Bisphenol A at Low Nanomolar Doses Confers Chemoresistance in Estrogen Receptor Alpha Positive and Negative Breast Cancer Cells

Elizabeth W. LaPensee, Traci R. Tuttle, Sejal R. Fox, and Nira Ben-Jonathan

doi: 10.1289/ehp.11788 (available at http://dx.doi.org/)
Online 8 October 2008
Bisphenol A at Low Nanomolar Doses Confers Chemoresistance in Estrogen Receptor Alpha Positive and Negative Breast Cancer Cells

Elizabeth W. LaPensee, Traci R. Tuttle, Sejal R. Fox, and Nira Ben-Jonathan

Department of Cancer and Cell Biology, University of Cincinnati, Ohio, USA

Address correspondence to Nira Ben-Jonathan, Ph.D, Department of Cell and Cancer Biology, University of Cincinnati, 3125 Eden Ave, Cincinnati, OH 45267-0521 USA. Telephone: (513) 558-4821. Fax: (513) 558-4823. E-mail: Nira.Ben-Jonathan@uc.edu
Running Title: Chemoresistance by Bisphenol A

Key Words: bisphenol A, breast cancer cells, chemotherapeutic agents, cytotoxicity, estrogen receptors

Abbreviations:
BPA- bisphenol A
CSS - charcoal-stripped serum
DES- diethylstilbestrol
E2- estradiol
ERα/β- estrogen receptor α or β
ERR- estrogen-related receptor
GPR30 - G protein-coupled receptor 30
MTT- 4-[2-Phenyl-5,7-bis(trifluoromethyl)pyrazolo [1,5-a]pyrimidin-3-yl]phenol
PHTPP - 4-[2-Phenyl-5,7-bis(trifluoromethyl)pyrazolo [1,5-a] pyrimidin-3-yl]phenol

Article Descriptor: Breast Cancer

This work was supported by National Institutes of Health grants ES012212 and CA096613, Department of Defense grant BC05725 and Susan G. Komen Breast Cancer Foundation grant BCRT87406 (NBJ), and NIH training grant 5T32ES007250 (to EWL).
Outline

Abstract
Introduction
Materials and Methods
 Drugs and inhibitors
 Cell lines and culture conditions
 Cytotoxicity assay
 Western blotting
 Real-time PCR
 Data analysis
Results
 BPA protects T47D cells from chemotherapeutic-induced cytotoxicity
 BPA antagonizes chemotherapeutic agents in MDA-MB-468 cells
 BPA, at low nM concentrations, protects cells from doxorubicin-induced cytotoxicity
 The protective effects of BPA are not mediated via classical estrogen receptors
 Relative receptor expression in T47D and MDA-MB-468 cells
 BPA may promote chemoresistance by altering anti-apoptotic proteins
Discussion
References
Table
Figure legends
Figures
 Figure 1
 Figure 2
 Figure 3
 Figure 4
 Figure 5
 Figure 6
Abstract

Background. Resistance to chemotherapy is a major problem facing breast cancer patients, and identifying potential contributors to chemoresistance is a critical area of research. Bisphenol A (BPA) has long been suspected to promote carcinogenesis, but the high doses of BPA used in many studies generated conflicting results. In addition, the mechanism by which BPA exerts its biological actions is unclear. While estrogen has been shown to antagonize anti-cancer drugs, the role of BPA in chemoresistance has not been examined.

Objective. The objective was to determine whether BPA at low nanomolar concentrations opposes the action of doxorubicin, cisplatin and vinblastine in the ERα positive T47D and the ERα negative MDA-MB-468 breast cancer cells.

Methods. The responsiveness of cells to anti-cancer drugs and BPA was determined by the MTT cytotoxicity assay. Specific ERα and ERβ inhibitors and real-time PCR were used to identify potential receptor(s) that mediate the actions of BPA. Expression of anti-apoptotic proteins was assessed by Western blotting.

Results. BPA antagonizes the cytotoxicity of multiple chemotherapeutic agents in both ERα positive and negative breast cancer cells independent of the classical ERs. Both cell types express alternative ER receptors, including GRP30 and members of the estrogen related receptor (ERR) family. Increased expression of anti-apoptotic proteins is a potential mechanism by which BPA exerts its anti-cytotoxic effects.

Conclusions. BPA at environmentally relevant doses reduces the efficacy of chemotherapeutic agents. These data provide considerable support to the accumulating evidence that BPA is hazardous to human health.