Modeling Furnaces in the Chemical Process Industry

Committed Individuals Solving Challenging Problems

746 E. Winchester St., Suite 120 Murray, Utah 84107 www.reaction-eng.com

REI Profile

- Energy And Environmental Consulting Firm Specializing In:
 - » Combustion System Design and Performance Analysis
 - » Complex CFD Simulations
 - Performance
 - Emissions
 - Operational Impacts
 - » Customized Software
 - » Specialized Equipment
 - » Proof-of-Concept Testing
- Strong Network of Experts

Objective: Solve Challenging Combustion Problems Using Specialist Talent & Technology

REI Modeling Strengths

- Modeling and Analysis Expertise
 - » Combustion, Fuel Conversion & Pollutant Emissions
 - » Unique, Proprietary Modeling Capabilities & Tools
 - Ability to develop and apply advanced chemistry to CFD and process modeling tools
 - » "Qualified" Combustion Modelers
 - Understand physics, chemistry, mathematics, software
 - Industrial perspective
 - » Experience
 - Over 200 Combustion Systems Modeled
- Network of Consultants
- Objective Analyses

Selected Industrial Applications & Clients

Applications

- Melting Furnaces
- Reheat Furnaces
- Blast Furnace Injection
- Flash Smelters
- Cement Kilns
- Phosphate Kilns
- CO Boilers
- Sulfur Recovery Units
- Process Heaters
- Cracking Furnaces
- Incinerators
- Thermal Oxidizers
- Burners
- Enclosed Flares

Selected Clients

- Bayer
- BHP
- BP
- Cadence
- Callidus
- Chemtrade
- Chevron
- China Steel
- Cominco
- ConocoPhillips
- CPC
- CPChem
- Dow
- Hexcel
- Holnam
- Huntsman Chemicals

- INCO
- Inland Steel
- John Zink
- LaFarge
- Lone Star
- Monsanto
- NOVA Chemicals
- PCA
- Persee Chemical
- Philip Morris
- Praxair
- Searles Valley Minerals
- Technip
- Solena
- Solutia
- SunCoke
- Thai Olefins

REACTION ENGINEERING INTERNATIONAL

Chemical Process Applications

<u>Systems</u>

- Process Heaters
- Cracking Furnaces
- Thermal Oxidizers
- Incinerators
- Burners
- Flares

Applications

- Pollutant Emissions (NOx, CO)
- Waste Stream Disposal
- Tube Overheating
- Heat Flux & COT Uniformity
- Process Yield & Conversion
- Radiant Efficiency

Why Use CFD Modeling?

Modeling is a cost effective approach for evaluating system performance, pollutant emissions, and operational impacts

- Improve understanding
- Estimate performance
- Provide conceptual designs
- Identify operational problems
- Cheaper than testing
- More information than testing
- Does NOT make decisions for engineers, but does help them be more informed

REI's Proprietary CFD Software

• BANFF & GLACIER

- » 20+ years development and application
- » Targeted to gas, oil and coal-fired utility boilers

• ADAPT

- » ~10 years development and application
- » Improved geometry resolution (adaptive mesh refinement)
- » Advanced chemistry
- » Improved turbulencechemistry interaction
- » Targeted to gas-fired ultra low-NOx systems and premixed combustion

Chemical Furnace Modeling Challenges

- Scales!
 - » Geometric resolution
 - » Jet velocities
 - » Chemistry vs turbulent mixing
- Input accuracy
 - » Garbage-in garbage out
- Trade-off between accuracy and turn-around time
 - » What are most critical factors for problem of interest

REACTION ENGINEERING INTERNATIONAL

Furnace Model Requirements

- Accurately represent furnace geometry and operation
- Sub-models for:
 - » Turbulent fluid mechanics
 - » Combustion chemistry
 - » Turbulence-chemistry interactions
 - » Finite-rate kinetics for ppm-level NOx, CO
 - » Surface properties
 - » Gas-wall-tube heat transfer (conduction, convection, radiation)
 - » Process chemistry
- Computationally efficiency (parallel execution)

Modeling Approach

- REI currently uses advanced ADAPT CFD software for process heaters/cracking furnaces
- Accurate modeling provides accurate flame shape, flow patterns, temperature profiles, major species profiles, heat transfer/heat flux profiles, tube temperatures, process fluid heat absorption
- Provides capability to analyze:
 - » New generation ultra-low NOx burners for new furnaces and revamps
 - » Burner spacing, distribution and burner-burner interactions
 - » Lower emissions (CO and NOx)
 - » Impacts of fuel changes
 - » Non-uniform heat flux profiles and surface temperatures
 - » Sources and fixes for process or convective tube overheating
 - » Test furnace to full-scale furnace scale-up

Sample Uses of Modeling

- Improved Performance
 - » Enhance furnace efficiency
 - » Lower emissions
 - » Study particulate behavior during de-coking process
- Reduce risk of new technology
 - » Evaluate burner designs and spacing for new furnaces
 - » Compare different burner designs for furnace revamps
 - » Assess impacts of fuel changes
 - » Evaluate coating impacts
 - » Scale burner performance from test furnace to full-scale furnaces
- Troubleshooting
 - » Identify causes and fixes for process or convective tube overheating
 - » Identify source of heat flux non-uniformities

