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Presentation Overview

* Analytical Approach

— Radiant furnace CFD modeling

— Convective pass and boiler process model
« Summary of Results

— Impacts of combustion modifications
— Impacts of boiler cleaning equipment
— Impacts of heat transfer surface modifications

« Conclusions



Modeling Approach

Process Model

=  Qverall heat and mass balances for the
boiler

» Couples together fireside and steam side
heat transfer

= Predictions of heat transfer in convective
section

CFD Model
« 3D multiphase, turbulent, reacting flow simulations in radiant section

« Thermo-chemical predictions are used within the radiant section of process
model

 Emissions predictions
« Slagging predictions
« Impacts of heat transfer modifications and surface cleaning in radiant section




Advanced Model of Mineral Matter/Ash Behavior

CCSEM, PCF, and bulk ash elemental analysis are used to
characterize inorganically and organically associated elements




Coal Ash CCSEM

WEIGHT PERCENT ON A MINERAL BASIS
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Computer Controlled
Scanning Electron
Microscope (CCSEM)

Included and Excluded
Minerals

Determination of
distribution and size of
minerals
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« Extraction of inorganics by:
— Water
— Ammonium Acetate
— Hydrochoric Acid

* Fraction extracted by
ammonium acetate are
“organically associated”



Advanced Model of Mineral Matter/Ash Behavior

« The Partial Coalescence Model (Beer & Sarofim) is used for
prediction of fly ash particle size and particle-size dependent
composition




Fly Ash Size and Composition

Weight Percentage (%6wt)

20.00

CCSEM = computer controlled scanning electron microscope
PCF = partial chemical fractionation
FTM = flyash transformation model




Advanced Model of Mineral Matter/Ash Behavior

« A viscosity model (Senior and Srinvasachar) is used to calculate the
viscosity of silicate glass particles as a function of both temperature
and composition

« This model is then implemented within GLACIER

— As coal particles interact with boiler surfaces, the fraction of particles
that deposit is calculated as outlined by Walsh and co-workers

— Local occurrence of slagging and extent of sintering are predicted as
the deposit accumulates using a pseudo transient approach

— Thermal resistance of slag is function of composition and sintering



Case Study

- Evaluate impacts of operational changes, wall cleaning, and
changes to convective pass heat transfer surfaces in a 540 MW
wall-fired coal boiler with a split back pass
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Solution Methodology

« Baseline model development for Baseline conditions
— Tune thermal resistances and fouling factors to match measured duties
— Local net heat flux is dependent on CFD predicted slagging

— Compare predicted economizer exit gas temperature, NOx, FEGT with
available data

* Apply model to parametric cases

— Local net heat flux is dependent on CFD predicted deposition rates and
on coverage areas of added wall cannons and remaining soot blowers

— Heat input remains fixed, resulting in variable steam generation rates
— Adjust waterwall steam generation based on CFD predicted heat transfer

— Adjust backpass flue gas split to achieve 1005°F RH temperature and
Baseline steam flow

— Adjust attemperation flow to achieve 1005°F main steam temperature



IMPACT OF MILL
CONFIGURATION
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Coal Particle Trajectories
Effects of C Mill OOS
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Main Steam Flow
Effects of Mill Configuration
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IMPACT OF WALL
CLEANLINESS AND HT
SURFACE MODIFICATIONS



Boiler Cleaning
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Net Heat Flux
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Heat Balance
Wall Cleanliness and HT Surface Mods.
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Main Steam Flow
Impact of Wall Cleanliness
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PSH/RH Flue Gas Flow Split

Wall Cleanliness and HT Surface Mods.
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Conclusions

The combined approach of CFD modeling with SGE process modeling provides a
powerful, efficient methodology for evaluation of combustion mods and HT
surface modifications on boiler performance

CFD modeling of the radiant boiler provides robust predictions of combustion
including emissions, and slagging, and radiant heat transfer effects

SGE provides predictions of heat transfer impacts in convective section along
with steam-side and fire-side coupling for entire boiler

Simulation approach requires tuning of thermal boundary conditions based on
baseline thermal data

Application to a 540 MW opposed wall fired coal boiler showed:

— Variation of SH attemperation between 0.8% and 2.6% due to variation in BOOS
configuration

— Increase of 2.0% in waterwall heat transfer through addition of water cannon cleaning

— Largest impacts to heat balance predicted to be due to DW and FSH replacement, and
improved WW cleaning is critical to limiting SH attemperator flows under this condition




