3 The Hubble and deceleration parameters

Using the definitions of H and q given in Chapter 1 the above solutions lead to:

_ ¢ dr _ ke sinky) -k
R dy a (l—cosw/;l//)2

After some more manipulation:

1 1-
q=—(:)cos\/;1//=—q
1+cos\/;l// q

The explicit relations for k=—1 and k=+1 are obvious and will not be repeated here.
For k=0 we can go back to the relation between R and t given in Chapter 2.2, or
take the appropriate limits k—0 in the formulas given here. Both methods give:
H(k=0)=(2/3)t%/3 and q(k=0)=1/2.

2.4 Relation between o and

There is a very simple relation between the radial co-moving coordinate ® and the
development angle y. Since c¢/R=dy /dt (see Chapter 2.2), we can write:

todt Vo
a)—cj E_L« dy

h

so that:
=Y, Y,
Therefore » and y are the same thing, up to a different zero-point: ® is measured

with respect to the observer (at ®=0), while y gives an absolute scale starting at
R=0 with y=0.

2.5 Expressing yin the observables q0 and z

Since cos(Vky) =(1-q)/q, W can be expressed in terms of R; using Ri=Ro/ (1+z), we
can write:

1+z
or, for qo#1/2:

14



1-¢g, +
COS\/EI/II _ 4o T 402
q,(+7z)

With these formulas we have solved all our problems: ® is a difference between
the development angles at t1 and to, and therefore can be expressed in Ho, qo, z. As
a consequence this can also be done with the geometric distance, volume, etc. (see
next sections), taking care that for k = 0 we take the appropriate limits only at the
end of our calculations. The characteristic that all relevant cosmological quantities
can be directly expressed in terms of observables is a very pleasant property of
Friedmann models (and a few other non-standard models). It is not true in the
general case A # 0.

2.6 The geometric distance

Going back to the original definition for rg (=sin(\k®)/\k) we can write:

. sin \/E(l/fo -¥) sin\/El/fo cos\/El//l —COS\/EV/O sin\/El//l
‘ Vi Vk

With the knowledge of Chapter 2.5 this can be transformed into:

L (Zqo —IJ“ G0z +1-gy +(g, ~D(2g2+1"”
¢ k gy (1+2)

but since V{(2qo-1)/k}=c/ (RoHo):

L C qoz+1-q,+(q, —D(2g,z+1"?
¢ R\H, q§(1+z)

This is the famous Mattig formula (Mattig 1958). Surprisingly enough, Mattig
derived it many years after the original work of Friedmann in the early 1920's, and
up till then one had to use cumbersome expansions in powers of z. It illustrates
how the practical use of cosmology has often lagged behind the theory?3.

Although the limit for qo—0 exists, Mattig's formula is not very nice in case of very
small qo, because both numerator and denominator go to infinity, as qo tends to
zero. Terrell (1977) obtained an alternative (and better) form of Mattig's formula
(see also Peterson 1997). First we note that the luminosity distance D (= Rorg(1+z))
is the difference two numbers:

A = (1-qo+qoz)/ qo? and B = (1-qo)(2qoz+1)1/2/ qo%.

* Mattig's formula was derived without any reference to particular values of k, or qq, and indeed, it is valid for
all k and all qp = 0. For q¢ = 0 we can take the limit by expanding the square-root term in powers of oz up to
the second order. Zero- and first order terms in o in the numerator cancel exactly, so the limit exists.

15



We want to write A-B o< z(1+C,): since for qo=0 we know that D= (c/Ho) z(1+z/2)
the latter form should be well behaved. Indeed, solving C: in terms of A and B and
writing Q=(1+2qoz)1/2 we get:

cz 1-¢g
D=H—{1+ ZZO (1+QOZ—Q)}

0 9

Multiplying the last term with (1+qoz+Q)/(1+qoz+Q) we finally arrive at Terrell's
alternative formula:

1-—
p=l1, W4
H, 1+ g,z +(1+2g42)

2.7 The co-moving volume

The general formula for the volume can be integrated immediately:

27R] sin 2vVko
a) —
k 2k

V(w) =

We could leave it at that, since o is known in terms of (Ho, qo, z). Although even in
the general case we could write the volume explicitly as a function of the
observables, I think it is not worth the trouble of doing this (the formulas would
be cumbersome): with present day computers (including pocket calculators), it is
much easier to calculate o first (using the formulas in Chapters 2.4 and 2.5) and
then apply the above equation. However there are some special values of qo where
the volume can be easily written in terms of redshift directly. We deal with these
cases below.

