Informal Notes on Lanczos
Chapter V, sects. 1-2, pp. 1114f.

The Passage from Newton to Least Action

For convenience, we divide the demonstration into seven parts, as follows:

1. The foundation: d’Alembert’s Principle

Newtonian forces acting on a system of particles, expressed in...

Our ultimate aim: to reformulate (them) as the “Lagrangian” and the Principle of
Least Action.

2. Convert to a time-integral
Integrate d’Alembert’s principle over time

3. Separate the resulting integral into two parts
(corresponding to d’Alembert’s impressed and reactive (inertial) forces.

4. Integrate the “holonomic” term
Label this term “alpha.” It represents the impressed force, derivable from a
potential, V.

5. Rearrange the “polygenic” terms
Label them “beta” and “gamma.” They represent the inertial reactions, which don’t
conform to any overall law.

6. Show that the “gamma” term gives us the kinetic energy of the system
Rearrange gamma using the product rule. Recognize the resulting expression as the
total kinetic energy 7.

7. Arrange the result in terms of the Lagrangian L, the action A, and the Principle of Least
Action

Detailed Notes on the above Seven Steps

1. The foundation: d’Alembert’s Principle

la. The basic principle.

D’Alembert’s Principle is invoked at the outset by Lanczos (hereinafter, “L.z") as the
foundation on which this reasoning will stand. D’Alembert’s principle is discussed by Lz
in the preceding chapter, sections 4.1 and 4.2. We’ll begin with a short review, starting
with Newton’s law of motion:

F=ma
D’Alembert makes a small alteration in this:
F—ma=0.

Though a small move algebraically, it is the seed of much to come. Lz believes it
marks the difference between a natural science of law and one of principle. Readers of
Aristotle will recall that principle, arche, is embedded in the very definition of physis—and is
a world apart from the concept of nomos.

Lz is interested in whole systems of bodies, so he writes our principle as a sum:
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P —ma, = 0.

n
i=1

1b. Virtual work.

More importantly, Lz introduces the principle of virtual work. Since d’Alembert writes
two forces that balance to zero, his principle has, in effect, reduced motion to stasis. Bui
any static system balances at its lowest energy configuration.

On a graph of energy vs. displacement, the system will settle at a minimun; and there,
we know, the tangent will have zero slope. Any vanishingly small change in force from
that position will yield zero change in energy; that is, will do zero work. Thus d’Alembert’s
stasis can be written in terms of the principle of virtual work.

Lz writes a variation in displacement as 6R

and that in energy as 60" .

The expression for the variation of energy of a system of forces in equilibrium thus
becomes:

6" = Z[(F —md,)+6R| =0

i=1

[that is, net force time displacement, for each particle]

The formal mathematics of variations of this sort is termed the calculus of variations—
hence the title of Lanczos’ book. By way of the theorem we are about to study, this
becomes basic to general relativity, quantum mechanics, particle physics, and many other
aspects of modern science.

Lz has one more step to make in preparing d’Alembert’s equation for the
demonstration we are about to undertake. Almost breathtakingly, he multiplies
d’Alembert’s principle by time.

2. Convert to a time-integral

As he explains at the outset of Chapter V, Lz has a very special reason for wanting to
do this. The impressed force Fis, he says, holonomic, which means that it derives from a
law of force expressed by a function, as readers of Newton know wel!

But the forces of reaction are all over the place, or polygenic [having multiple origins|,
and we have no systematic way to deal with them. Since they vary in unmanageable ways
in time, there is only one answer to the problem: swallow them wp in a time-integration. All
the details of the motions will be included in one scalar value for their sum over time.
With this aim in view, Lz writes d’Alembert’s equation as a time integral; and this is the
first line of the derivation on which we are about to embark.
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(Notice that Lz writes %mﬁ in place of our md . We shall follow him in this.)
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We might note that this same move is essential to Maxwell in deriving his equations
for the electromagnetic field. Whereas the problem of Lz is that he doesn’t know the
details of the motions of the individual particles which make up the system, the problem
for Maxwell is far worse: he knows that in his system there are no particles! Though the
electromagnetic “ether” conveys essentially all the energy of life on earth, it has no



particles—that is, no ponderable, “rest” mass). Maxwell must therefore take this same
step in order to begin construction of his theory.

3. Separate the resulting integral into two parts

We separate this integral into two integrals, which for a while will go their own ways.
One represents the holonomic impressed force function; the other represents the
polygenic, intractable forces of reaction. Note that each of these now includes a time-
integration, so that the overall statements have the dimensionality of action rather than
energy. Omitting the summation subscripts, we have:
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The second of these terms involves differentiation of a product. Using the product
rule,

d dy dx
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we can divide the second term further. Applying it to the polygenic term,

L (o506 R) = L ()6 R+ (m7)-LoR
dt dai dt
Rearranging, we sec that the original polygenic term has split into two parts:
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The integrand now consists of three terms, which we can usefully label ¢, 3, and :

(a) (F-bfi) . Holonomic
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dt

4. Integrate the “holonomic” term

We now play the easy card: integrating the holonomic term. We have already seen
that its holonomic character arises from the fact that it can be obtained by differentiation
of a potential term, V:

Differentiation of a potential is the vector operation gradient. Here the resulting
vector has as many components as there are elements in the system.

F=-VV



5. Rearrange the “polygenic” terms (3 and ~)
(1) the g8 term:
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The 3 term then yields the values of the integrand at the beginning and at the end of the
motion:
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(i1) the 7 term:

Gamma is a bit trickier; we begin with a pair of lemmas. Note first that although the
differential dv and the variation 6v do not have the same meaning,' they can be shown to
be functionally interchangeable.

Lemma I: Just as we may write the differential expression
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so we have the same relationship in terms of the variation:
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Lemma 2: Again, in the expression appearing in our integrand,

we may write (somewhat surprisingly):
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We can assemble these relationships in the flow diagram on the next page, in which
kinetic energy emerges from our variational reasoning.

6. Show that the “gamma” term gives us the kinetic energy of the system
Using the lemmas, we transform the gamma term as follows:

' The difference between dv and &v may be seen thus: dv = f(x + dx)— f(x), while
bv=F(x)— f(x)=ep(x). Alsonote commutativity [?]
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7. Arrange the result in terms of the Lagrangian L, the action A, and the Principle of Least
Action

(i) Recapitulating the results so far,
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(ii) Define the kinetic energy T.
Define T as the kinetic energy of a moving mass: %mv? Then the kinetic energy term

in the above expression becomes:
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and the above expression becomes

fbw dt—éfT V)di—

(iii) Set the boundary values to zero:

The last term in our expression sets the initial and final values of the variation of the
system’s momentum. We now require that these values be fixed, and hence not subject to
variation. In other words, we must set in advance the final stale—the goal—of the system!
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(iv) Introduce the Lagrangian:
Our expression for the virtual work of the system has been greatly simplified:
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We now simplify further by introducing a new quantity, L, the difference between the
kinetic and potential energies of the system:




L=T-V
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(v) Introduce “Action,” and remember d’Alembert:
Define the quantity action as
A= [La

Remember that our whole effort has been to develop a new form for the expression
of d’Alembert’s principle of equilibrium—asserted by setting the virtual work equal to
zero. We now have an elegant way of asserting d’Alembert’s insight:
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This is the Principle of Least Action, which we may state even more compactly as

0A=0

so that
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