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Introduction 

What are Habitat Models? 
Defined broadly, a habitat model represents a relationship between a species and factors that 

control its existence.  The performance of a species in relation to those factors can be measured in 
numerous ways, most commonly presence-absence, abundance, physiological rates, and demographic rates.  
Habitat factors in the narrow sense are variables that describe the characteristics of particular locations – 
the habitat.  In a broader sense, habitat factors include all other determinants of species performance, 
including other species, disease, disturbance history (including time since disturbance), conditions at the 
moment of a physiological measurement, or even time of day.  This broader sense is easy to work with in a 
practical way.  Statistical tools that are good at empirically modeling of habitat in the narrow sense also 
work well for many other predictors of species performance.  

 Conceptual habitat models have been formative in ecological theory (Austin et al. 1994).  
Consider, for example, the Hutchinsonian niche, an n-dimensional hypervolume (Hutchinson 1957, 1965; 
see below), and Whittaker’s influential diagrams of species responses to environmental gradients (e.g. 
Whittaker 1956).  Despite the central importance of species response functions, our understanding of these 
is surprisingly primitive, particularly when considering more than one factor at once.   

Our difficulties in understanding species’ response functions derive in part from the inability of 
standard statistical models to represent them well.  This document describes that problem and proposes a 
workable, flexible solution:  nonparametric multiplicative regression (NPMR).  This is a method that can 
be used to represent species response surfaces in a multidimensional niche space. 

What is a Niche? 
 The word “niche” has been both a convenience and a frustration to ecologists.  The convenience is 
that on some level, all ecologists can communicate with this word.  The frustration is the difficulty and 
multiplicity of precise definition (Wiens 1989).   

Do not despair: the Hutchinsonian niche (1957; Fig. 1) provides a simple, practical basis for 
putting the concept of niche to work.  I suspect that few readers will have actually read Hutchinson’s 
precise and elegant original definition of niche, so here it is verbatim: 

Consider two independent environmental variables x1 and x2 which can be measured 
along ordinary rectangular coordinates.  Let the limiting values permitting a species S1 to survive 
and reproduce be respectively x1, x1 for x1 and x2, x2 for x2.  An area is thus defined, each point 
of which corresponds to a possible environmental state permitting the species to exist indefinitely.  
If the variables are independent in their action on the species we may regard this area as the 
rectangle (x1 = x1, x1 = x1, x2 = x2, x2 = x2), but failing such independence the area will exist 
whatever the shape of its sides. 

We may now introduce another variable x3 and obtain a volume, and then further 
variables x4 . . . xn until all of the ecological factors relative to S1 have been considered.  In this way 
an n-dimensional hypervolume is defined, every point in which corresponds to a state of the 
environment which would permit the species S1 to exist indefinitely.  For any species S1, this 
hypervolume N1 will be called the fundamental niche of S1.  Similarly for a second species S2 the 
fundamental niche will be a similarly defined hypervolume N2. 

It will be apparent that if this procedure could be carried out, all Xn variables, both 
physical and biological, being considered, the fundamental niche of any species will completely 
define its ecological properties.  The fundamental niche defined in this way is merely an abstract 
formalisation of what is usually meant by an ecological niche. 
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Figure 1.  The Hutchinsonian niche.  The axes x1 and 
x2 are selected dimensions of the niche space. 

 

Hutchinson (1957) later in the same paper pointed out four limitations to this definition of niche.  
Each of these limitations is paraphrased below, along with some parenthetical comments on the importance 
of these limitations to the statistical modeling of niche proposed here: 

1. The definitions assumes equal probability of persistence in all parts of the niche, when in fact 
conditions will become suboptimal toward the boundaries of the niche.  [This limitation is easily remedied 
by modeling probability of occurrence or abundance as continuous response variables throughout the n-
dimensional space.] 

2. All environmental variables can be linearly ordered.  [In practice, both quantitative and 
categorical variables can be included as predictors of species occurrence or abundance.] 

3. The model refers to a single instant of time.  [Hutchinson gives the example of two animals that 
eat the same foods, but one at night and one in the day.  Curiously, he does not seem to consider using 
time-of-day (or other temporal variables) as dimensions of the niche space.  From the standpoint of 
statistical modeling, there is no reason why time-of-day or day-night could not be used simply as additional 
dimensions of the niche space.] 

4. “Only a few species are to be considered at once, so that abstraction of these makes little 
difference to the whole community.”  [This he resolves in the same paragraph, pointing out that additional 
species can be regarded as part of the coordinate system.] 

Hutchinson’s concept of the niche has been criticized because of how he connected his concept of 
niche to the community as a level of organization (Morrison & Hall 2002).   If this is a problem, it is 
because of what has been built on top of the concept of niche, rather than anything in definition itself.   The 
practicality of the concept has also been questioned, because it invokes an unlimited number of dimensions 
(Peters 1991). But the concept has an easy practical manifestation -- operationalizing the niche demands 
selection of a finite number of dimensions for a model.  There is no need to pretend or assume that all 
dimensions of the niche are represented in a particular model.  However, the fact that not all important 
factors are represented in a model has important statistical consequences (Kaiser et al. 1994). 

 From a modeling standpoint, we should be able to accept a broad concept of the niche, where the 
dimensions can include physical environmental factors, other species or other biological factors, resource 
gradients, or time (e.g. time since disturbance) – any of the factors that impinge on the survival of an 
organism.  Selection of those dimensions defines the utility and meaning of a particular model. 
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Kinds of Habitat Models 

General approaches 
In representing species response functions, ecologists usually use simplistic statistical models that 

cannot capture the nonlinear multifactor relationships of a species to its habitat.  The models usually lack 
interaction terms and the default response shapes are typically linear (as in multiple linear regression; Fig. 
2) or sigmoid (as in logistic regression).  Yet most or all ecologists accept the concept that species 
commonly have hump-shaped response functions to environmental gradients (Fig. 2).  Furthermore, we 
expect the shape of this response to depend on other factors.  In other words, factor interactions should be 
expected in our models. 

Linear models (Fig. 2) may be appropriate in some cases, such as species responses to short 
environmental gradients.  Likewise, logistic response functions are sometimes appropriate, for example, 
with a sigmoid relationship between a species probability of occurrence and a successional gradient.  Many 
other possibilities exist, however. 

The standard ecological concept for the relationship of species to environmental gradients is a 
unimodal, hump-shaped curve, such as those popularized by Whittaker (Fig. 2).  Though widely accepted 
as a theoretical model, where are the statistical models of single-species response functions that incorporate 
a unimodal response?  These are rare in the ecological literature, (but see Huisman et al. (1993) for 
Gaussian logistic regression). Even more rare are models where the shape of the unimodal response 
depends on another variable, yet this should be the norm. 

Many different nonlinear response functions are possible.  For example, consider a weedy biennial 
plant species that colonizes bare soil in the first year after a fire.  A rosette is produced the first year, 
followed by flowering and death the second year.  If occupancy of the site prevents colonization in years 
after the first, then the species disappears after the second year.  The response of the abundance of this 
biennial to the temporal gradient thus forms a step function (Fig. 3). 

 McCune & Grace (2002) summarized the history of our efforts to describe species responses to 
single environmental gradients: 

 
 Describing species responses to environmental gradients is fundamental to developing and testing 
ecological theory, improving methods of community analysis, improving our use of indicator species in 
environmental assessments, predicting geographical and environmental distributions of species from sample 
surveys, and predicting the impacts of climate change on vegetation (Austin et al. 1994).  How can we best 
represent these responses mathematically?  Investigators have tried smoothing functions (Austin 1987), 
generalized linear modeling with third-order polynomials (Austin et al. 1990), beta functions (Austin et al. 
1994, but see Oksanen 1997), maximum likelihood with a Gaussian response model (Oksanen et al. 1988), 
least squares with a Gaussian response model (op. cit.), weighted averaging (op. cit.), and logistic regression 
(Huisman et al. 1993). The complexity of the problem has defied a general satisfactory solution.  Response 
curves are often skewed, sometimes polymodal, and the species optimum often lies outside the sampled 
range.  In many cases, a Gaussian model is not appropriate. 

 

 Our simplistic statistical models – multiple linear regression, logistic regression, or some other 
form of GLMs – do not readily accommodate complex multiplicative combinations of  hump-shaped and 
other nonlinear responses.  
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Figure 2. Hypothetical responses of species abundance to an 
environmental gradient.  Lettered curves represent different species.  
A. Linear responses.  B.  Hump-shaped responses (after Whittaker 
1954). 

 

 

 

 

Austin (2002) described three components of statistical modeling in ecology:  an ecological 
model, a data model, and a statistical model.  “The ecological model consists of the ecological knowledge 
and theory to be used or tested in the study.  The data model consists of the decisions regarding how the 
data are collected and how the data will be measured or estimated.  The statistical model involves the 
choice of statistical method, error function and significance tests.” 

Using Austin’s terminology, ecologists’ statistical models often mismatch their ecological models.  
As discussed above, the usual statistical models are too rigid and inflexible to accommodate well the 
complex response surfaces that by all accounts must be present.  We need to understand the consequences 
of that mismatch and we need to develop ways of avoiding that mismatch in the future. 

 With parametric modeling, “Assumptions about the shape of the response of species to an 
environmental variable (usually termed an environmental gradient) are central to any predictive modeling 
effort” (Austin 2002).  Nonparametric multiplicative regression negates this statement:  predictive 
modeling can be effective without making any assumptions about the shapes of species responses to 
ecological factors. 

Model types 
The following short list of the kinds of habitat models is not comprehensive, but attempts to 

summarize some of the main modeling approaches.  See Guisan and Zimmerman (2000) for a more 
comprehensive summary and Scott et al. (2002) for an extended treatment of the problems of habitat 
modeling with numerous examples. 
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Linear models and generalized linear models (GLMs) in one form or another are the most 
commonly used methods for habitat models. Most ecologists have used linear and logistic regression for 
habitat modeling (e.g. Boyce et al. 2002; Franklin 1995; Guisan & Zimmermann 2000; Scott et al. 2002; 
Fleishman et al. 2003).  Reliance on linear models has hampered the development of ecology.  Huston 
(2002) provides examples of how the use of linear models has obfuscated even simple ecological 
relationships, such as changes in diversity along gradients in productivity. 

Generalized additive models (GAMs; Hastie 1990) are becoming increasingly popular for 
habitat modeling (e.g., Bio et al. 1998; Bowman and Azzalini 1997; Erjnaes 2000; Heegaard 2002a, 2002b; 
Leathwick 1995; Yee & Mitchell 1991; Zaniewski et al. 2002).  GAMs fit individual terms with smooth 
nonparametric functions (rather than, for example, linear or polynomial functions).  This makes an 
important step by avoiding the assumption of a particular response shape (or order of the polynomial).   

By "term" we mean an additive effect in a model. So, for example, say you had a model with 
latitude and longitude as predictors. You could fit the GAM for latitude and longitude separately: y = 
m1(Lat) + m2(Long) + constant. This model has two terms plus the constant. Each of the terms is an 
unspecified smooth function m of one of the predictors. Alternatively, you could fit a single smooth 
function m12 of both predictors simultaneously. The model y = m12(Lat,Long) + constant has one term 
(plus the constant). 

Thus a GAM can combine predictors multiplicatively (e.g., combining latitude and longitude as 
predictors in a single smooth function), but individual terms are combined additively.  The multiplicative 
models advocated here could be considered a special case of GAMs with a single term containing 
multiplicative weights across all predictors. 

Classification trees have been used as habitat models, using presence-absence as a binary 
response variable (e.g. Austin et al. 1994, Franklin 1998; Vayssières et al. 2000).  In this context, 
classification recursively partitions an environmental space so as to maximize the homogeneity of the 
response variable within subspaces.  Classification trees have the advantage of automatically modeling 
interactions among predictors.  They operate, however, within the constraint of using only perpendicular 
planes to divide the environmental space into subspaces.  Regression trees are similar in concept and 
limitations but apply to continuous response variables. 

Ecological Niche Factor Analysis (ENFA; Hirzel et al. 2002, Zaniewski et al. 2002) models 
habitat based on the special case of having presence data only.  This method generates “pseudo” absences 
by various techniques. 

Rule-based methods (including GARP, Genetic Algorithm for Rule-set Prediction; Peterson 
2001, Peterson et al. 2002, Peterson & Robins 2003; Scachetti-Pereira 2002) seek combinations of habitat-
based rules to optimize prediction of species presence-absence.  These methods can also incorporate 
traditional statistical models, such as logistic regression. 

Multivariate adaptive regression splines (MARS; Friedman 1991, Friedman & Roosen 1995).  
MARS selects predictors and partitions the predictor space by fitting spline functions in multiple 
dimensions.  Use of tensor product spline basis functions accomodates interacting predictors, making this a 
potentially powerful method for ecological habitat models..  As a recursive partitioning method, MARS is 
related to CART, differing in that MARS produces a continuous model.   

A new approach 
Our understanding of species responses to habitat factors has been stifled by an emphasis on 

forcing responses into molds defined by parametric models.  More rapid progress surely can be made by 
adopting a more open exploratory approach.  Scott (1992, p. 3) emphasized the importance of this 
exploratory approach:   

 
There is a natural flow among the parametric, exploratory, and nonparametric procedures that represents 

a rational approach to statistical data analysis.  Begin with a fully exploratory point of view in order to obtain 
an overview of the data.  If a probabilistic structure is present, estimate that structure nonparametrically and 
explore it visually.  Finally if a linear model appears adequate, adopt a fully parametric approach.  Each step 
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conceptually represents a willingness to more strongly smooth the raw data, finally reducing the dimension 
of the solution to a handful of interesting parameters. 

 

Ecologists have most often worked in the opposite order, beginning by adopting a linear model 
(e.g. ANOVA or multiple regression).  Alternative structures are seldom sought. 