¢ qo=0 (the Milne model). Since sinh ® = (z+z2?/2)/(1+z) and arsinh(x) =

InfN (2+1)+x}:

@ =In(1+z)
Then, after some more manipulation [using (1/2)sinh w=sinh ® cosh ]:

o 1 (1+2)"* -1
=27 — | {=—=  — _Tn(1
V(z) ﬂ'[ OJ {4 RESE n(+z)}

& \H,) d+2)°

0

1 2N\2
3(1+—z7)
av 4,{L] Tt

16



* qo=1/2 and k=0 (Einstein-de Sitter model). The volume in terms of ® is simply:

V(w) = %zRgaf

Using the fact that Mattig's formula gives

r,=o=201-(1+27""}

We have:

3 3
32 c 1
V(Z)_?”[H_O] {1——(1+Z)1/2}

dv c V{a+ o2 -1f
— =167z — BT —
dz H,) (+2)

e go=1. Using sin(2m)=2sin o (1-sin? w)1/%

3 1/2
V(z)= Zﬂ(i] {arcsin( < j— 21+ 22)2
H, 1+z (1+2)

}

av c ’ 72
— =4 —
dz H, (1+2)°1+22)"?

In all other cases we use ® and V(m).

2.8 Time Scales
2.8.1 The look-back time t

By definition

r=1-

v, — sin«/zyll 1Nk

v, — sin\/;l/lo INk

- {Commento [HDR1]:




As for the volume the easiest way to proceed is to find yo and y1 in terms of the
observables Ho, qo, z. Below I give the explicit expressions for 7 as a function of the
observables, for the cases qo=0,1/2, 1.

* qo = 0. Taking the limit qo—0 the above equation yields:

_ %

_1+z

A much easier method, which obviously gives the same result: =0 implies
d?R/dt?=0, so that R=ct and consequently:

R—=t—0=1+z
Rl tl

This leads immediately to the expression for 7.

® o =2 From the equation given in Chapter 2.2:

and therefore:

1

T=1-—
(1+Z)3/2

* qo=+1. Then cos yo = (1-qo)/qo = 0, or Yo = /2. Also cos y1 =
(cosyotz)/(1+z)=z/(1+z), so that:

P 1/2
Z Z
arccos| —— |—<1—| —
(sz { (HJ}

2.8.2 The age of the Universe (t) expressed in Hyand qq.

Taking together the expressions for t and H in terms of y (Chapters 2.2 and 2.3)
and we get:

toHoz[q_Oj( £ ] (Wo_Sin\/EWo/\/z)

k \2q,-1

18



¢ qo=0. Then clearly, since Ro=cto, and Ro=c/Ho

This can, as before, also be derived by taking the limit qo—0 in the general
formula.

* qo=1/2. Going back to Chapter 2.2 we directly have:

¢ qo=1. Applying the general formula with k=1 and qo=1:

T
tOHO :E_l

With these formulas the description of the Friedmann models is complete.
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3 Flat Models (k=0, A#0)

3.1 Introductory Remarks

With the exception of the Einstein-de Sitter model, flat models (k=0) have never
attracted much attention. The reasons are that a zero cosmological constant is
appealing from a philosophical point of view, and anyway there has never been
any compelling observational reason why we should introduce still another
parameter.

Nevertheless every now and then non-standard models become popular with
cosmologists. Usually this popularity quickly fades away, but in one occasion (the
most recent one) a non-Friedmann model appears to have a good chance to
survive for a long time. The introduction of the “‘inflationary universe" is the
cause of renewed interest for a model with A # 0: according to the theory of
inflation the cosmological constant might very well be positive: it is related to the
properties of the vacuum, see Borner (1988). Also, the metric of space would be
flat.

The matter is very complicated, because it is also claimed that very stringent
observational limits can be set upon A, but a discussion of these points is
obviously far beyond the scope of the present work. What makes the flat models
with a positive cosmological constant so important is that there is now (from
about the year 2000) serious observational evidence that this type of model may
actually the correct description of the universe. Therefore I give the general
equations for flat models, with particular emphasis on the ones with A>0; also I
write the equations for a model with Qv =1/3 and Q4 = 2/3 (see for the definition
below), since this is the model that is presently (2002) favoured by many
cosmologists.