Pyrolysis Furnaces

Slide 12

Example - Retrofit Burner Evaluation

Full-Scale Pyrolysis Furnace

Objectives

- » Improve flame quality
- » Maintain low NO_x emissions
- Compare retrofit burners
 - » Flame quality (no rollover)
 - » Low NO_x and CO emissions
 - » Heat flux profile
- Use 1/4-furnace model
 - » Capture burner-burner interaction
 - » Capture tube heat flux profiles
 - » Maximize burner resolution

Retrofit Burner Evaluation

Isosurfaces of 5000 ppm CO

REACTION ENGINEERING INTERNATIONAL

Slide 14

Retrofit Burner Evaluation

NO_x Profiles

Option 3 improved flame quality and slightly lowered NO_x emissions

Slide 15

Example – New Furnace

 Identified improved burners for new ethylene cracking furnace, helped adjust heat flux design basis

Incident Flux

Example – New Burner

• Evaluated new ultra low-NOx burner performance, helped guide burner spacing and port placement

Example – Burner Retrofit

• Evaluated different burner designs to determine best flux profile and NO emissions for furnace retrofit

Slide 18

Example – Fuel Change

• Evaluated performance of back-up fuel with new burners

REACTION ENGINEERING INTERNATIONAL

Industrial Furnaces

Slide 20

CO Boiler

 Simulation of a CO boiler with process tubes for heating crude oil. CO plenum was simulated to predict the mixing of injection air into the CO plenum to account for impacts of non-uniform air and CO mixing

CO Boiler

 Simulation of CO oxidation and NOx formation in a CO boiler to assess flue gas properties in the boiler that would impact SNCR design.

CO Boiler

 Simulation of flue gas flow, gas temperature, CO, and NOx distributions in approximately 10 different waste-heat recovery CO boilers augmented by natural gas combustion for assessment of SNCR for NOx control.

Refinery Process Heater

• Simulation of a refinery process furnace for evaluation of impacts of modifications of process tube arrangement to mitigate tube overheating.

Spent Acid Furnace

 Simulation of a spent acid furnace fired by fuel oil. Modeling used to verify adequate fuel burnout and aqueous spent acid vaporization achieved with limited droplet impaction on walls

Thermal Oxidizer

• Simulation of an absorber off-gas oxidizer. Simulations were conducted in order to optimize burnout of the waste gas while minimizing NOx formation.

Detailed Example – Xylene Reboiler

- Xylene Splitter Reboiler (XSR)
- 52.5 MMBtu/hr Firing Rate
- 95/5% Oil/Gas
- 20% Excess Air
- 4 Process Tubes

- Radiant Tubes Hottest At 1/3 Height (why?)
- Bridgewall Temperatures Too Hot (measurement system reliable?)
- Convective Tube Localized Overheating (how to fix?)

Flow and Temperature Patterns

- Recirculating
 Flow Field
- Long Flames
 Mix Slowly
- CO & O₂ Have Similar Profiles
- Flames Highly Emissive

Temperature Profiles

Radial Gas Temperature Profiles

Profile Impacts:

- Flame Emission
- Tube Heat Flux & Temperatures
- Bridgewall
 Temperatures
- Convective Tube
 Temperatures

Flame Emission

Radiant Section Tube Heat Flux Profiles

Flux peak 2/3 down tube 16000-16000 Flux peak 1/3 up tube 14000-14000 Incident Flux (BTU/hr/ft² 12000-12000₄ 10000 10000 8000 8000 Flux 6000 6000-**Top crossover** Net 4000 4000-**Bottom crossover** 2000 2000-Qinc D Qnet D 0 0 50 0 100 150 200 250 300 350 400 450 Distance Along Tube (ft)

High Flux Locations Correlate with Hot Tube Temperatures

Bridgewall Temperatures

Temperature Contours

- Probe Measures "Max" Temperature Entering Convective Section
- Hot Gas → Hot Tubes
- Gradient Impacts
 Measurement & Control of
 Temperature

Probe Location

Convective Section

- Tube Has 2 Passes in Each of 9 Rows
- Upper 6 Rows Have Fins, Lowest 3 Rows Are Bare
- Radiant Load Highest at Lowest Tubes
- Tube 12 Overheating

Convective Section Tube Heat Flux Profiles

Observation - Net Flux Changes w/ Finned Tubes

REACTION ENGINEERING INTERNATIONAL

Convective Section Tube Temperature Profile

High Tube Temperatures Correlate w/ High Net Fluxes

Slide 36

Recommended Modification

- Reduce Row 4 Fins
- Add Row 3 Fins
- Evens Out Net Flux
 & Tube Skin Temperatures

XSR Modeling Conclusions

- Modeling Useful For Furnace Evaluation
 - » Recirculating Flow with Long, Highly Emissive Flames
 - » Radiant Furnace Tube Temperatures Reflect Flame Emission & Match Observation
 - » Long Flames Create Gradients at Bridgewall
- Modeling Useful For Furnace Troubleshooting
 - » Temperature Gradient at Bridgewall Impacts Measurements & Control
 - » Convective Tube Temperatures Reflect Net Flux Change with Finned Tubes
 - » Design Modification Identified to Minimize Convective Tube Hot Spots

Reaction Engineering International

ENERGY & ENVIRONMENTAL CONSULTING

mitted Individuals, solving challenging problems,

www.reaction-eng.com