The problem is particularly difficult for habitat models, because we know that species rarely 
respond linearly to individual factors.  This much is clear from studies of species responses to single 
ecological factors (see above).  The problem is compounded with multiple habitat factors.  What do species 
responses look like for multiple habitat factors considered simultaneously? 

The challenge for habitat modeling is exactly the same as that expressed for data analysis in 
general by Scott (1992, p. 5):  “The modern challenge in data analysis is to be able to cope with whatever 
complexities may be intrinsic to the data.  The data may, for example, be strongly non-Normal, fall onto a 
nonlinear subspace, exhibit multiple modes, or be asymmetric [all of these are commonly true of species 
responses].  Dealing with these features becomes exponentially more difficult as the dimensionality of the 
data increases, a phenomenon known as the curse of dimensionality.” 

This curse applies to models of species performance in relation to multiple factors.  As the number 
of factors increases, the number of potential interactions increases exponentially.  The number of 
transformations or combinations of transformations similarly inflates.  The number of possible 
combinations of factors to include or exclude balloons. 

“An incorrectly specified parametric model has a bias that cannot be removed by large samples 
alone…  The modern emphasis on robust estimation correctly sacrifices a small percentage of parametric 
optimality in order to achieve greater insensitivity to model misspecification” (Scott 1992, p. 33). 

In habitat modeling, ecologists tend to have vague, often unstated, ideas about model form.  
Traditionally ecologists have visualized only one, or at most two, habitat factors at a time.  Ecological 
theory has not come close to dictating an appropriate form for species response to multiple habitat factors.   

 Despite the profusion of books and papers in the statistical literature on smoothing techniques and 
nonparametric regression (Bowman & Azzalini 1997, Eubank 1999, Fan & Gijbels 1996, Green & 
Silverman 1994, Hastie et al. 2001, Scott 1992, Wand and Jones 1995), these techniques have largely been 
ignored by ecologists. Yet some use of smoothing functions for more than one simultaneous predictor 
exists in the literature (Gignac et al. 1991a; Gignac et al. 1991b; Huntley et al. 1989, 1995).  Gignac et al. 
(1991a, b) generated 3-D response surfaces for species abundance along environmental gradients.  The 
response surfaces were generated from gridded abundance data, using distance-weighted means.  The use 
of distance-weighted smoothing functions is allied to NPMR.  Their approach had several drawbacks: an 
arbitrarily selected (rather than optimized) search radius, arbitrary ways of dealing with zeros and outliers, 
and no method for cross-validation. 

 Locally-weighted smoothing (or regression) using the LOWESS approach was applied to habitat 
models in two and three dimensions by Huntley et al. (1989, 1995).  Their approach shares some features 
with our use of NPMR, but differs in several important respects:  (1) limitation to two or three pre-selected 
predictors instead of a conducting a free search for the best model using an indefinite number of variables 
from a pool of available predictors, (2) they did not optimize the breadth of the smoothing function for 
each predictor, instead choosing it arbitrarily, and (3) they fit their model at fixed intervals within the plane 
of predictors, with linear interpolation between intervals, rather than fitting the model for each data point. 

 Nonparametric multiplicative regression (NPMR) as used here is based on kernel functions to 
weight observations.  This is a smoothing technique that can be cross-validated and applied in a predictive 
way.  Many other smoothing techniques are well known, for example smoothing splines and wavelets.  
Optimum choice of a smoothing method depends on the specific application.  A key advantage to using 
NPMR for habitat modeling is that the approach is easily extended to many dimensions (predictors).  The 
multidimensionality is provided multiplicatively – this automatically and parsimoniously models the 
complex interactions among predictors.  This flexibility comes at a price: computational speed – optimizing 
the selection of predictors in a multiplicative model is a computationally intensive process.  Although other 
model types will continue to be useful in habitat modeling, NPMR can improve both the quality of model 
predictions and the simplicity of model construction.  NPMR can be applied to either presence-absence or 
quantitative response data. 
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Global and local models 
 To place nonparametric regression into a common framework with normal least-squares 
regression, we need to differentiate between a local model and a global model.  A global model is a 
relationship that applies throughout the sample space.  A local model is fit to a particular region of the 
space, but the model can differ in different regions of the sample space. 

 With simple linear regression, the global model is a straight line relationship throughout the whole 
sample space (Fig. 3).  The model is fit to the whole data set simultaneously, so there is no local model.  
Every point is given equal weight in the analysis, so the local weighting function is flat (Fig. 3). 

 Similarly logistic regression has no local model and a flat weighting function (Fig. 3), but it 
differs from simple linear regression in that the global model is a sigmoid curve of probabilities in 
relationship to predictors.  Gaussian logistic regression is like the usual logistic regression, except that a 
different link function specifies a hump-shaped relationship to the predictors instead of a sigmoid 
relationship (Fig. 3). 

 Nonparametric regression with a kernel function takes the opposite approach.  Instead of rigidly 
specifying a global model, the global model is not specified and can take any form.  But we now introduce 
a local model, a relationship that is fit to each data point, weighting data points according to their distance 
from the target point (Fig. 4).  The weighting function specifies the way in which those weights vary with 
distance from the target point, and is sometimes known as the “kernel.” 

 In the simplest form, the “SpOcc” model specifies a rectangular weighting function – also known 
as a uniform or boxcar kernel.  Data points within a window receive full weight (1.0) and data points 
outside the window receive no weight (0.0; Fig. 4).  The local model is flat, in that we simply average the 
observed values within the window, without assuming any trend within the window. 

 If instead of a rectangular window, we give less and less weight to observations that are 
increasingly distance from the target point, then we can use a Gaussian (or bell-shaped) weighting function 
(Fig. 4).  The local model can be flat (i.e. simply calculating a local weighted mean; LM-NPMR) or we can 
fit for each point a trend.  The trend can be locally linear (LLR-NPMR) or locally logistic (LLogR-NPMR; 
Fig. 4). 

Global 
model 

Local 
model 

Local 
weight 

y 

x

w 

x

y 

Linear

none none

Logistic

x

none

Gaussian 
logistic 

Figure 3.  Some common parametric habitat models.  These models 
specify an overall relationship without reference to a local model.  
Contrast this with nonparametric regression (below) with a local model 
but  no global model. 
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Figure 4.  The global model, local model, and weighting function used in several forms of nonparametric 
regression. 

 

Species responses to single habitat factors 
 As a starting point for habitat modeling, consider a short catalog of fundamentally different kinds 
of species response to habitat factors (Fig. 5).  These response shapes are not at all controversial – most 
ecologists could think of or accept an example of each curve shape. 

 The hump-shaped or unimodal response (Fig. 5) was popularized by R. H. Whittaker and 
reproduced in numerous textbooks.  A hump-shaped response is implicit in Shelford’s law of tolerance and 
the Hutchinsonian niche.  One example application in my area of interest is the prevalence of the epiphytic 
lichen Lobaria oregana at middle elevations in the Cascade Range in Oregon, U.S.A.  The species is 
abundant at about 400-900 m and absent below 100 m and above about 1300 m.  Presumably this reflects 
the underlying physiological tolerances to the climatic gradients that occur with elevation. 

 A linear response (Fig. 5), or nearly so, is readily conceivable when we measure species 
performance over a short gradient.  Continuing the previous example, a linear approximation of Lobaria 
oregana with elevation is adequate over a short elevational span, say 100-200 m. 

 Abundance of Lobaria oregana has a sigmoid relationship (Fig. 5) to time since stand initiation in 
even-aged forests.  Even in its optimal habitat, the population initially builds very slowly, but after about 
100-250 years the biomass builds rapidly, finally reaching a plateau in old-growth forests. A sigmoid 
response may also be reasonable for studies of probability of occurrence based on presence-absence data, 
particularly when the habitat factor is measured over a short range.  Over long environmental gradients the 
likelihood function is more likely to be unimodal. 

 A species that resides near a surface may decline in a negative exponential way with distance 
from the surface (Fig. 5).  For example, phytoplankton inhabiting the ocean surface might decline rapidly 
in abundance with increasing depth, approximating a negative exponential function.  Or, a pioneer species 
that cannot persist through time might decline in a negative exponential way.  An immediate pulse of 
establishment after disturbance may be followed by gradual loss from the community.  For example, weedy 
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shade-intolerant plants such as Taraxacum and Hypochaeris frequently colonize disturbed soil in clearcuts.  
These species rapidly decline as the canopy closes, but persist longer in canopy gaps. 

 Sudden loss or gain of a species can be represented by a step function (Fig. 5).  This might be 
caused by an extreme environmental event, catastrophic disease, or disturbance.  Step changes can result 
from any source of a sudden synchronized establishment or mortality.  For example, weedy biennial plants 
establishing immediately after a disturbance will be vegetative the first year, produce seed the second year, 
then die.  If, in the meantime, the habitat has become fully occupied, establishment of the biennial might 
fail until after further disturbance. 

 

 McCune & Grace (2002) gave the following example of a bimodal species response (Fig. 5). 
“The distributions of black spruce (Picea mariana) and eastern redcedar (Thuja occidentalis) along a 
moisture gradient in parts of the American boreal forest are classic examples of bimodal species 
distributions (Curtis 1959, Loucks 1962).  Black spruce occurs in soil pockets on dry rock outcrops as well 
as in wet Sphagnum bogs.  In intermediate (mesic) sites with deeper, well-drained soils, black spruce is 
often a minor species or absent.  These sites are dominated by white spruce (Picea glauca), sugar maple 

ExamplesNameForm 

y 
Hump-
shaped 

Classic quantitative response to 
long environmental gradient 

Quantitative response to short 
environmental gradient or short- 
term temporal change

Linear
y 

Sigmoid

y 
Temporal trend for late 
successional species 

y 
Negative 
exponential 

Temporal trend for pioneer 
species 

y 

Step
Temporal trend for biennial 
pioneer plant species 

x 

y 

Bimodal

Competitive exclusion in 
middle of broad tolerance to 
environmental gradient (e.g. 
Picea mariana) 

Figure 5.  Example shapes for species responses to environmental and temporal 
gradients.  These can be viewed as responses in terms of abundance, probabilities 
of occurrence, demographic variables, or physiological rates. 
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(Acer saccharum), or balsam fir (Abies balsamea).”  Although the fundamental niche of black spruce may 
have a unimodal response to moisture, its realized niche is a more complex shape because its performance 
is disrupted by competition with other tree species (McCune 2006).  Species interactions are likely to 
produce complex responses to abiotic environmental factors. 

 Although we can readily envision all of these response shapes, our statistical models tend to fall 
back on a very limited subset of these, primarily linear models.  The next section describes some of the 
statistical tools used to represent species response functions. 

Combining response shapes 
 What happens when we combine simple species responses to multiple habitat factors?  Consider 
the following hypothetical example, say that y is the reproductive rate of a population, x1 is food, and x2 is 
shelter.  The model 

02211 bxbxby   

says that the reproductive rate is increased by the availability of food and shelter, and that increasing either 
of these alone can increase the reproductive rate.  But consider a population in the Antarctic.  The simple 
additive model comes to the erroneous consequence that you will have a fairly high reproductive rate if 
you give them lots of food but no shelter.  Likewise, the model errs in concluding that the population will 
reproduce if you give them shelter but no food.  This can be partially corrected with an interaction term, 
but this prescribes a particular shape across the whole response surface, a portion of a hyperbolic 
paraboloid (Fig. 6). 

 The additive model is shown in Fig. 6.  When x1 and x2 are combined additively, the response 
surface forms a plane tilted in the 3D space formed by the response variable and the two predictors.  By 
adding a multiplicative (interaction) term, the model becomes 

0321 2121 bxxbxbxby   

The response surface can now be curved (Fig. 6), even though each term in the model is linear.  As 
dimensions (predictors) are added, however, the problem rapidly becomes difficult to manage, and non-
parsimonious, because one must consider adding two-way and higher order interactions. 

 The alternative lies in multiplicative models, where the effect of each variable can depend on the 
value of other variables.  One approach is to adapt nonparametric curve fitting techniques, the components 
being combined multiplicatively rather than additively – this is nonparametric multiplicative regression. 

 

 
Figure 6.  Combining linear species responses, y,  to two habitat factors, x1 and x2.  The surface from the 
multiplicative model (i.e. with an interaction term) is a portion of a hyperbolic paraboloid. 
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Figure 7.  Combining nonlinear species responses y to two habitat factors, x1 and x2. 

 

 The two-factor problem can be made more realistic by combining two nonlinear shapes, for 
example sigmoid and Gaussian curves (Fig. 7).  This example corresponds to the previous example of the 
abundance of the epiphytic lichen, Lobaria oregana (y), in response to time since disturbance and 
elevation.  In the absence of disturbance, Lobaria has a sigmoid increase through time (x1).  The species 
has a unimodal response to elevation (x2), peaking between 400 and 900 m. 

 An additive model of the two nonlinear functions could be: 
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The first term is the sigmoid response to time since disturbance and the second term is the Gaussian 
response to elevation.  A strictly additive model means that if one factor is highly favorable and another 
factor highly unfavorable, the model predicts a moderate abundance.  But the basic law of life and death is 
multiplicative, not additive:  if any one factor is lethal then no level of any other independent factor can 
compensate for it.  The response shape from the additive model (Fig. 7) is, therefore, fundamentally 
flawed.  For example, the additive model yields high abundance when x1 is high (old forests) at both very 
high and very low values of x2 (elevation).  In nature, if elevation is unfavorable (very high or very low 
elevations), then no Lobaria is found, no matter how old the forest. 