It is worth wile to look a bit closer at the Einstein equations, by writing them in
terms of present day Hubble parameter, deceleration parameter and density
parameter (defined as oo = 4nGpo/ (3Ho?)); then:

A=3H;(0,-q,)

2

C
k =30,—q, -1
(ROHOJ 0o 40

It is appropriate to introduce at this point two often used parameters that replace
in the modern literature 6o and A; they are Qm = 260 and Q4 = A/3He? It is easy to
see from the above equations that Qu + Q4 =1, for k = 0. The ratio of these two
parameters will be used extensively in this chapter, and is denoted by A = Qn/ Q4.
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Figure 1 The q0-60 plane. The lines representing Friedmann models and flat models are drawn.

For a positive cosmological constant the value of A will be between zero (a pure
deSitter model, see Chapter 4.2) and infinity (a pure Einstein-deSitter model, see
Chapter 2).

In fig. 1 we show the qo-6o plane. The parts of the plane with Qu>0 and Q<0 are
indicated. We can recognize various distinct regions: the two lines co=qo (A=0) and
3o0=qo+1 (k=0) give two special families of (relatively simple) solutions, discussed
in detail in Chapter 2 and in this Chapter. More general solutions will only be
described briefly (and limited to a few special cases), (see Chapter 4) not only
because they can be complicated, but also because they are, with few exceptions,
not very interesting. I looked a bit in more detail at models with k=0 and A#0. I
will first show that a general solution exists for all flat models, regardless of the
value of A, somewhat similar to the general solution for Friedmann models.

3.2 The general solution

As a starting point we use the Einstein equations with k=0:

87Gp,Ry _R® A

3R* R*> 3
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R R

It can be easily verified that the solution of this system of two equations is:

L. N\2/3
Rng*l/sR[sm}/tJ
) w2

If A>0 — e=-1, if A<O — &=+1; also:

_ 87Gp,
-A

Ass

v =%\/—3A

Going back to Chapter 3.1 we can see that:

e if A <0: A/3H2=1-20, so that 6>1/2, while A*=26/(26-1)>1.
e if A>0: 6<1/2, and consequently —A*=26/(1-25)>0.

We can in principle write general solutions for H, g, 1, etc., however, only the case
A>0 is of interest and will be discussed in full below: for o, q >1/2 the
cosmological constant is an extra attractive force, and its effect is only to keep
space flat, compared to the corresponding Friedmann model, for which qo>1/2
implies a positive space curvature. Therefore from now on we will only consider
A>0. We can now write:

R =A""R,sinh*"” ()

Here we have used A = -A*:

4 _876p, _Q,
A Q,

and

1 = 3 [~
7/:5 3 ZEHO QA

So the general flat models with non-negative cosmological constant allow a direct
solution of R in terms of t; but it can also be suspected that the rather complicated
dependence (a hyperbolic sine to the two-third power) may create some problems
in finding manageable expressions for geometric distance, volumes, etc. It will be
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shown in the following that this is true only to some extent. Nevertheless the
general properties of the models are quite simple.

A special case is the model that is nowadays favoured by many, with (roughly, the
precise values may change as new observations become available): Qnm=1/3 and
Qx=2/3, so that A = 1/2. This model goes under the name of Concordance model.
Then:

1 1/3 E
R= (E) RO Sinh2/3( EHOt)

3.3 Hy, qo and t, in terms of the parameter A

From the general solution we immediately find for A>0, by using sinh(yto)=A"1/2
and cosh(yto) = {(1+A)/ A}/2

H, :\/Z(I+A)”2 - | A
3 3Q,

and

- 1+
g, =+[A22)1 L 30 )0 a2 P9
2lAa+1) 2 1-2q,

and

1/2
t,H, = %(l+ A In{A"?+1+AH?) = %Qiu ln[l +Q, ]

For A=0.5:
A

P

q, =-0.5

|1,H, =140x2/3=0933)

It can be easily seen that for A — oo, that is the usual Einstein-deSitter universe, we
find (as we should) H2 — 8nGpo/3, g0 — 1/2,and toHo — 2/3. For A — 0 we have
Ho — V(A/3), qo— —1 and toHo — o, which indeed are the equations for a deSitter
universe (see Chapter 4.2). Similar formulas can be obtained for the case A <0.