 Assuming that we know the shape of the response function, we could, in theory, develop a 
multiplicative model that would better fit the data (lower right part of Fig. 7).  In practice, however, we 
need multifactor models for which we cannot even visualize the response surface, simply because 
ecological theory does not inform us as to response shapes in the multidimensional spaces implicit in 
multifactor models.  Furthermore, we need a parsimonious and effective method for building multifactor 
models.  For these reasons, we turn to a model fitting procedure that automatically and effectively 
represents the interactions among predictors without needing to see the response surface in the hyperspace 
of habitat factors. 

 Despite the obvious importance of interacting predictors in ecology, multiplicative nonlinear 
habitat models are actually very rare in ecology.  A few examples are Martinez-Taberner et al. (1992) and 
Huntley et al. (1989, 1995).  While these methods provided insights, they were not built into a general, 
flexible modeling framework that could be applied to a wide range of problems. 
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Summary of general habitat modeling strategy 
 Choice of a habitat modeling technique depends on many factors.  Using the flowchart (Fig. 8) 
may help you decide what general class of models is appropriate for a particular problem. 

 

 

 
Figure 8.  Decision tree for some general classes of habitat models. 

 

 

Is the model going to represent a known theoretical, 
mathematical defined relationship?  

Yes 

No 
Use linear or nonlinear parametric regression. 

Is the data set extremely small? (say, n < 10 times the 
number of critical habitat factors) 

Yes 

No 
Statistical analysis is shaky; view scatterplots to suggest important predictors. 

Is more than one predictor involved?  

No 

Yes 
Use nonparametric regression. 

Do the predictors act multiplicatively on the response 
variable?  (Do values from one predictor influence the 
response to other predictors?) 

Yes 

No 
Nonparametric multiplicative regression. 

Use generalized additive models. 

Are relationships among the response variable and 
predictors (or transformations of those variables) 
approximately linear?  

Yes 

No 
Use linear models. 
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Nonparametric Multiplicative Regression (NPMR)  

Design principles for habitat modeling with NPMR 
Nonparametric Multiplicative Regression (NPMR) is a class of statistical techniques with a 

number of variants.  The software package HyperNiche (McCune & Mefford 2004) applies the concepts of 
NPMR to predictive habitat modeling and species response functions in particular.  Designing a special 
form of NPMR for habitat modeling has allowed us to incorporate many features that help us with this 
particular modeling problem.  The most important characteristics of the form of NPMR used in 
HyperNiche are: 

 Use a method for evaluating model quality that can be applied to any habitat model.  For 
presence-absence (binary) data, the log likelihood ratio (we use log10B) evaluates predictive 
ability compared to a standard naïve model.  The naïve model estimates the probability of 
occurrence at a particular point as the overall frequency of the species in the data.  We apply 
this with a leave-one-out cross-validation to help guard against overfitting the model.  For 
quantitative data, the naïve model estimates the abundance of a species at a particular point 
as the mean abundance of the species in the whole data set.  We evaluate the model quality 
with a cross-validated R2 value (xR2). 

 Allow both categorical and quantitative predictors. 

 Always use multiplicative weighting so that variables are combined multiplicatively rather 
than additively. 

 Variable selection is based on a cross-validation procedure to reduce problems of overfitting. 

 Variable selection allows both addition and deletion of variables and simultaneous adjustment 
of the tolerances of the weighting function.  Explore these possibilities with a stepwise or 
comprehensive search. 

 Optimize the kernel function by using a cross-validation procedure to select smoothing 
parameters.  

 Allow input/output of gridded GIS data, specifically input of predictor grids and output of 
grids of species estimates (e.g., abundance or probability of occurrence). 

Basic concepts 
Nonparametric regression, like linear regression, seeks relationships between a response variable 

and one or more predictors.  Nonparametric regression does not, however, seek coefficients in a 
mathematical equation of fixed overall form.  Instead, it seeks to optimize fit to the data without reference 
to a specific global model.  

What kinds of surfaces can be represented by NPMR?  Any function – a smooth 1:1 mapping 
between a response variable and a set of predictors – can, in theory, be detected by NPMR.  NPMR cannot 
describe surfaces that have overhangs, discontinuities, or cusps. 

To use NPMR one must choose a local model and a kernel function (Table 1).  The local model 
specifies the shape of the function that is used to fit a value for a specific point in the space defined by the 
independent variables.  The kernel specifies a weighting, in essence specifying how local is “local”.  In 
HyperNiche, the kernel function is optimized by using a cross-validation procedure to select a weighting 
parameter.   

We discuss each of four basic model forms (Table 1).  At present only the first three are included 
in HyperNiche. 



 

 16

 

Table 1.  Four forms of nonparametric multiplicative regression used for habitat modeling. 

 

Model name Local model Weighting around 
each target point 
(kernel) 

Response data 
types 

SpOcc - NPMR local mean uniform within a 
window 

binary or 
quantitative 

LM – NPMR local mean Gaussian binary or 
quantitative 

LLR – NPMR local linear 
regression 

Gaussian quantitative 

LLogR - NPMR local logistic 
regression 

Gaussian binary 

 

Notation 
 A full listing of notation is given in Appendix A.  Some of this is repeated here: 

X = matrix of predictors (habitat or environmental variables) with i = 1 to n rows (sample units) and j = 1 
to m columns (variables). 

y = vector of observed presence-absence, abundance, or other response variable.  This is a column vector 
of i = 1 to n rows (sample units). 

sj = standard deviation of the Gaussian weighting function for predictor variable j, applied to a given 
predictor such that the full range of observed values for that variable falls over 6 standard deviations. 

v = vector specifying the habitat at the target point, this vector being row vector of j = 1 to m columns 
(variables). 

w*ij = weight applied to point i for predictor j.  The asterisk indicates that it is a univariate weight, as 
opposed to a weight from the matrix W. 

vŷ = fitted value or estimated probability of occurrence of species at target point v. 

Forms of NPMR 

SpOcc - NPMR 
The concepts of the species occurrence model were initially based on Peterson (2000), then 

developed further and applied by McCune et al. (2003). Peterson dubbed the procedure “SpOcc,” a name 
with trekkie appeal which stands for “Species Occurrence Modeler.”  The model was implemented for 
binary data as an unpublished add-in module “SpOcc” to PC-ORD 4 (McCune & Mefford 1999), then later 
generalized to the NPMR add-in module.  Since then it has been incorporated into a more general stand-
alone program for habitat modeling, HyperNiche (McCune & Mefford 2004). 

With binary data, SpOcc uses the proportion of a species’ occurrence in an environmental 
neighborhood to estimate the likelihood of the species occurring at a target site (Fig. 9). The environmental 
neighborhood consists of sites nearby in an multi-dimensional environmental space, the space defined by 
values for one or more environmental or habitat variables.  It can thus be considered an “environmental 
neighborhood model” for predicting species occurrences.  The method requires information on known 
(sampled) sites, including the presence of species at the sites (presence/absence or abundance), and the 
environmental characteristics (or other predictors) at the sites.  To estimate the species occurrence for a 
new site (the target site), the model applies data from sites that lie close to the target site in the n-
dimensional environmental space (the environmental neighborhood).   
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 An environmental neighborhood can be defined in two different ways.  Most simply, the 
neighborhood can be defined by a “window” with sharp edges (Figs. 9, 10).   This is the method used by 
the “SpOcc” form of NPMR (Peterson 2000, McCune et al. 2003).   The size of the window is defined by a 
tolerance range around the target site.  All observations within the window are given equal weight (one), 
while all observations outside the window are given zero weight.  This is, in essence, nonparametric 
regression using one of the simplest kernel approaches, the local mean estimator (Bowman and Azzalini 
1997, p. 49), but using an unconventional uniform weighting function. 

 Alternatively, the neighborhood can be defined without sharp boundaries, rather weighting 
observations near the target point more strongly than observations that are distant from the target point.  
Again, the concept of “distance” applies to an environmental space, not necessarily geographic space.  
Weights range from near zero to one.  This is the method described below under “LM-NPMR”. 

Gradient 1

Gradient
2

Ecological
Neighborhood

Target point

 
Figure 9.  Two-dimensional representation of the Species Occurrence 
Model (SpOcc-NPMR).  An estimation of the abundance or likelihood 
of species presence is sought for the target point.  This estimate is 
based on the frequency of the species in the ecological neighborhood, 
defined by segments of the two gradients. 

 

 Response curves fitted with the SpOcc form of NPMR (i.e. with a uniform weighting function) 
tend to be choppier than those with a Gaussian weighting function.  The sharp edge of the ecological 
neighborhood tends to produce fitted surfaces with sharp changes, owing to the influential behavior of 
individual points falling in or out of the window.  We recommend, therefore, using another form of NPMR 
with a Gaussian weighting function, except where one anticipates more precipitous changes in the response 
variable. 

LM - NPMR 
 The relationship between weight given to an observation and distance from the target point can be 
defined in many different ways.  A simple, flexible solution is to use a Gaussian (hump-shaped) function 
centered on the target point (Fig. 10).  A observation with exactly the same environment as the target point 
would receive full weight (1.0), smoothly diminishing to near zero weight with increasing distance from 
the target point. In contrast, with the window method (Fig. 10), weights are, in essence only zero or one in 
a square function (Fig. 10).  How rapidly the weights diminish with distance from the target point can be 
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tuned with the smoothing parameter, in this case the standard deviation of the Gaussian curve (Fig. 11).  
Selecting a large standard deviation is comparable to having a broad window; conversely a small standard 
deviation gives appreciable weight only to observations that are very similar to the target point.   

 We apply the term “tolerance” to both the half-width of the square window and the standard 
deviation of a Gaussian weighting function.  In both cases the word is biologically apt, because a species 
with narrow tolerance to a habitat factor will have a smaller window, whether specified as a square, hard-
edged window or a window with edges made fuzzy by a Gaussian function. 
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Figure 10.  Uniform (square) weighting function versus Gaussian 
function.  In this example, the full range of the environmental variable 
spans 6 unspecified units and the target point is in the center of that 
span. 
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Figure 11.  Gaussian function for weighting observations relative to distance from an 
observation to the target point in environmental space.  The standard deviation of the 
Gaussian function controls how quickly weights diminish with distance from the target 
point.  In this example, the full range of the environmental variable spans 6 unspecified 
units and the target point is in the center of that span. 
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 The Gaussian function shown (Fig. 11) is altered from its usual probability density function, such 
that the height of the peak always equals one and the area under the curve is no longer equal to one.  If s is 
the standard deviation, x is the value of an environmental variable, and w is the resulting weight, then: 
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 With more than one environmental factor in the model, the weights for individual factors can be 
combined multiplicatively into a single weight for a given observation.  See for example, the equation for 
two dimensional density estimation and nonparametric regression in Bowman and Azzalini (1997, pages 6 
and 53, respectively).  Then, for a given point those weights are used in a weighted average on the 
observations of presence/absence in the data set. 

 The weight applied at a particular point, relative to the target point v, is: 
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The asterisk with the w indicates that this is a univariate weight (the weight for a single predictor j at 
sample unit i).   

 We then combine weights across environmental variables, multiply the combined weight by the 
observed value y, and divide by the sum of the combined weights to give a weighted average as an estimate 
of the probability of occurrence at target point v: 
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This is the local mean estimator of Bowman and Azzalini (1997, p. 49) extended multiplicatively to m 
dimensions.  The notation i  v indicates that if the target point v is one of the calibration data points, then 
it is excluded from the basis for the estimate of yv.  This is the crux of the built-in cross-validation 
procedure. Cross-validation has a long history of use in nonparametric regression (e.g. Clark 1975; Hardle 
et al. 1988, 1992; Hardle 1990; Assaid & Birch 2000). 

 The NPMR equation above should become the standard equation for exploratory habitat models.  
It is a fundamental equation in ecology, because it explicitly recognizes that ecological factors combine 
multiplicatively.  This equation confronts ecological complexity head-on by recognizing that we must 
build the big structure from estimates of the local structure, rather than assuming a simple form for the 
big structure.  Species response surfaces are complex, nonlinear shapes that are not well recognized by 
traditional parametric models. 

 For every estimate of the response variable one can calculate a neighborhood size (ni*), the 
amount of data bearing on that particular estimate: 
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where 0 < ni*  n.  If ni* = 0, then no estimate is possible for that point.  Setting a minimum ni* required 
for an estimate protects against estimating a response in a region of the predictor space with insufficient 
data. 

 With binary (presence-absence) data, to consider the estimates of y as probabilities for the 
occurrence of species, the sampling of sites must be random or randomized within strata used as predictors 
in the model.  Even when this requirement is not met with strict randomization, the output is still useful for 
relative comparisons among sample units. 

 Estimates for sample points near the ends of gradients are weakened by the absence of data for the 
environmental neighborhood that lies just beyond the end of the gradient.  This decreases the accuracy of 
the model near the ends of the gradient, because estimates are made on less data.  It also introduces a slight 
bias near the ends of the gradient, making predictions more similar to the sampled portion of the gradient 
than expected. 

LLR – NPMR 
 A fault of the local mean estimator is that estimates near the ends of the predictors are biased 
toward the central tendency of the response variable (Bowman & Azzalini p. 50-51).  This occurs because 
the closer a target point is to the edge of the sample space, the less data are available beyond the target 
point.  This bias can be removed by using a local linear estimator rather than a local mean estimator.  The 
local linear estimator is simply a weighted least squares problem, the weights provided by the kernel 
function such that points near the target point receive more weight than points far from the target point. 

 LLR was proposed as early as Cleveland (1979) and developed further by Fan and Gijbels (1992) 
and Fan (1993).  Some characteristics of LLR are: 

 Bias is reduced near the edges of the data set. 

 As the kernel function becomes broad, the fitted curve will smoothly approaches traditional least 
squares regression while the local mean smoothly approaches a horizontal line parallel to the 
predictor axis with an intercept equal to the global mean. 

 The local linear estimator can be represented in matrix notation if we first create the design matrix 
Z containing the transformed predictors plus a first column of 1s.  The predictors are transformed by 
subtracting each value for a given variable from the corresponding value for the target point.  Z has n rows 
m+1 columns (variables).  The ith row of Z has the elements:  

[ 1   (x1i – v1)   (x2i – v2)  …   (xji – vj)   ] 

 We also create a n  n diagonal matrix of weights, W.  The ith diagonal element of W is the 
product of the weights for all variables j = 1 to m.  For sample unit i, the diagonal element is 
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Then the local linear estimator is the first element of the weighted least squares solution, b: 

WyZ'WZZb 1)(   

This regression equation is solved for each target point, so a data set with N=500 will require 500 weighted 
least-squares regressions, for every set of trial tolerances. 

 Despite the improved fit to responses near the ends of the ranges of predictors, local linear models 
are less conservative, and can produce wild estimates under some circumstances.  They are less 
conservative, because estimates of the dependent variable can be outside of its observed range.  This 
behavior can be particularly noticeable and offensive with small data sets.  In contrast, the local mean can 
never produce an estimate outside the observed range of the dependent variable.  In practice, the decision 
between LM- and LLR-NPMR is a tradeoff between avoiding the known bias near the edge of the sample 
space and avoiding the possibility of wild estimates in that same region.  If the former is the more serious 
risk, then use LLR-NPMR, while if the latter is possible, use LM-NPMR.  In general, small data sets are 
more safely modeled with LM-NPMR. 
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LLogR - NPMR 
 A third approach, not yet implemented in HyperNiche, uses local logistic regression to estimate 
the likelihood of occurrence.  The method applies to binary response variables.  The local model is a 
standard logistic regression, except that observations are weighted by their distances to the target point 
(Bowman and Azzalini 1997, Equation 3.4, p. 55) and weights should be combined multiplicatively across 
variables.  The advantage of using an estimator based on local logistic regression over a local mean 
estimator is that the latter is biased at the edges of the predictor space.  Because the target point lies near 
the edge of a habitat variable, the estimate is biased toward the overall frequency of occurrence.  Using 
local regression (linear or logistic) removes this bias (op cit., p. 50). 

Model Building 

Calibration vs. application 
 Habitat modeling generally has two phases, calibration and application.  In the calibration phase 
we use empirical data on species abundance or species presence-absence to evaluate the model’s ability to 
estimate abundance or likelihood of occurrence from the independent variables.   The calibration phase is 
used to (1) decide which variables to include, (2) select a window size or smoothing parameter (tolerance) 
for quantitative variables, and (3) indicate how much we can trust predictions from the model in the 
application phase.  In the application phase (see Model Application below), we estimate abundance or 
likelihood of occurrence for sites at which species occurrence or abundance is unknown, based on the 
values of the predictors.  When we estimate the likelihood of occurrence from presence-absence data rather 
than predict presence/absence per se, we call this “estimating” or “forecasting” rather than “prediction.” 

Model specification 
 If an NPMR model does not yield an equation with coefficients, what is the form of the model?  
In its simplest form an NPMR model is completely specified by the following items: 

1. the data set used in the calibration phase, 

2. statement of the local model (e.g., local mean, local linear, local logistic), 

3. statement of the weighting function (e.g., Gaussian or uniform), 

4. a list of one or more independent variables, 

5. specification of whether the independent variables are treated as categorical or quantitative, 
and 

6. a tolerance or smoothing parameter for each quantitative variable.  If windows have sharp 
edges, then this range specifies the exact width of the window.  If windows have fuzzy edges, 
then the specified tolerance is used as one standard deviation in the Gaussian-weighted 
window. 

Model evaluation 
We use the term “evaluation” for the process of analyzing the predictive success of models, 

following Oreskes et al. (1994) and Guisan and Zimmerman (2000).  Others have called this “validation” 
or “accuracy assessment.”  HyperNiche automatically uses a leave-one-out form of cross validation.  It is 
applied during the search for the best model, so that choice of predictors and their tolerances are based on 
the results of cross-validation. 

Binary response data 
 We sought a method for evaluating model performance that could be applied to any method of 
estimating likelihood of occurrence. We considered only methods that avoid the arbitrary conversion of 
continuous estimates of probability of occurrence into a statement of “present” or “absent” (Fleishman et 
al. 2003).  One common method of evaluating the performance is a pseudo-R-squared statistic (Agresti 
1990, pp. 110-112): 
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where iŷ  is the fitted value for the model and yi is the observed value (1 or 0). This can be applied to the 

results of any model that predicts values of 1 or 0. Although this is the same form as a traditional R2 value, 
we call it “pseudo” because applied in this context it has no fixed lower bound.  Negative values are 
possible when the “sum of squares regression” (the numerator) is larger than the total sum of squares (the 
denominator).   

These drawbacks led us to adopt another method for evaluating model quality.  We calculated log 
likelihood ratios to express model improvement over a “naïve model.” In our case the naïve model is 
simply that our best estimate of the probability of encountering a species in the study area is the average 
frequency of occurrence of that species in our data.  The ratio of the likelihood of the observed values (y = 
y1, y2, … yn) under the posterior model (M1) to the likelihood of the result under the naïve model (M2) is 
given by:  
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and iŷ  corresponds to the fitted values for the likelihood of occurrence under each model, Mj, j=1,2. This 

last formula is the joint probability function for the n observations of yi, where each observation is an 
ordinary Bernoulli random variable. For a clear introduction to this in the context of logistic regression, see 
Neter et al. (1996, p. 573-574). When this formula is applied to the fitted model, the y-hats are the 
probability estimates from the model. When applied to the naive model, the y-hats are all the same: simply 
the overall proportion of 1’s in the response variable. 

Formal hypothesis testing with log-likelihood ratios requires that the parameters for one model be 
nested within the other and incorporates the difference in degrees of freedom between the two models.  
Log10B is applied here, however, as a descriptive statistic in the sense of “weight of evidence,” similar to a 
Bayes factor (Kass & Raftery 1995), rather than a formal hypothesis test. LogB differs from a Bayes factor 
in that a Bayes factor is based on the marginal distribution of y given the prior model (the naive model in 
this case), while logB is a simple log likelihood ratio for the two models, inverted so that as the weight of 
evidence increases, logB increases. Values of logB reported here from NPMR models are based on cross-
validated estimates from the M1 using a leave-one-out strategy.  LogB can be interpreted as the ratio of the 
likelihood of cross-validated estimates from the fitted model to estimates from the naive model expressed 
in powers of ten.  LogB is negative when cross-validated estimates from the fitted model are worse than the 
naïve model.  The same rationale can be applied to the difference between logB values calculated for each 
of two competing models of interest.  Because logB is unbounded, it can be quite large when a strong 
relationship is modeled with a very large data set.  The average contribution of a sample unit to logB, 
10(logB)/n, can be used to describe the strength of relationship, independent of sample size. 

 Drop in deviance is a statistic closely related to logB, but often used in connection with model 
evaluation in logistic regression.  Similar to a likelihood ratio, the drop in deviance between two models 
expresses the improvement of one model over the other.   Most germane to this discussion is the deviance 
comparing a particular model against a model with no parameters (i.e. a null model with no predictors): 

drop in deviance = 2 [log likelihood(model) – log likelihood(null mode1)] 
Drop in deviance is linearly related to logB comparing a model with the naive model: 

drop in deviance = 2 ln (B12) 
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Some software for GLM will report a null deviance and a residual deviance.  The drop in deviance 
is sometimes referred to as the “deviance” for short.  One can calculate a logB from these statistics, 
assuming the special case of the naive model as described above.  In this case, 

60517.4

deviance residualdeviance null
log


B  

In some accounts the drop in deviance is represented by χ2 (many authors) or G (Sokal & Rohlf 
1995, p. 691)  Thus, the difference between “drop in deviance” and logB in this context is thus more a 
matter of conceptual alliance than substance.  If you have a log10B statistic but wish to report drop in 
deviance or χ2, simply calculate 

χ2 = 2 (2.302585) log10(B12) 

= 4.605170 [log10(B12)] 
Note that the likelihood ratio λ, calculated for a likelihood ratio test, is the inverse of B12 as 

defined above, in that the more complex model is in the denominator.  In that case λ decreases as the fitted 
model improves.  The likelihood ratio is converted to a test statistic as χ2 = -2 ln λ. 

One can test the statistical significance of the likelihood ratio using a chi-square distribution with 
one degree of freedom.  Conceptually this requires that the parameter space of one model be considered a 
subset of, or nested within, the other model.  This seems reasonable when comparing any model to the 
naive model, but questionable when comparing one trial model to another.   

 To help guard against overfitting and provide a built-in method of cross-validation, we exclude 

species occurrence at the target point i from the estimation of iŷ .  Conceptually this is a “leave-one-out” 

strategy (Fielding & Bell 1997) similar to a jackknife estimator:  we sacrifice some information to obtain a 
better estimate of model quality, an estimate with error that is more comparable to the application phase of 
modeling.  Inclusion of the target point would otherwise lead to overfitting the model, because as the 

window size becomes smaller, point i has a larger influence on iŷ , and that influence is always in the 

“correct” direction.  In other words, the circularity in logic results in iŷ  with the target included always 

being as close or closer to yi than iŷ with the target excluded. 

A special problem occurs with the “hard-edged” window of the uniform kernel.  If the window is 

so narrow that it includes a single point, iŷ  cannot be calculated with target excluded, but iŷ  = yi (always) 

with target included.  Clearly, including the target point favors narrow windows and leads to overfitting.  
Excluding the target point eliminates that problem and makes the error rate of the evaluation phase more 
comparable to the application phase. 

Excluding the target point does, however, create a computational problem when  ( iŷ = 1 and yi = 

0) or ( iŷ = 0 and yi = 1).  These cases are undefined when applied to the likelihood equation above.  In 

these cases, we know that the estimate iŷ  can be improved by including the target point, and that this 

contributes useful indication of a failure of the model, since the target point disagrees with the remaining 

points in the window.  In this case, including the target point improves our estimate of iŷ  without 

contributing toward overfitting the model, so we choose to retain the target point. For example, if the 

window contains two points, y=[0,1], and the first point is the target point, then 1ŷ  = 0.5 with target 

included, but with the target point excluded the data point cannot be used in the likelihood equation 

because 1ŷ = 1 and yi = 0. 

The problem described above does not occur with a Gaussian kernel function, because all non-
target points contribute at least a minute amount to the estimate.  This means that as long as both presences 

and absences occur in the data, the estimate of iŷ  will never exactly equal zero or one. 
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Quantitative response data 
When the response variable is declared as quantitative, model quality is evaluated in terms of the 

size of the cross-validated residual sum of squares (RSS) in relationship to the total sum of squares (TSS).  
We call this a “cross R2” (Antoine & McCune 2004) as implemented in HyperNiche, because the 
calculation incorporates a cross-validation procedure.  The cross R2  differs from the traditional R2 because 

data point i is excluded from the basis for estimating iŷ .  Consequently, with a weak model, it is not 

uncommon for RSS > TSS and thus cross R2  becomes negative. 

2

1

2

122

)(

)ˆ(
11 cross x












 n

i
ii

n

i
ii

yy

yy

TSS

RSS
RR

 
This approach is essentially the same as the G-value of Agterberg (1984), Gotway et al. (1996), and Guisan 
and Zimmerman (2000).  This same statistic can also be applied to the correspondence between the 
predicted and observed values for an independent data set, the predictions based on the calibration data. 

Sensitivity Analysis 
“Sensitivity analysis” has various meanings.  Here we consider sensitivity analysis to be an 

evaluation of the relative importance of particular parameters within the model.  Use it to evaluate the 
importance of individual quantitative predictors in NPMR models.  This is particularly important in this 
context, because with NPMR we have no fixed coefficients or slopes that we can compare in size.  The 
tolerances are related to the importance of variables, but in different ways for local mean and local linear 
models. 

With local mean models, tolerance is inversely related to the importance of a variable.  With local 
linear models, this is not so, because a large tolerance can be obtained in either of two conditions, a strong 
globally linear effect, or a weak effect.  On the other hand a narrow tolerance in a locally linear model 
implies a strong nonlinear global relationship. 

A general method of evaluating the importance of individual variables is to analyze the sensitivity 
to changes in the variables.  One way to do this is to nudge up and down observed values for individual 
variables, and measure the resulting change in the estimate for that point.  By accumulating those 
sensitivities across all of the data points, or across a large sample of data points, we can evaluate the 
sensitivity of the model to each predictor.  The greater the sensitivity, the more influence that variable has 
in the model. 

The change in the response can be measured as a fraction of the observed range of the response 
variable.  Scaling the differences in response and differences in predictors to their respective ranges allows 
a sensitivity measure that is a ratio, independent of the units of the variables. 

The change in the response can be measured as a fraction of the observed range of the response 
variable.  Scaling the differences in response and differences in predictors to their respective ranges allows 
a sensitivity measure that is a ratio, independent of the units of the variables. 

The general concept is: 
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while the denominator, the scaled difference in the predictor, is Δ.  This is the amount by which we choose 
to nudge the predictor.  Combining these yields 
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where 

iŷ  = estimate of the response variable for case i, having increased the predictor by an arbitrarily 

small value Δ (say 0.1 of the range of the predictor). 

iŷ  = estimate of the response variable for case i, having decreased the predictor by an arbitrarily 

small value Δ (say 0.1 of the range of the predictor). 

Δ = A small difference applied to a predictor, expressed as a constant proportion of the range of a 
predictor  

 

The first term in the equation scales the deviation in the response variable to a proportion of the 
range in the response variable.  Thus, a sensitivity of 1.0 would mean that a 10% change in the predictor 
would, on average, produce a 10% change in the response variable. 