3.4H, g and tin terms of A and z
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Again from the solution we can find some general expressions for H(z), q(z) and
the look-back time 1(z); for A > 0:

(1-2g)H> = A

_ A 3,1/2 _ 1+ A(l+z)’° v
H(z)—\g{1+A(1+z)} —HO[HA J

1-24q(z) =

1+ Al +2)°

Note that there may have been a moment in the past in which q was zero; this
represents a transition point in which the early stage of deceleration was changing
into one of acceleration. In the model with A=0.5 this happened at a redshift
z(q=0)=0.587.

For the look-back time we get:

1mu+Aa+@ﬂ”ﬁ—§ma+@—lmA
T=1- - Z

mu+a+AWﬂ—%mA

a | —
d Q.6 F
= ) _
4 i .
o - s ,/ i
a ol
!:!4 l.lr H/
o4 L red: 0, = 0.1%0, _
il
Wt black: 0.8
f
| ;/’f blue: 1.0 7
fﬁ ‘
0.2 i) _
; dashed: A=0
F flower: q,=0)

{upper: q,=1/8}

0 0.5 1 1.5 2 2.5 3 a5 4 4.5 5
redshift

Figure 2 The look-back time for some flat models with positive cosmological constant. The full lines
represent models with: A=0.1, 0.5, 1.0. The A=0.5 model is close to the Concordance model.
Also shown are standard q, = 0 and g, = 1/2 models (lower and upper full lines respectively).
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For A=0.5:

1 1/2
1+ (1+2z)°
H(z)=H,| —2
3
2
1—ia+m3
q(2) = q,
1+-(1+2z)°
2( )

Therefore q(z=c0 ) — 0.5, because qo = —0.5.

We give no separate equation for t(z,A=0.5), as this does not clarify much. The
dependence of T on redshift for different values of A is given in fig. 2.

Similar formulas are found for the case A < 0. The appearance of the term A(1+z)3
suggests that it is a fundamental term for flat universes. This will be clear from the
following section, where we discuss the geometric distance.

3.5 The geometric distance and volume elements

By definition the geometric distance is the integral in time of the inverse of the
scale parameter. In our case we find therefore:

- fdt J dt
A1/3R sinh?’3 n

Changing from t to z (using the fact that (1+z)=Ro/R), we find, after some
manipulation:

Cc
r =

1/2
§ ROH J{1+A(1+§) 2

It is quickly verified that for A — < (Einstein-De Sitter), we have

ro=—C(-—1
¢ " R,H, 1+2)"?

}

and for A — 0:
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r, =

Z
) RyH,

These are indeed the correct formulas. Although the general formula for the
geometric distance has no analytical solution, it is simple enough that a numerical
integration is straightforward. From that we arrive immediately at the solution for
the volume (V=471 Ro’rg?/3) and the differential volume dV/dz = 4nRe’rg?drgdz.
The dependence of rg on z for different values of A is given in fig. 3.

geometric distance

red: fl, = 0.1%fl,
black: 0.5
blue: 1.0

dashed: A=
{upper: q,=0}
{lower: q,=1/2}

2 25 3 ah 4 45 5
radshift

Figure 3: The geometric distance as a function of redshift, for A=0.1,0.5, 1.0 and 2.0. For comparison
also the Friedmann models with qy=0 and 0.5 are shown
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4 A selection of Models with k0, A#0

4.1 Zero-density model with q0 > 0

Although this model is unrealistic, because it presupposes ¢ = 0, it is still of some
interest: it allows qo to be of order one, while the matter density may be much
smaller, such that 6o = 0 is a good first order approximation. As is immediately
clear from the discussion in Chapter 3.1, a similar combination of ¢ and q, with ¢ <
q, implies that A < 0. Therefore A provides a universal attractive force, which
causes the deceleration parameter to be >0, even though no matter is present.

First we go back to the Einstein equations, putting p = 0:

3ke?>  3R?
R? R*

~A=0

2R R :
4f+47+ﬁg—A=o
R R R

Since we require that qo > 0, it follows from the second Einstein equation as
written in Chapter 3.1, that 30— qo—1=-qo—1 <0, so that k = —1.
Eliminating A from the two Einstein equations given above we get one equation:

RR-R*+¢* =0

This can be written at present epoch in terms of the usual variables as:

I
0 (q0+1)1/2 HO

The Einstein equation of this model allows an explicit solution R = R(t), as can be
easily verified by trying a form like R = a sin (bt). We find:

c : 172
R=——sin(H t
H (Hyqy 1)

1/2
070

with the boundary condition:

1/2
sin(H ,q,'°t) = 4o
q, +1




The Hubble and deceleration parameters as a function of t are:

H =H q,’* cot(H ,q,'*t)

and:

1/2

q= tanz(Ho‘J() 1)

Some comments:

¢ The model is closed, although it has a negatively curved metric (k=-1): R
increases up to a maximum c/(Hoqo'/?) at t = ©/(2Hoqo!/?), and goes to zero
again at t = 7t/ (Hoqo/2).

e The particular moment qo=1 corresponds to sin(Hoto)=(1/2)V2, or toHo = /4.