The second term in the equation is either the mean absolute deviation or the square root of the 
average squared deviation in response resulting from nudging the predictor by Δ. 

HyperNiche nudges the predictors one at a time by + or -5% of the range of the predictor. 
Sensitivity 1 gives less weight to occasional large differences, while Sensitivity 2 will emphasize large 
differences more, because of squaring the differences.  Unless you have a specific reason for choosing the 
second measure, we recommend using Sensitivity 1.  Its interpretation is straightforward.  With sensitivity 
formula 1, a value of 1.0 means that on average, nudging a predictor results in a change in response of 
equal magnitude.  Sensitivity =0.5 means that the response is half the magnitude of the change in the 
predictor. Sensitivity = 0.0 means that nudging a predictor has no detectable effect on the response. 
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Model selection 

Defining the best model 
We seek the best NPMR model by selecting the set of predictor variables and choosing the tolerance 

for each of those variables.( Choosing a tolerance is the same as selecting a bandwidth, smoothing 
parameter in the statistical literature.) With more than a few predictors, the number of combinations of 
predictors and their tolerances are astronomical.  Therefore we must use a guided search for the best model.  
Three criteria determine the best model: 

 A measure of model fit (discussed above) 

 One or more rules for parsimony (how much improvement in fit that we demand for adding a 
variable) 

 A setting for controlling flexibility, based on the average amount of data used to estimate the 
response for an individual point (the minimum average neighborhood size, N*). 

Once these three criteria are defined, model selection requires a trial-and-error search through the 
possible models.  Search methods can be broadly categorized into exhaustive, stepwise, and tuning (Table 
2).  Many different algorithms are possible for stepwise searches and model tuning.  The methods used in 
HyperNiche version 1.0 are described in a section below.  

The methods for controlling overfitting differ between NPMR and the generalized linear modeling 
(GLMs). The most popular overfitting controls for GLMs are the AIC (Akaike Information Criterion) and 
the BIC (Bayesian Information Criterion) for model selection. The AIC and BIC depend on the number of 
parameters in a model. Because NPMR models do not have explicit parameters as such, these are not 
applicable to NPMR models. Instead, use the controls on overfitting provided in HyperNiche (minimum 
average neighborhood size, minimum data:predictor ratio, and the improvement criterion), as explained 
below. 

Nonparametric regression models sometimes use an AIC based on the "effective number of 
parameters" (Hastie et al. 2001, p. 205; Hurvich et al. 1998). This penalizes a measure of fit by the trace of 
the smoothing matrix – essentially how much each data point contributes to estimating itself, summed 
across all data points. Because NPMR in HyperNiche always uses leave-one-out cross validation in the 
model fitting phase, the trace of the smoothing matrix is always zero, corresponding to zero parameters for 
the AIC. Thus, NPMR in HyperNiche is already penalizing the fit through cross validation, and the error 
rate of the training data set is expected to approximate the error rate in a validation data set. In other words, 
the training error rate approximates the prediction (extra-sample) error rate. 

 

Table 2.  Search methods for the best model. 

Search Method Definition 

Free search – 
exhaustive 

All combinations of variables and tolerances are evaluated, given a 
specified step size for trial tolerances.  All models are evaluated if the 
number of possibilities is fairly small (e.g., < 10,000). 

Free search - stepwise Variables are added or deleted incrementally and tolerances are adjusted 
incrementally according to a specific search algorithm 

Tuning Variables are held constant and tolerances are adjusted incrementally 

 

Controlling Flexibility and Parsimony 
Effective modeling with NPMR requires attention to flexibility and parsimony.  These are 

particularly important with small data sets, or clumped sampling from the predictor space, or a large 
number of predictors compared to the sample size. The built-in online help system of HyperNiche provides 
more detail and examples than are provided here. 
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Flexibility can be controlled by both the leave-one-out crossvalidation and by setting a minimum 
average neighborhood size (N*) for a model (e.g., for a small data set, 1 = very flexible; 3 = flexible; 10 = 
stiff).  The larger the sample size, the larger the N* needed to achieve a given degree of stiffness. The 
smaller the sample size, the more important the effect of the leave-one-out crossvalidation.  A reasonable 
starting value for the minimum average neighborhood size for most data sets is about 5% of the sample 
size, i.e. N* ≥  0.05(n).  Choose stiffer curves with very small data sets or clumped data distribution along 
important habitat variables.  More flexibility is allowable with large high-density data sets. 

Parsimony in number of predictors can be controlled by setting an improvement criterion, 
expressed as a percentage improvement in model fit when a new variable is added.  One can also set a 
minimum data:predictor ratio. For quantitative responses, the data:predictor ratio is the number of sample 
units divided by the number of predictors in the model.  For binary responses, the data:predictor ratio is the 
number of observations in the least represented category (presences or absences) divided by the number of 
predictors in the model.  Harrell et al. (1996) suggested a minimum value of 10 for binary data. 

With a large sample size, as the number of predictors in a model increases, the fit tends to flatten 
out, while the average neighborhood size declines (Fig. 12).  With a small data set, fit will sooner or later 
decline as variables are added.  This decline occurs because the cross-validation penalty increases as 
predictors are added.  With HyperNiche you will normally see only the beginning of this decline, because 
once the decline begins, the stepwise search ends. 

The degree of continuity of an estimated response surface depends on how little data you require 
to estimate a point on the surface.  This is controlled by setting a minimum neighborhood size for 
individual points (ni*).  For a given model, missing portions of the response surface are minimized by 
setting a small minimum ni*.  To see only the well-supported portions of a response surface, set a large 
minimum ni*.   

If a data point has a neighborhood size (ni*) smaller than the user-defined minimum, then that data 
point is omitted from the calculations and a missing value indicator is assigned to that pont.  This criterion 
is called the “minimum neighborhood size required for estimate” by HyperNiche. 
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Figure 12.  Typical dependence of model fit (in this case measured by logB) and average 
neighborhood size (N*) on the number of predictors in the model.  In this case the data 
set was very large (n = 2500) and relationships fairly strong, yielding large logB values.  
Two and three-predictor models were chosen for further study. 
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The next example (Table 3) shows the summary table produced by HyperNiche for a binary 
response variable.  This is the same kind of information graphed in Figure 12, but for a different data set, 
this time with n = 72.  Use this table to help you decide on the appropriate number of predictors.  The 
change in logB is itself a logB comparing the model to the next lower dimensional model. In this case, the 
second variable contributes some predictive ability, as shown by the “logB change” = 0.59.  On Kass and 
Raftery’s scale, this would fall in the “substantial” range, though clearly the second variable is much less 
useful than the first. 

 

Table 3.  Summary table showing the best model for a series of increasing number of predictors.  Stratum 
is a categorical variable, therefore its tolerance is zero.  “NumVars” is the number of predictor variables. 
-------------------------------------------------------------------------------------- 
DEPENDENCE OF FINAL MODEL ON NUMBER OF PREDICTORS FOR RESPONSE VARIABLE Lobore   
-------------------------------------------------------------------------------------- 
Response  NumVars   LogB LogB change   N*   Tol-Variable   Tol-Variable 
Lobore        1    3.694    3.694    23.2  0.00-Stratum  
Lobore        2    4.282    0.589    11.4  0.00-Stratum   0.44-LogDia   
Lobore        3    4.277   -0.005    11.4  0.00-Stratum   0.44-LogDia   48.45-Height   
-------------------------------------------------------------------------------------- 

 

Expressing the  improvement of a higher dimensional model vs. a lower dimensional model is 
simple.  Because we are using log values, you can calculate the logB for contrasting two non-naive models 
just by subtracting their logBs vs. the naive model.  So, for example, if B2,0 = 50 for the 2-predictor model 
(model 2) vs. the naive model (model 0) and B3,0=100 for the 3-predictor model (model 3) vs. the naive 
model, then logB2,0 = 1.7 and logB3,0 = 2.0.  To get logB3,2 for 3-predictor vs 2-predictor models, just 
subtract the two:  logB3,2 = logB3,0 - logB2,0 = 2.0 - 1.7 = 0.3. 

Can the difference in logB between two models be used as an automatic cutoff value for when to 
stop trying to add variables?  Yes, one could use either a proportionate change or fixed change in logB as a 
an automatic cutoff value.  For example, one could declare that the increment to logB must beat 1.0 to 
make adding the variable worthwhile.  This is fine when working with a data set of a particular size, but it 
doesn’t work well as a prescription across data sets that vary greatly in size.  With very large data sets (e.g., 
thousands of sample units), logB can be huge, and the model will end up with too many variables, because 
with a huge sample size, even a weak predictor can increase logB by 1. 

Model application 
A nonparametric regression model can be applied in many ways (Fig. 13), essentially the same 

ways that one can apply traditional regression model.  A key difference, however, is that estimates from the 
model always require reference to the original data.  In this sense, the calibration data set is an essential 
part of the model.  Those data, combined with a list of predictors and their tolerances allow estimates for 
new data points (Fig. 13).  Such estimates are necessary for many GIS applications or any other application 
of the model to new data. 

The fact that the data are part of the model means that as new data points become available, the 
model can immediately take them into account.  New estimates can be made based directly on the revised 
data set, or the fit of the model can be refined before calculating estimates for particular cases. 
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Figure 13.  Estimating likelihood of occurrence or abundance of species with the HyperNiche.  Square-
cornered boxes are files; rounded-corner boxes are products.  The dotted box includes components of the 
program HyperNiche. 
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What to report for NPMR 
What you report will depend on the audience and purpose of your studies.  The list suggests some 

important options in NPMR that should be reported to the technical audience of ecological journals: 

Methods 
 Statement of the response variable and the pool(s) of predictors. 

 Summary of the method.  Because NPMR will be unfamiliar to many readers, briefly summarize 
the method in a phrase or two. 

 Local model (local mean or local linear are currently available in HyperNiche). 

 Choice of kernel (Guassian and uniform are currently available in HyperNiche). 

 Evaluation of fit with a brief explanation of the measure (xR2 and logB are currently available in 
HyperNiche). 

Example of Methods 
 Berryman and McCune (2006) described their use of NPMR as follows:  

 
NPMR uses a local multiplicative smoothing function with leave-one-out cross-

validation to estimate the response variable. We used a Gaussian weighting function with 
a local mean estimator in a forward stepwise regression of biomass against the predictors, 
then expressed fit as a cross-validated R2 (or xR2).  

The xR2 differs from the traditional R2 because each data point is excluded from the 
basis for the estimate of the response at that point. Consequently, with a weak model, the 
residual sum of squares can exceed the total sum of squares and thus xR2 becomes 
negative. Rather than fitting coefficients in a fixed equation, NPMR fits ‘tolerances’, the 
standard deviations used in the Gaussian smoothers. 

Results 
For important or final models, consider reporting as a minimum: 

 How well the model fit (xR2 or logB) 

 Which predictors were selected 

 Tolerances for each predictor 

 Sensitivity for each predictor 

 

Also consider: 

 2D or 3D plots of the fitted response surface 

 Plots of residuals or predicted vs. observed 

 For each pool of predictors, how fit changes as the number of predictors is increased (e.g. plot xR2 
vs. number of predictors) 

 Slicing high-dimensional response surfaces by specifying median (or other selected values) for 
some predictors, displaying the response surface on the remaining predictors. 

Examples of results 
 Please see the papers listed in Appendix C.  
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Example Fits for the Gaussian-Gaussian Problem 

The data set 
 By fitting models to a data set with a known underlying structure, we can see how well different 
models recover that structure.  Consider a data set where species abundance responds perfectly to two 
ecological factors, Factor1 and Factor2.  The key question is, how well can different statistical models 
represent a realistic (but noiseless) response surface?  Because there is no noise in the data, a good model 
should achieve near perfect prediction. 

 A response surface was designed that incorporates Gaussian responses to two primary factors.  A 
smooth, noiseless surface was generated by multiplying two Gaussian functions.   
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The first term is the Gaussian response to Factor 1 (x1) and the second term is the Gaussian response to 
Factor 2 (x2).   For simplicity, set parameters, b, to zero, so that the response peaks at (0,0) and a1 = a2 = 1 
to give a standard deviation of 1 for both curves.   
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The final scaling constant brings the maximum value of y to 100. This surface was then sampled at random 
with 200 points and the response at those points calculated with this deterministic equation.  The points 
were drawn from uniform random distributions with (-1 < x1 < 4) and (-2 < x2< 2). Note that these ranges 
means that we are truncating x1 at -1, but including most of its positive asymptote.  For Factor 2, we are 
truncating our sample evenly on both sides of the hump, at -2 and + 2.  The resulting points on the surface 
of this function form a hump shape, truncated to different degrees on different sides (Fig. 14A).  If either 
factor is unfavorable, then the species is absent or nearly so. 

 Now pretend that you do not know how the data set was constructed.  Put on your biologist hat 
and try to build a model of the response variable (biomass, y) in relation to Factor 1 and Factor 2.  We will 
build least-squares regression models and multiplicative (NPMR) models to describe the relationship. 

Least squares models 
 One of the simplest and most naïve models would be a least-squares multiple regression with two 
terms and a constant:  

02211 bxbxby   

Fitting this model to the data (the 200 sample points on the response surface), we find that the fit is rather 
poor (adjusted R2 = 0.41; Table 4).  The resulting equation fits a tilted plane to the data (Fig. 14B).  Only 
the term for Factor1 differs significantly from zero, because the Gaussian response to Factor 2 is nearly 
balanced, with the peak response falling in the middle of the range of Factor 2.  Including an interaction 
term,  

02132211 bxxbxbxby   

results in no improvement (adj. R2 = 0.41).   

Most analysts would examine the residual plot and see that hump-shaped relationships that are not 
being fit.  A possible solution to this is to include a quadratic term for each factor.  Adding these terms 
gives a pool of five predictors and the model:   
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Figure 14.  Attempts by various modeling strategies to recover a surface representing Gaussian responses 
to Factor1 and Factor2.  A. The simulated response surface that the models try to recover; 200 points were 
sampled on this surface.  B. Multiple linear regression (MLR) with two linear terms.  C. MLR with 
quadratic terms.  D. MLR with the best four variables drawn from a pool of 10 variables with quadratic, 
cubic, and interaction terms of the quadratics with the two factors.  E.  NPMR, local mean and Gaussian 
weights.  F.  NPMR, local linear model and Gaussian weights.  Right panels:  Comparisons of predicted 
vs. observed responses. 
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Using a backwards elimination along with criteria of an R2 improvement of 0.05 and a t = 2.0 for 
the partial regression coefficients, two variables are retained:  

0
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This model is considerably better (adjusted R2 = 0.55; Table 4), but the surface (Fig. 14C) still does not 
resemble the actual response surface (Fig. 14A).   

Last, we increase the pool of variables to 10 by including cubic terms of the original variables, 
along with interactions of the quadratic terms with the other predictors.  Backwards elimination results in a 
model with four predictors and adjusted R2 = 0.77 (Table 4).  Now our model is: 
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Still the fit is not what we would hope for.  Even taking the unparsimonious approach of forcing all ten 
terms improves the fit to adjusted R2 = 0.81.  The resulting surface (Fig. 14D) starts to resemble our known 
underlying model, but still leaves much to be desired, for example the odd upswing in the surface at high 
values of Factor1. 

NPMR models 
 Table 4 compares the preceding regressions with results from NPMR, using the same data.  The 
minimum average neighborhood size was set at 10.  NPMR easily captured about 95% of the variation in 
the response variable using the two predictors, Factor1 and Factor2.  In contrast, our best least-squares 
model explained about ¾ of the variation in abundance.  Note that we did not need to specify interaction 
terms, because NPMR automatically models interactions. 

 

Table 4.  Fitted models for least-squares regression and nonparametric 
multiplicative regression (NPMR).  The R2 statistics are adjusted R2 

values for least-squares models, and cross-validated xR2 for NPMR. 

 

Model type R2 

Least-squares regression  

2 factors, no interaction 0.406 

With Factor1 x Factor2 0.406 

With quadratic terms 0.554 

Best 4 predictors from pool with quadratic, 
cubic, and interaction terms with quadratics 

0.774 

NPMR  

Local mean, uniform weights (SpOcc) 0.949 

Local mean, Gaussian weights 0.930 

Local linear, Gaussian weights 0.945 

 

 The fitted response surfaces from NPMR (Fig. 14E and 14F) essentially reproduce the original 
surface.  A tight relationship is obtained between predicted and observed values (Fig. 14, right panel).  The 
residuals are relatively well behaved, being fairly small and evenly distributed across the predictors.   

The differences among the NPMR models is minor (Tables 4 and 5), compared to the difference 
between the least squares (MLR) models and the NPMR models.  The uniform weights and local mean 
yielded the highest R2, but the 3D plot (not shown) reveals a surface is somewhat bumpy and irregular, and 
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is probably overfitting slightly.  The local linear model performs slightly better than the local mean with 
Gaussian weights, but at a small cost of producing some estimates that fall outside the range of the original 
response variable (negative abundances).  Considering this fact, the local mean with Gaussian weights 
seems preferable to the local linear model with this data set. 

 For this particular data set, a GAM with (poisson family, log link, spline smoother) should readily 
capture the response surface, because the log link effectively decomposes the two multiplied underlying 
functions and the smoothing splines capture their shapes.   

 If, on the other hand, curve shapes do not permeate each dimension of the predictor space, then 
GAM is likely to perform worse than NPMR (see McCune 2006, App. 3.   In other words, GAMs appears 
to fall short when parallel slices of the response surface along a given predictor have fundamentally 
different shapes, for example sigmoid on wet sites and hump-shaped on mesic sites.  With NPMR, on the 
other hand, the curve shapes in one part of the multidimensional response surface need not bear any 
relationship to the shapes in other parts of the response surface. 

 

Table 5.  NPMR model characteristics, applied to the simulated response surface combining 
sigmoid and Gaussian curves.  Tolerance is one standard deviation of the Gaussian smoothing 
function or, in the case of uniform weights, the half-width of the observational window.  The 
column xR2 is the cross-validated R2 and N* is the average neighborhood size (both of these 
explained below). 

 

   Tolerance 

Model type xR2 N* Factor1 Factor2 

Local mean, uniform weights (SpOcc) 0.949 10.9 0.74 0.39 

Local mean, Gaussian weights (LM-NPMR) 0.930 10.8 0.49 0.39 

Local linear, Gaussian weights (LLR-NPMR) 0.945 10.8 0.49 0.39 
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Detailed Example of NPMR for a Tiny Data Set  
The following example is worked out in detail.  The example uses a local mean and a Gaussian 

kernel.  The left hand column gives the algebra for each step, paralleled by the right-hand column which 
substitutes the numbers of a particular tiny data set. 

 

Step Example 

1.  Define a response variable y and a matrix X 
with m predictors. Both matrices have n rows 
(sample units). 

 

Response matrix            Predictor matrix 
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The example has n = 10 sample units (rows) and m = 2 
predictors. 

 

4.2

42

15

23

12

24

33

31

45

53

51

1

6

4

2

6

3

1

1

0

0

















































































 yXy  

2. Set the tolerance, sj, the standard deviation of 
the Gaussian weighting function for each 
predictor.  This is the smoothing parameter.  
Normally this is optimized by an iterative 
search, but for this example we choose a single 
value for each predictor. 

tolerance = sj,    j=1, ... , m 

 

 

s1 = 2.6 

 

s2 = 1.2 

 

3. Calculate an estimated response for each 

target point, ),1,ˆ( nvyv  as a weighted local 

mean for each target point, omitting the target 
point (“leave-one-out” cross-validation). 
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For 1ŷ  the predictors at the first target point are: 

51 2,121,11  xvxv  

The estimated response at the first target point is 
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First find the weights in the first term of the numerator: 

7439.0
22

111,2 ]6.2/)13[(5.]/)[(5.
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1
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continuing for the other terms... 
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Step Example 

 7066.0
2]2.1/)54[(5.

2,10  ew  

Then sum the products of the weights and the observations, 
and divide by the sum of the products of the weights: 

7066.09287.07066.03062.017439.0

7066.09287.017066.03062.0117439.00
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Continuing for all of the target points, 
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4.  The products of the weights can be 
stored in a n x n weighting matrix, W*:  
w*ik is the weight for point i in estimating 
point k, and 0  w*  1: 





m

j
ijkik ww

1

*  

With leave-one-out cross validation the 
diagonal contains zeros, since a given 
data point contributes nothing to the 
estimated response at that point.  
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Row totals are the sum of the weights 
applied to each point, the local 
neighborhood size or local sample size, 
n*.  Form N, a diagonal matrix from the 
row totals of W*: 
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5.  The average neighborhood size is: 
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6. One can express the basic local mean 
equation above in matrix algebra by first 
forming a smoothing matrix, U: 
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U is equivalent to dividing each element of 
W* by its row total, the neighborhood size 
(ni*).  One row of U contains the weights for 
each element of y, the weights defined by the 
proximity in X of each observation  to the 
target point.  Note that U still has zeros in the 
diagonal but is asymmetric.  U differs from 
W in that the row totals of U are all 1.0, 
while the row totals of W will usually vary. 
Consequently, the weight applied to point i in 
estimating a response at point j is not the 
same as the weight applied to j when 
estimating at point i. This is because the sum 
of the weights in W will usually differ for 
each point (see N above). 
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This is analogous to the “hat” matrix in 
ordinary least squares regression, because 
one can calculate the “y-hats” by multiplying 
the hat matrix (or smoothing matrix) by the 
observed responses, y.  The estimated 
responses at the data points are: 
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Calculate the smoothing matrix: 
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Multiplying the smoothing matrix by the response data: 
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ŷ

 

yields: 
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7. Now evaluate the fit of the estimates to 
the data.  For quantitative data, we use the 
error (residual) sum of squares (RSS) in 
proportion to the total sum of squares 
(TSS): 

TSS

RSS
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8. Plot a 3D response surface in relation to 
two predictors, ),...,2,1(ˆ xmxxfy  , by 
estimating a response for selected values of 
x, normally a grid of combinations of x1, 
x2, etc.  For each grid position, estimate the 
response as a local mean (see equation in 
Step 3).  Do not plot a response if the local 
neighborhood size is less than a user-set 
minimum. 

Response surface with minimum neighborhood size = 3.  Grey 
cutouts have insufficient data for estimate. 

9.  Plot predicted ( ŷ ) vs. observed (y) 

values.  
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10. Plot residuals for a partial model, 
excluding a focal variable. 

Residuals for a model without x1 versus x2.  This shows the 
relationship of the response to x2 while controlling for the 
other variables in the model (in this case only x1). 
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11. To evaluate the contributions of each predictor to 
the model, calculate a sensitivity Q to each predictor 
j.  Nudge up and down the observed values for 
individual predictors, and measure the resulting 
change in the estimated response for that point 
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where 

iŷ  and iŷ  are the estimates of the response 

variable for case i, having increased or decreased, 
respectively, the value of the predictor by an 

arbitrarily small proportion, Δ. The estimates iŷ are 

calculated in this case without crossvalidation. 

 

|ymax – ymin| = observed range of the response variable 

 

Δ = an arbitrary small proportion of the range of 
predictor j 

 

The responses are calculated on the basis of the 
nudged values of the predictors, x. These are nudged 
by the proportion Δ of the range in individual 
columns of x: 

 

Range = |xmax1 – xmin1| 

Amount that xij is nudged = |xmax1 – xmin1| Δ 

|xmax1 – xmin1| = 4               Δ = 0.05 

|xmax1 – xmin1| Δ = 0.2 

 

For the first predictor (j=1), nudge each x1 up or down by 0.3, 
leaving x2 unchanged: 
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Estimate y for each of these nudgings, then calculate the 
difference between the estimate for the nudged value and the 
estimate for the non-nudged value: 
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Sum the absolute values of the differences and divide by 
number of nudgings and the fraction of the range in the 
response variable: 

05.06102

38.136.174.75.36.26.36.46.

1

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


Q  

115.01 Q  

Repeat by nudging the second variable, leaving the first one 
intact: 

463.02 Q  

The response is about 4 times more sensitive to the second 
predictor than to the first. 
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12. Alternatively, to be more consistent with the 
traditional concept of variance, calculate the 
sensitivity from the root mean squared differences 
rather than the absolute differences: 
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130.01 Q              507.02 Q  

 

Again, the response is about 4 times more sensitive to the 
second predictor than to the first. 
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Comparison of NPMR in HyperNiche to 
Nonparametric Multiple Regression in S-Plus 

 

The key features of NPMR (nonparametric multiplicative regression) can be understood by 
comparison to nonparametric multiple regression in the software S-Plus.  The following comparison is 
based on the terminology and logic of Fox (2002). 

 

Fox (2002) gives the nonparametric multiple regression model as: 

  iii fy  )( 'x  

iikii xxxf  ),,,( 21   

where '
ix = ),,,( 21 kxxx  is a vector of k predictors for the ith of n observations and y is the response.  

The errors εi are often assumed to be independent and normally distributed.  The object in NPMR, as in 
nonparametric regression, is to estimate the response surface rather than to estimate parameters for a model 
of defined functions relating y to x. 

 

 1. The first step in estimating the response surface is to define a multivariate neighborhood around 

a focal point (or target point) ),,,( 00201
'
0 kxxx x .  The default method in the loess function of S-

Plus defines the neighborhood by scaled Euclidean distances: 
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where the zj are predictors standardized to mean = 0 and variance = 1. 

 

 2. Next, weights are defined based on the scaled distances: 
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where W(.) is a weighting function and h is the half-width of the neighborhood.  In other words, the weight 
applied to any given point in estimating the value at a target point is based on the distance of the given data 
point from the target point in the predictor space.  Fox (2002) mentions the tricube weighting function, 
while HyperNiche defaults to a Gaussian weighting function.  The value h is also known as the bandwidth 
or smoothing parameter, or in HyperNiche in the context of species response functions, as the tolerance. 

NPMR uses a particular form of this, differing from that in S-Plus in that: 
 h is selected for each predictor, so that it is hj, rather than using a single h for all 

predictors.  This allows us to represent organisms responding strongly to some 
predictors and weakly to others. 

 in HyperNiche hj is optimized for each predictor in combination with the other 
predictors, so as to minimize crossvalidation error 

 weights for particular data points are always multiplied across predictors in NPMR.  If a 
Gaussian weighting function is chosen, the relationship to the scaled Euclidean distance 
(above) can be seen: 

The weight for a particular point i and predictor j is: 

   2//exp 2
0 jjijij hxxw   
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Combining weights multiplicatively for point i across predictors we have: 
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Substituting into this the preceding expression, we get: 
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Notice that now the scaled Euclidean distance is weighted separately on each dimension of the predictor 
space, according to hj.  In essence, the predictor space is stretched or compressed according to the 
importance of the predictor.  The predictor space is stretched in the dimension of a weak predictors, such 
that the data points appear relatively far (and therefore not influential) in those dimensions. 

 With NPMR we need not preserve these Euclidean properties or the conversion of the exponential 
function into an additive function.  For example, we may include categorical predictors with hj = 0 or use 
another nonexponential weighting function. 

 

 3. Last, responses are estimated.  In nonparametric multiple regression, a weighted polynomial 
regression is made of y on the predictors.  A separate weighted least-squares regression is solved at each 
target point. While the regression fits a relationship for the neighborhood of the target point, a particular 
regression is needed to fit the response at each target point.  Fox (2002) gave the example of a local linear 
model: 

ikikkiii exxbxxbxxbay  )()()( 002220111   

Note that the emphasis given to particular predictors by the regression coefficients b can thus vary 
throughout the predictor space, according to the strength of their local linear relationships to the response. 