¢ If one wishes to do so one can combine the solution and its boundary condition
into one equation, to read:

1 1/2

c L
R= WH—[COS{HOL]0 (t—t,)}+q,"* sin{H ,q)* (t—1,)}]
4o 0

Making use of the formulas [ dx/sin x = In tan x/2, tan x/2 = sin x/ (cos x + 1) and
arcosh x = In{V(x2-1)+x}, and doing a bit of calculation we find:

¢ {(+g)0+2)" —g}"" = (+2)

oty 90

r, = sinh@ =

Therefore an equivalent of Mattig's formula does exist in this model. Note that for
qo—0 we should recover the standard qo=0 model of Milne, because 6=0, and thus
Ae<(00—qo)—0. It can be easily verified that taking the limit qo—0 in the above
formula gives the correct expression for rg.

The look-back time can be written as:

1/2
arcsin S (N
(g, +D"*(1+2)

T=1- 172
arcsin o
q, +1
and to as:
arc tan qé’z
tH, = 172
90

This completes our discussion of this model.
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4.2 The Lemaitre model: A>0 and k=+1

Before turning to the Lemaitre model proper, two other very simple models
should be briefly discussed, because they are closely related.

¢ The Einstein model. This is in fact the first cosmological model, given by
Einstein. He tried to get a static solution (the recession of galaxies was only
being discovered at that time by Hubble), and had to introduce the
cosmological constant A to obtain this goal. Requiring R=constant we have
dR/dt=d?R/dt?=0. The Einstein equations become:

3kc®
8AGp+ A = =2
kc?
& "

It follows that 8nGp = 2kc2/R?, or k=1 (since of course p>0) and A>0. We find

C
R, =—
E \/X
and
ke?
&

¢ The De Sitter model, which was already discussed in Chapter 3, as a
limiting case of the flat models. Its relevance in this section comes from the
fact that it is also a limiting case for the Lemaitre models. We summarize
some results:

g=-1
R_ROeHn(t*fo)
H= 2

3

The Lemaitre model was one of the most famous models in the 1930's, and was

revived for a short time after about 1965, as attempts were made to explain the
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(apparently significant) redshift peak of quasars near z = 2. The reason for this is
made clear below. For more information see for example Petrosian (1967).

In the Lemaitre model we start with k = +1 and A > 0, just like in the Einstein
model. However, we put slightly more matter in it: as a consequence the Lemaitre
model is unstable (as is, incidentally, also the Einstein model) against
perturbations. The dynamics is determined by the competing forces of the density,
which tries to slow down the expansion, and the cosmological constant which,
being positive, acts as a universal repulsive force.

I follow the discussion of Weinberg (1972). It is convenient to write the scale
parameter in terms of the Einstein radius R, and define x = R/Rg. We put more
matter in the universe than the Einstein value pg, so that, since pR3® = constant, we
can write R3 = px3Rg3 = apeRg3, with o > 1. Then:

_apy oA
x’  4nGx’

The Einstein equations expressed in x and a become:

o2

X =A(x3 —3x+2a)
3x

A s
x=—u -«
3x2( )

A lot can be learned by studying the asymptotic behaviour of the equations:

o For x<<1 we find:

x= (3m\)1/3t2/3
and thus:

This is of course nothing but the Einstein-De Sitter model: For 0 < x <1 the
Lemaitre model behaves as the Einstein-De Sitter model.}

o TFor x>>1 we find

2 1
x =—Ax’
3
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or:

=
I

w | >

and

For x >> 1 the Lemaitre model behaves as the De Sitter model. Note that it has
these two features in common with the flat models with A > 0, discussed in
Chapter 3. The characteristic properties of the Lemaitre model are seen in the
intermediate range of x:

x of order unity. From the Einstein equations we see that dx/dt has a
minimum:

o2
x =A@’ -1
for
X — a/2/3

Then qmin = 0. So this is the phase where the deceleration (with q = 1/2), has
stopped; after that q will eventually become -1 and the expansion will
accelerate. This can be understood as follows: in the early phase the density is
so high that it wins against the cosmological constant, until a radius Xmin = !/3
is reached. For some time the radius will stay close to this value. However, the
matter density does not succeed in stopping the expansion definitively (dx/dt
remains >0). After some time the density, which goes as R™3, has dropped
enough that the cosmological constant can take over. In the end p — 0 and we
have reached the De Sitter model stage.