Step 3 is the same as above for the local linear form of NPMR, except that the target point is 
excluded from the fitting process.  This leave-one-out cross-validation process makes our error estimates 
more realistic.  With the local mean form of NPMR, the response are estimated as a weighted average 
rather than a weighted least-squares regression. 

The differences between basic nonparametric multiple regression, as outlined in Fox (2002), and 
NPMR, as implemented in HyperNiche, are summarized in the table below.  These concern only the 
processes of defining the local neighborhood and estimating the response surface.  Further differences 
emerge in the process of variable selection. 

Table 6. Comparison of NPMR in HyperNiche with basic nonparametric regression as in Fox (2002). 

Property 
Basic nonparametric   
multiple regression NPMR in HyperNiche 

weights single weight based on 
Euclidean distance to target 
(isotropic predictor space) 

separate weights for each predictor allow us to 
stretch or compress the predictor space in various 
dimensions (anisotropic predictor space) 

information from 
target point 

included in fitting procedure 
with maximum weight 

excluded from fitting procedure 

bandwidth (smoothing 
parameter or tolerance) 

single bandwidth  separate bandwidth for each predictor 

bandwidth selection arbitrary optimized for each predictor in combination with 
the other predictors, using minimum cross-
validation error as optimization principle 
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Example of Overfitting 
Overfitting is a potentially serious problem for statistical models, particularly with small sample 

sizes or when the number of predictors is large, relative to the sample size.  The very small data set in 
Table 7 provides an extreme example of the problems of overfitting, illustrated with standard least-squares 
multiple regression.  Using a cross-validated R2 clearly reveals this overfitting. 

 

 

Table 7.  A small simulated data set to illustrate the problem of overfitting. 

 Response 
variable 

  Predictor 
variables 

 

i Y  X X2 X3 
1 1.0  1.0 23.0 7.0 
2 4.5  1.5 62.0 1.0 
3 2.5  5.0 13.0 5.0 
4 0.5  7.0 87.0 2.0 
5 2.0  7.5 33.0 9.0 

 

 

If we regress Y on the Xs, we obtain an R2 of 0.34.  To calculate a cross-validated R2, we fit a 
regression line for the data five times (Fig. 15), each time omitting one of the data points.  We then 
calculate an estimated value for that each point, based on a regression equation that did not include that 
particular point.  Subtracting the observed values from those estimates, we can calculate a leave-one-out 
residual sum of squares (Table 8).  Because we have seriously overfit this model, the cross R2 is far lower 
than the regular R2, indicating that extreme overfitting. 

 

 

Table 8.  Residual sum of squares (SSR), total sum of squares (SST) 
and R2 calculated in the usual way compared with values from a leave-
one-out crossvalidation.  The large drop from the usual R2 to the cross-
validated R2 reveals that the data were grossly overfit. 

 

 Usual 
statistic 

Leave-one-out 

cross-validated 

SSR 6.4 335.3 

SST 9.7 9.7 

R2 0.34 -33.6 
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Figure 15.  Example of overfitting revealed with leave-one-out cross validation.  The upper left panel 
shows the least-squares fit to y = f(X, X2, X3) for the whole data set (R2 = 0.34, n = 5).  The remaining 
panels show the curve fit with each point left out (n = 4 for each of the “leave one out” panels).  The 
residuals are the vertical distances between the curves and the diamonds.  Based on these residuals, the 
cross-validated R2 = -33.6. 
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Appendix A – Notation 
 

b = vector of regression coefficients with j = 0 to m elements and b0 is the intercept. 

Bkl = likelihood ratio comparing fitted model k to naive model l. 

i = array index for n sample units (sites) 

j = array index for m predictor variables 

k = array index for miscellaneous arrays 

l = array index for miscellaneous arrays 

m = number of predictor variables in the model 

Mk = model k to be compared to another model with a likelihood ratio. 

n = number of sample units (sites) 

ni* = neighborhood size,  the amount of data bearing on the estimate of the response variable at point i, 
calculated as the sum of the weights applied to that particular point. 

N* = average neighborhood size across all data points. 

q = number of predictor variables not in the model 

sj = standard deviation of the Gaussian weighting function for predictor variable j, applied to a given 
predictor such that the full range of observed values for that variable falls over six standard 
deviations.  Also known as the smoothing parameter or bandwidth. 

v = vector specifying the habitat (or other predictors) at the target point, this vector being row vector of j = 
1 to m columns (variables).  This vector usually represents the position of the target point in a 
space defined by the j = 1, 2, .. m predictors. 

w*ij = weight applied to point i for predictor j.  The asterisk indicates that it is a univariate weight, as 
opposed to a weight from the matrix W. 

W = n  n diagonal matrix with each diagonal element being a product of weights from each predictor 
variable.  For sample unit i, the diagonal element is 





m

j
ijii ww

1

*  

X = matrix of predictors (habitat or environmental variables) with i = 1 to n rows (sample units) and j = 1 
to m columns (variables). 

y = vector of observed presence-absence, abundance, or other response variable.  This is a column vector 
of i = 1 to n rows (sample units). 

vŷ = fitted value or estimated probability of occurrence of species at target point v. If the vector y contains 

presence-absence data then vŷ is a likelihood of occurrence.  If y contains a  measure of abundance 

then vŷ  is an estimate of abundance. 

Z = design matrix of predictors (habitat or environmental variables) with i = 1 to n rows (sample units) and 
j = 1 to m+1 columns (variables).  The first column contains 1s.  The ith row has the elements:  

[ 1   (x1i – v1)   (x2i – v2)  …   (xji – vj)   ] 
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Appendix B – Method for Free Search 
This section describes how the program HyperNiche searches for the best combination of predictor 

variables, as part of its “Free search” option.  The “best” model depends on fit, parsimony, and minimum average 
neighborhood size, as discussed above. 

One of two methods is used, either an exhaustive search of all possible models or a stepwise search using 
an algorithm for a guided search.  The computer automatically uses the exhaustive search if the number of possible 
models is less than a certain number, set at 100,000 in HyperNiche version 1.0. 

An exhaustive search evaluates all possible combinations of predictors and tolerances.  For quantitative 
variables, tolerances are varied in increments of 5% (or another increment of your choice) of the range of the habitat 
variable.  Categorical variables require an exact match, so for these, tolerance is not varied. 

HyperNiche 1.0 defaults to 15 tolerance levels at 5% increments (5, 10, 15 ... 75%) for quantitative 
predictors, plus a 16th level for “off” (i.e. the variable removed from the calculation).  Tolerances broader than 75% 
are not examined because they are rarely useful.  With the default of 5% increments, if there are c categorical 
predictors available, and q quantitative predictors available, then an exhaustive search requires the evaluation of the 
following number of models: 

Number of trial models  =  (16q )(2c) 

Clearly, the number of trial models increases very rapidly with the size of the pool of predictors.  With 
even a moderate number of potential predictors, a sensible search through the potential models is needed. 

The stepwise search begins by screening all predictors for the best one-variable model.  Additional 
variables are then added stepwise, seeking improvement at each step.  However, the algorithm looks both forward 
and backward, in that with the addition of a given variable, each variable already in the model is considered for 
removal or adjustment in tolerance.   

The steps below are for quantitative predictors.  Categorical predictors are handled similarly except that 
tolerances cannot be adjusted -- the variable is simply included or not. 

Step 1 
Screen predictors for best single-predictor model by calculating model fit for each tolerance level for each 

predictor.  Select from these the model with the best fit as the current model. 

Step 2 
Define a set of trial models with m + 1 predictors, consisting of variable(s) already in the model plus the 

possible addition of each additional predictor at a full range of tolerances. 

If there are c categorical predictors available, m quantitative predictors in the model, q quantitative 
predictors not in the model, and if the number of trial tolerances for the new variable is NINCR then: 

Number of trials in a set  =  (3m) (NINCR)(q)(2c) 

Step 3 
Repeat #2 but adjusting the tolerance of each previous predictor by adding or subtracting the specified 

increment.  For Method 1 (thorough backtracking) try excluding each combination of those variables.  For Method 
2 (minimal backtracking) only one existing variable at a time is adjusted.  Method 1 is more thorough, but it wastes 
time by evaluating models that have already been evaluated.  Method 2 seems relatively fast and effective and is 
recommended. 

Example of free search.— With one previous quantitative predictor in the model (VAR1) and one new 
quantitative predictor (VAR2) tentatively selected, we try 2 tolerances for VAR1 times NINCR tolerances for 
VAR2 (Table 9).  The existing model includes VAR1 with a tolerance of 10% of its range (“In(10)” in Table 9) 
while VAR2 is not in the model (“Out”).  Assume our increment for tolerance is 5% of the range and we test only 
tolerances from 5-75%.  All of the trial models are listed below.  The model resulting in the best fit is selected as the 
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next model for trials for further improvement.  Because there is only one variable already in the model, Methods 1 
and 2 are the same. 

 

Table 9.  Example of free search with two quantitative variables, showing all 
possible trial models.  “In” means the variable is in the model; “out” means it is 
out of the model.  Tolerances are expressed here as a percentage of the range in 
the predictor. 

Trial  number VAR1 (tolerance) VAR2 (tolerance) 

Existing model In (10) Out 
1 Out In (5) 
2 Out In (10) 
3 Out In (15) 
etc. etc. etc. 
15 Out In (75) 
16 In (5) In (5) 
17 In (5) In (10) 
18 In (5) In (15) 
etc. etc. etc. 
30 In (5) In (75) 
31 In (10) In (5) 
32 In (10) In (10) 
33 In (10) In (15) 
etc. etc. etc. 
45 In (10) In (75) 
46 In (15) In (5) 
47 In (15) In (10) 
48 In (15) In (15) 
etc. etc. etc. 
60 In (15) In (75) 

 

If the existing and new predictors are both categorical, and membership in the categories is strictly applied 
(tolerance = 0), the models in Table 10 are evaluated.  If the existing predictor is quantitative and a categorical 
predictor is being considered for addition, the models in Table 11 are evaluated. 

 

Table 10.  Example of free search with two categorical predictors, showing all 
possible trial models. 

Trial  number VAR1 VAR2 

Existing model In  Out 
1 Out In 
2 In In 

 

Table 11.  Example of free search with one existing quantitative predictor and a 
categorical predictor being considered for addition, showing all possible trial 
models. 

Trial  number Variable 1 (tolerance) Variable 2  

Existing model In (10) Out 
1 Out In 
2 In (5) In 
3 In (10) In 
4 In (15) In 
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With two predictors already in the model, one quantitative and one categorical, and a third categorical 
predictor is being considered for addition, the following set of models is evaluated (Table 12). 

 

Table 12.  Example of free search with two existing predictors in the model, one quantitative and 
one categorical.  A third categorical predictor is being considered for addition.  All trial models 
are shown. 

Method 1 (thorough backtracking)   

 Trial  number Variable 1 (tolerance) Variable 2 Variable 3  

 Existing model In (10) In Out 
 1 Out In In 
 2 Out Out In 
 3 In (5) In In 
 4 In (5) Out In 
 5 In (10) In In 
 6 In (10) Out In 
 7 In (15) In In 
 8 In (15) Out In 

Method 2 (minimal backtracking)   

 Trial  number Variable 1 (tolerance) Variable 2 Variable 3  

 Existing model In (10) In Out 
 1 Out In In 
 2 In (5) In In 
 3 In (10) In In 
 4 In (15) In In 
 5 In (10) Out In 

Step 4 
Repeat these trials for each predictor not in the model.  With m predictors in the model and q predictors not 

in the model, the number of trials in this set is: 

Method 1: Number of trials in a set = (4m )(2q) NINCR 
Method 2: Number of trials in a set = (4m + 2q) NINCR 

From this total, the number of combinations that result from changing settings of variables already in the model are: 
Method 1: Number of combinations for variables already included = (4m)(2q) 
Method 2: Number of combinations for variables already included = (4m)(2q) 

Step 5 
Select the best model from this set.  The best model must equal or exceed the minimum average 

neighborhood size. 

Step 6 
If the best model from this set is not better than the previous model, according to the parsimony criteria, 

then stop.  Otherwise, accept the best model from this set as the current model. 

Step 7 
If all of the following are true,  go to step 2. 

1. the user-defined maximum number of trials has not been exceeded 
2. the user-defined Data:Predictor ratio is still exceeded 
3. perfect prediction in the cross validation has not been achieved 

If any of the above are false, then stop searching for a better model. 
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Appendix C – Example Publications Using NPMR and 
HyperNiche 

 

NPMR is relatively new, but the number of papers published with the method has increased rapidly.  The 
following list includes both one-predictor applications (nonparametric regression, NPR), and multipredictor models 
using the multiplicative weighting functions (nonparametric multiplicative regression, NPMR). 

 

Reference Response data type Notes 

Antoine & McCune (2004) 

http://dx.doi.org/10.1639/0007-
2745(2004)107[0163:CFAREN]2.0.
CO;2 

quantitative (growth rates 
and abundance classes) 

Local mean NPMR, Gaussian weights, 1-
predictor models, small sample size 

Berryman & McCune (2006) 

http://dx.doi.org/10.1658/1100-
9233(2006)17[157:EEMBFT]2.0.C
O;2 

quantitative (lichen 
biomass) 

Local mean NPMR, Gaussian weights used to 
relate lichen biomass to stand structure and 
topography.  Based on the response surfaces 
observed with NPMR, they chose final models 
of three types:  NPMR, nonlinear regression, 
and multiple linear regression.  

Binder & Ellis (2008) 

http://dx.doi.org/10.1017/S0024282
908007275 

binary (species presence 
and randomly generated 
pseudo-absences in a 
regional grid) 

Local mean NPMR, Gaussian weights.  
Modeled responses to pollutant loads and 
climate variables under various climate change 
scenarios; randomization tests; evaluated 
spatial autocorrelation. Results further filtered 
by applying a ‘habitat mask’ representing 
declines in a key substrate for the target 
species. 

Casazza et al (2007) 

http://dx.doi.org/10.1111/j.1472-
4642.2007.00412.x.  

quantitative (number of 
endemic taxa) 

Local mean NPMR, uniform weights (“SpOcc” 
model). Modeled diversity of endemic plants in 
relation to glacial limit, substrate type, and 
thermoclimatic belts. 

Crabtree & Ellis (2010) quantitative (canopy 
height, cover of bare 
ground) 

Local mean NPMR, Gaussian weights. 
Compared with cross-validated errors with 
multiple least-squares regression. In this case 
normalized squared residuals were similar 
between NPMR and MLS. 

Cristofolini et al. (2008) 

http://dx.doi.org/10.1016/j.envpol.2
007.06.040 

quantitative (lichen 
diversity) 

Local mean NPMR, uniform weights (“SpOcc” 
model). Modeled overall lichen diversity and 
nitrophytic lichen diversity in response to 
pollutant concentrations, stand characteristics, 
and other environmental variables. 

DeBano et al. (2010) 

doi: 10.1603/EN08270 

quantitative (insects 
trapped per month) 

Local mean NPMR and Gaussian weights, 
modeling insect pests trapped per month 
against weather and other environmental 
variables. Numerous 3D wireframe response 
surfaces, sensitivity analysis, and 
randomization tests. Clear 1-page explanation 
of NPMR. 

Derr et al. (2007) 

http://dx.doi.org/10.1639/0007-

quantitative (species 
richness in relation to 
geography and community 

Local linear NPMR, Gaussian weights. 
Compared fit of species richness to four 
different sets of predictors: 
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2745(2007)110[521:EMCIPC]2.0.C
O;2 

ordination scores) topographic+geographic, vascular plants, the 
combination of the two preceding sets, and 
community ordination scores. 

Duren & Muir (2010) quantitative (tree age) Local mean NPMR, Gaussian weights. 
Regressed true age against tree size, growth 
ring patterns, and community type. Used 
resulting models to estimate tree age for 
samples with poor quality counts from stem 
sections. 

Ellis & Coppins (2007) 

http://dx.doi.org/10.1658/1100-
9233(2007)18[725:CCAHSI]2.0.CO
;2 

quantitative (species 
richness) 

Local mean NPMR, Gaussian weights. 
Stepwise selection of predictors representing 
climate and forest structure; randomization test. 
Predictors were selected from a pool of 15 
variables and evaluated with a randomization 
test. Models were used to generate predictions 
based on future climate scenarios. 

Ellis et al. (2007a) 

http://dx.doi.org/10.1016/j.biocon.2
006.10.036 

binary (species presence) Local mean NPMR, Gaussian weights. 
Modeled species presence against climatic 
predictors. Applied models to climate change 
scenarios. 

Ellis et al. (2007b) 

http://dx.doi.org/10.1016/j.biocon.2
007.08.016 

binary (species presence) 
for 26 species 

Local mean NPMR, Gaussian weights. 
Modeled species presence against climatic 
predictors; included randomization tests and 
AUCs. They present NPMR models for many 
species, depicted them geographically rather 
than response surfaces in the predictor space. 

Fenton & Bergeron (2008) 

http://dx.doi.org/10.1016/j.biocon.2
008.03.019   

quantitative (species 
richness and evenness) 

Assessed the relative roles of age and habitat in 
creating and maintaining species diversity. 
“Local mean NPMR, Gaussian weights. "...use 
of multiple overlapping data sets  with NPMR 
and subsequent comparisons permits complex 
interactions between different variables to be 
teased out.”..." 

Flitcroft (2008) 

https://ir.library.oregonstate.edu/dsp
ace/handle/1957/7262 

quantitative (log density of 
a species) 

Log density of juvenile salmon regressed 
against habitat characteristics , using local 
mean and Gaussian weights. Used NPMR 
because of failure of parametric modeling. 

Gilligan & Muir (2011) 

http://www.bioone.org/doi/pdf/10.3
955/046.085.0206 

quantitative (tree ages) Local-linear NPMR, Gaussian weights, 
regressing tree age against plot and tree 
characteristics. Included a randomization test 
and application to predict ages of non-cored 
trees. 

Giordani (2007) 

http://dx.doi.org/10.1016/j.envpol.2
006.03.030 

quantitative (diversity) Local mean NPMR, uniform weights (“SpOcc” 
model). Diversity regressed against pollutants 
and other environmental variables. 

Giordani & Incerti (2008) 

http://dx.doi.org/10.1007/s11258-
007-9324-7 

quantitative (species 
abundance) 

Local mean NPMR, uniform weights (“SpOcc” 
model). Regressed many species against 
macroclimatic variables.  

Grundel & Pavlovic (2008) 

http://dx.doi.org/10.1650/0010-
5422(2007)109[734:ROBSDT]2.0.

quantitative (bird species 
density) 

Local mean NPMR, Gaussian weights, 
modeling the density of many bird species in 
relationship to numerous habitat factors. This 
paper gives a lucid explanation of NPMR, 
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CO;2 three dimensional response surfaces, and some 
nice examples of interacting nonlinear 
responses. 

Hosten et al. (2007) 

http://www.blm.gov/or/districts/med
ford/files/livestocksumm.pdf 

Grazing utilization Local mean NPMR, Gaussian weights. 
Modeled the relationship of maximum 
utilization and average utilization to 
environmental factors, vegetative descriptors, 
and management activities 

Jovan (2003) 

http://www.treesearch.fs.fed.us/pubs
/25497 

quantitative (species 
abundance classes) 

Local mean NPMR, Gaussian weights, 1- to 3-
predictor models 

Jovan & McCune (2005) 

http://www.fia.fs.fed.us/lichen/pdfs/
Jovan_and_McCune_2005.pdf 

Species abundance in 
relation to scores on NMS 
ordinations 

Local mean NPMR, Gaussian weights.  Used 
optimum value for a species on one axis while 
fitting the response curve to another axis. In 
effect this slices a response surface along  a 
particular plane. 

Jovan & McCune (2006) 

http://dx.doi.org/10.1007/s11270-
006-2814-8 

Nitrophile abundance in 
relation to elevation. 

Local mean NPR, Gaussian weights, 1 
predictor.  Compared to nonlinear regression 
and simple linear regression. 

Kohler (2007) 

https://ir.library.oregonstate.edu/dsp
ace/handle/1957/4600 

quantitative, 
log(abundance of species) 

Local mean NPR, Gaussian weights. Regressed 
population size (density of an insect species) 
against “hemlock woolly adelgid population 
score” 

Lintz et al. (2011) 

http://dx.doi.org/10.1016/j.ecolmod
el.2010.10.017 

 

quantitative and presence-
absence, simulated and real 
data 

Developed indices of threshold strength and 
diagonality in 3D response surfaces; Local 
mean NPMR with Gaussian weights. 
Compared the performance of Random Forests, 
Classification and Regression Trees, and 
NPMR using a large variety of 3D response 
surfaces. They found: "The accuracy of each 
method depends on the threshold strength and 
diagonality of the original data structure with 
each method differing in degree of dependence 
(Fig. 4). The accuracy of most methods 
decreases as diagonality increases and 
threshold strength decreases with the exception 
of NPMR with continuous data... NPMR 
demonstrates the least variability (seen as 
quantile bars in Fig. 4) and the greatest 
accuracy (seen as medians in Fig. 4) compared 
to the other methods for a given response 
shape. The sensitivities of modeling methods to 
shape attributes of data structure arises from 
features specific to each modeling method, 
which manifest in visual differences of 
predicted surfaces for different shapes (Fig. 5). 
For our subsequent analyses using real 
ecological data, we choose the most accurate 
and robust method we test, NPMR." 

McCune (2006) 

https://ir.library.oregonstate.edu/dsp
ace/handle/1957/3685 

binary (species presence) 
and quantitative (species 
abundance) 

Local mean NPMR, Gaussian weights, medium 
and large sample sizes, simulated and real data, 
comparison of linear, logistic and NPMR 
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models. 

McCune (2007) 

http://oregonstate.edu/~mccuneb/Mc
Cune2007JVS-HeatLoad.pdf 

quantitative (potential 
direct incident radiation) 

Local linear NPMR, Gaussian weights, with 
slope, aspect, and latitude as predictors 

McCune et al. (2003) 

http://www.cof.orst.edu/cof/fs/resea
rch/silv/berger/sberryman/ESA%20
paper.pdf 

binary (species presence) Local mean NPMR, uniform weighting 
function (predates inclusion of Gaussian 
weights in HyperNiche), 1- and 2-predictor 
models 

Miller et al. (2007) 
http://dx.doi.org/10.1111/j.1365-
2427.2007.01850.x 

quantitative (community 
ordination scores, species 
richness and density of 
particular functional 
groups) 

Local mean NPMR, Gaussian weights, used to 
model stream insect communities in relation to 
longitudinal gradients. Detailed, clear 
explanation of NPMR, including model 
specification and sensitivity analysis. Nice 
exposition of detecting interactions.  

Minuto et al. (2006) 
http://dx.doi.org/10.1080/11263500
600756348 

quantitative (genetic 
diversity) 

Local mean NPMR, uniform weights; 
regressed genetic diversity against geography 
(latitude, longitude, elevation) and population 
features (number of individuals, occupancy 
area, occupancy rate). 

Ponzetti et al. (2007) 
http://dx.doi.org/10.1639/0007-
2745(2007)110[706:BSCIRT]2.0.C
O;2 

quantitative (species 
abundance classes and 
community ordination 
scores) 

Local linear NPMR, Gaussian weights; 
regressed many species against ordination 
scores; also quantitative community ordination 
scores regressed against disturbance and 
cheatgrass. 

Ponadera & Potapova (2007) 
http://dx.doi.org/10.1016/j.limno.20
07.01.004 

quantitative (abundance of 
diatom species) 

Local linear NPMR, Gaussian weights. 
Regional-scale analysis of diatom species 
abundance in relation to water chemistry. 

Potapova & Wintel (2006) 
http://www.ansp.org/~potapova/pdf
s/Geissleria2006.pdf 

quantitative (% relative 
abundance and log-
transformed cell densities 

Local linear and local mean NPMR, Gaussian 
weights. Modeled abundance of three diatom 
species in relation to water quality variables. 
Includes a table comparing fits for local linear 
and local mean models. In general, the fits 
were slightly higher for local linear models. 

Reusser & Lee (2008) 
 
http://dx.doi.org/10.1093/icesjms/fs
n021 

binary (species presence) 
in benthic estuarine and 
coastal communities 

Local mean NPMR, Gaussian weights, used to 
model species presence in relation to habitat 
and geographic variables at two scales. 
“NPMR generally performs well at both spatial 
scales and that distributions of non-indigenous 
species are predicted as well as those of native 
species.” 

Rood et al. (2010) 
http://dx.doi.org/10.1007/s00442-
010-1758-2 
 

quantitative (willow cover) Local mean NPMR with Gaussian weights, 
regressing willow cover against environmental 
variables. Illustrations include 2D response 
curves superimposed on scatterplots. 

Schroeder et al. (2010) binary (tree species 
presence) 

Local mean NPMR with Gaussian weights, 
relating species presence to climate in a large 
region. Used three measures of model 
performance (logB, AUC, % improvement) in 
relation to range size. They also applied an 
ensemble approach to base maps of probability 
of occurrence on the top three models. 



 

 53

"Evaluation statistics revealed significant and 
accurate probability of occurrence models were 
developed for all six species... Across species, 
ranked evaluation statistics also revealed a 
pattern of decreasing model accuracy with 
increasing range size. At plot level, correlations 
between dominance and probability of 
occurrence were weakly positive..."  

Wedderburn et al. (2007) 
http://dx.doi.org/10.1111/j.1600-
0633.2007.00243.x 

quantitative (fish species 
abundance) 

Used NPR to relate individual fish species 
abundance to salinity. 

Welsh, H. H. & G. R. Hodgson 
(2010) 

binary (herpetofauna 
species presence) 

Local mean NPMR with Gaussian weights, 
regressing presence of species against stream 
and riparian habitat characteristics. 

Welsh, H. H. et al. (2010) quantitative (fish and 
amphibian abundance and 
amphibian richness) 

Local mean NPMR with Gaussian weights, 
regressing presence of species against aquatic 
and riparian habitat characteristics. 

Yost (2006) binary (species presence) Local mean NPMR with Gaussian weights, 
regressing presence of selected species against 
site factors, past management, and stand 
characteristics. 

Yost (2008) 
 
http://dx.doi.org/10.1016/j.ecolind.2
006.12.003 

binary (species presence) Local mean NPMR with Gaussian weights. 
“NPMR was compared with logistic regression 
(LR) by building reduced models from 
variables selected as best by NPMR and full 
models from variables identified as significant 
with a forward stepwise process and further 
manual testing. LogB was used to select 
models with the highest predictive capability. 
NPMR models were less complex and had 
higher predictive capability than LR for all 
modeling approaches. Spatial coordinates were 
among the most powerful predictors and the 
modeling approach with physiographic and 
stand structural variables together was the most 
improved relative to the average frequency of 
occurrence. GIS probability maps produced 
with the application of the physiographic 
models showed good spatial congruence 
between high probability values and plots that 
contained CLUN. NPMR proved to be a 
reliable probability modeling and mapping tool 
that could be used as the analytical link 
between monitoring and quantifying the status 
and trends of vegetation resources.” 
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