We can force dx/dt (min) to become arbitrarily close to zero, by letting o« — 1.
For a close to unity we have:

2 o2 2
X — Xmin =A(L+%—a2/3) zé(x_alw)z
3x
Then:
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02 A
x = A —1)+§(x—0{”3)2

and by trying a solution of the kind x=a!/3+Asinh B(t-tm), we find that

A= \/g(az/s _ 1)1/2

Since the redshift in this period (the ““coasting" phase) can be written as:

R,—R, _x-a"’
Rl al/3

we finally have

2 A X 200
X =—(——-x+—)
3 3 3

: A _ Zg 203312
smh{\g(t t)} \/5(1 a )

Suppose we make t-tm = At very large. Then we still can make for small Az
the right hand side as large as we want, by letting a0 — 1. In other words
during a very long period we can keep Az very small.

It now becomes clear why it has been attempted to explain the redshift peak near
z=2 with this model: one devises a model in which a coasting period occurs
around z=2. Later observations have shown that such a redshift peak is in reality
non-existent, so the need for introducing the Lemaitre model has disappeared.
One more comment: it will be obvious that in this model one has to take recourse
to numerical integration in order to find the relevant parameters like geometric
distance, time scales, etc.

This completes our discussion of the Lemaitre model.
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Appendix A: Parameters and symbols

used

General Symbols

z: the redshift

rg: the geometric distance

D: the luminosity distance

A6: the angular size (L is used for linear size)

V: the volume in co-moving coordinates

T: the look-back time (to—t1)/to), to present epoch, t1 epoch at redshift z
y: the development angle, used in Friedmann models (A=0)

A.1 The Metric

Vi

2
ds? = 2dr’ —Rz(t){da)z +(Sm ‘/’;“’] (d” +sin” 49d¢2)}

o: the radial co-moving coordinate

0: an angular co-moving coordinate

¢: a second angular co-moving coordinate

R(t): the scale parameter

N.B. the co-moving coordinates are fixed once and for all for any galaxy.

A.2 The Einstein Equations

2
e R
87[Gp=3F+3F—A

p: the matter density; also often used ¢ = 4nGp/ (3H?)

p: the pressure; we only consider p =0

A: the cosmological constant

H: the Hubble parameter, H= (dR/dt)(1/R)

q: the deceleration parameter, q = —{(d2R/dt?)R}/(dR/dt)?



A.3 General Relations

e 1+z=RO/RI: redshift

e o =cJ(dt/R), from t; to to: radial coordinate

o 15 =sinV(k)m/V(K): geometric distance
e D=(1+2z) Rorg luminosity distance
e A0 = (1+z)L/(Rory): angular size

[

V(o) = 4nR03[[sin{N(k)o}/V(k)]>dw, from 0 to ®  volume
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Appendix B: The Friedmann model

)

See Chapter 2 for information on the derivation of the formulas.

B.1 General Relations (q,>0)

R =%(1—cos\/I;l//)

o _sin\/El//
t_kC(l// \/E )

1-gq,

9

cos\/l;l//o =

COS\/E% 5 cos{il//0 +z
Z

=Y, Y,

k 1/2
RO:(Z J ye)
qo—1 H,

=k_zc sinvVky/ vk
a (1-cosvky)?

H & H=H,1+z2)(1+2¢,2)"*

9= 7~ <4=49 g
1+c0s\/Ey/ : 1+2q,z

¢ gzilog ig g s

;5 =
= RH. go(1+2z)

(+2z)L

Org

AG =573

(deg)

V(iw) =

k Wk

27R? (w_ sin 2\/%6()]
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vV _adV dw

dz _%d_z
¥ —Sin«/Zl/ll
2 |
Y _Sln‘/EWO

e i _Sin‘/zl//o
040 k(2q0—l)3/2 0 \/Z

B2k=-1;0<q0< 12

R =a(coshy —1)|

t=£(sinhl//—y/)
c

I a9

9

coshy, =

coshy, +z

coshy, = T4z

o=y, -y,

— C
RO =(1_2q0) 1/2H_

0

_¢ sinhy
a (1-—cosh ;1/)2

1
= 1+coshy

V(w) =27R; (% sinh 2w — a)]

W _ oy (cosh20-1) 22
dz dz

— 1_ Sinh'//l _yll
sinhy, —y,
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4

= W(Sinh Yo=¥,)
0

t,H,

B.3k=+1;90 > 1/2

t=£(y/—siny/)
c

I 0

9

cosy, =

cosy, +z

cosy, = ™

o=y, -y,

= c
R, =(2q,-1) I/ZH—

0

¢ sy
a (1-cosy)’

1
q:
1+ cosy

v(w) = zmg[a}—%sm 2(0)

Y 2R (- cos2a) 4%
dz dz

=1= l/ll _Sinl/ll
Yy, —siny,

T

9
(2q0 _1)3/2

tH, =

W, - sin )
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H=t"

3
_o ) [1a+ -1
V(Z)_M(HOJ(Af 1+ 2) ln(lﬂ)j

av LT (z+22/2)°
0

dz H (1+2)°

3 3
32 c 1
o345 (-w)

dv ¢ Yo+ -1F
P 5/2
dz H, (1+2z)

I
(1+ Z)S/Z
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B.6 k=+1,90=1

i z
@ =— —arccos| ——
2 (1+zj

o B
- 1tz

V(z) =27 ot : arCSin( 74 )_2(14_22)1/2
H, 1+z2 (1+2)?

c
(H_J (1+z)’ (1 + 2z)“2

s 12
. z
arccos - =
(1+zj { (1+zj}
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Appendix C: Flat Models (k = 0; A > 0)

See Chapter 3 for information on the derivation of the formulas.

R4 R simh i

871G,
A

A

—~ 3R

H0=‘/A(1+A)
3
- 1+
QOZl —A : S A2 4o
2\ A+1 1-2g,
t,H, =§(1+ i

(1-29)H* = A

H(z) = %{1+A(l+ 2)°}

1—2g=—
1+ A(+2)
— 1+ 1/2Z
e R0 ( )£{1+A(1+§) W2

Wl Adt +1]—%1n(1+ z)—%lnA

In{l+ 1+ A)”z}—%lnA
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Appendix D: A Selection of Other

Models

See Chapter 4 for information on the derivation of the formulas.

D.1 Zero-Density Model with q, > 0

p=0 A<O

172
040

c . 1/2
R=——sin(H 1)
i 040

1/2
sin(H,q.'%t,) = _do
(Hyqy ty) go +1

These two equations can be written together as:

c 1/2 —1/2 1/2
R=———|[cos{H = & sin{H =1L
e +1)1/2[ {Hyq, "t —1,)}+q, {Hyqy (-1}

+1 1/2 +1 1/2
w = arcosh (qo_) 1+ 2) —arcosh(qo—)
90 90

H = Hyqy cot(H,q,"1)|

1/2

g =tan’(H,q,"1),

. =( C J{q*qo)(lﬂ)z—qo}”z—(lﬂ)
- R,H, 9

V(w) =27R; (é sinh 20 — w)

g\
arcsin +
_ (‘10 + 1) (1+2)

1/2
arcsin| —2°
q, +1

-1/2

tvH, =q,

arctan g’ 2‘
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D.2 The Einstein model

IR =R, exp{HO(t—to)}‘
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D.4 The Lemaitre model

A>0
x= =3 (definition)
RE
a=x"L2 (definition)
Pr

The Einstein equations are then:

x* =A()c3 —3x+2a)
3x
.o A 5
xr=—x -«
3x2( )

Three different phases can be distinguished:

e for x << all/3, the behaviour is as in the Einstein-De Sitter model.

1/3
. 3_“ Al24203
2

H=2¢"
3

N |~

e for x >> all/3, the behaviour is as in the De Sitter model.

‘x=x0 exp{HO(t—tO)}‘

H, =

w | >
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g=-1

e x=ol/3, the coasting phase:

x=a'? + (@’ -1)"?sinh /%(r—zo)

The duration of the coasting phase is:

Ar=A" 1 {In(l-a ")

We can make this period arbitrarily long, because At — oo for o0 — 1.

The End
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