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Thirty states have adopted renewable portfolio standards (RPSs) that set targets for renewable energy
generation by mandating that electric power utilities obtain a minimum percentage of their power from
renewable sources. Our synthetic control (SC) model finds that states with RPSs have experienced increases
in electricity prices and decreases in electricity demand relative to non-RPS states with similar economic,
political and renewable natural resource characteristics. While both RPS and non-RPS SCs experienced
increases in renewable energy generation over the sample time period, we do not find evidence that RPS
states have experienced increases in renewable energy generation relative to SCs and weak evidence of
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1. Introduction

Over the past two decades, the federal government and many
state governments have implemented a wide array of policies aimed
at reducing the CO, intensity of the electricity sector by increas-
ing the market penetration of renewable energy technologies. These
policies take a wide variety of forms from direct subsidies, such as
production tax credits which pay for each kilowatt-hour of renew-
able electricity produced, to more indirect financial incentives such
as favorable tax accounting.

Renewable energy policies may be implemented directly through
state legislatures or may be indirectly stimulated through the regu-
latory action of state regulators (Public Service Commissions, Public
Utility Commissions, etc). For example, California has more than 200
state and federal policies aimed at increasing adoption of renewable
energy (DSIRE, 2015) but this does not include the myriad of actions
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1 For example, it is estimated that over the 2004-2018 period, the U.S. federal gov-
ernment will spend approximately $1.9 billion per year for the production tax credit
(Sherlock, 2015), but this makes up just a small fraction (< 10%) of total federal
spending on renewable energy subsidies (Dinan and Webre, 2012).
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undertaken by the California Public Utilities Commission through its
normal regulatory authority to approve and disapprove construction
of new power generation. This paper will focus on one particular
state level policy, renewable portfolio standards (RPSs), that have
had widespread implementation across the U.S. and examine how
RPSs have impacted state electricity markets. We test the impact of
RPSs on four outcomes of interest: in-state renewable energy gen-
eration, electricity prices, CO, emissions associated with electricity
generation and electricity demand.

RPSs are state-level policies in the U.S. that require a propor-
tion of state electrical demand be supplied by specified renewable
sources by a specified date. RPSs target utilities and other electricity
providers and require that they comply with the regulatory man-
date, typically including a system of renewable energy credits (RECs)
in which renewable energy providers generate one REC for every
MW h of renewable electricity produced. RECs can be bought and
sold independently of the electricity to help electricity providers
meet their RPS obligations (Mack et al., 2011). States may implement
RPSs for a number of reasons: they may seek to diversify their elec-
tricity portfolio, to encourage investment in the renewable energy
sector, to improve state air quality, or to reduce CO, emissions. This
paper evaluates the effectiveness of RPSs at achieving these out-
comes, as well as other outcomes that are not directly targeted by
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the policy, by examining renewable energy generation, electricity
prices, CO, emissions and electricity demand in RPS states relative
to similarly situated non-RPS states. More specifically, we analyze
the impact of RPSs on in-state renewable energy generation, electric-
ity prices, CO, emissions associated with electricity generation and
electricity demand.

The first RPS was implemented in lowa in 1983 and was referred
to as the Alternative Energy Production law. This RPS required lowa’s
two investor-owned utilities to create more than 100 megawatts
(MW) of renewable generating capacity. On face value, this RPS has
been very successful, as lowa today is home to more than 5000 MW
of wind capacity and more than a quarter of lowa’s electricity gen-
eration comes from wind. Other states were not quick to follow suit
though, as the next RPS was not passed until 1997. Today there are
a total of thirty states with RPS policies (Eastin, 2014; Carley, 2009).
Table 1 lists each RPS state and the year that the policy was passed.
As shown in Fig. 1, these policies are prevalent throughout all regions
in the United States with noticeable holes in the southeastern states
and several rural western states.

While these policies have become prevalent, it is still uncertain
how they have impacted electricity markets. As illustrated in Fig. 2,
both renewable energy generation and electricity prices have seen
substantial increases over the past decade, at the same time that RPSs
were becoming widespread, but it is unknown whether RPSs have
played a role in these changes.

There are three potential hypotheses on the impact of RPSs on
renewable energy generation and electricity prices. The first hypoth-
esis is based on the assumption that renewable energy generation
is more expensive than traditional alternatives, such as fossil fuel
and nuclear generation, and therefore increases in renewable energy
generation spurred by an RPS will lead to increases in electricity
prices. Thus, the first hypothesis is that RPSs will lead to increases in
both renewable energy generation and electricity prices. Both propo-
nents (Nogee et al., 1999) and opponents (Bryce, 2012) of RPSs have
acknowledged that higher electricity prices are a likely side effect.

The second hypothesis is that RPSs will neither lead to increases
in electricity rates nor renewable energy generation relative to simi-
larly situated non-RPS states. RPSs are just one mechanism that allow
state utility commissions to approve utility scale renewable energy
projects. While an RPS legislatively puts a very specific renewable
energy target in place, the normal regulatory framework in most
states already allows state utility commissions to approve relatively
expensive renewable projects and pass these costs onto ratepayers in
the form of higher electricity prices. Therefore, both RPS and non-RPS
states might experience increases in renewable energy generation
and electricity prices due to the implementation of renewable energy

Table 1

Overview of renewable portfolio standards.
State Year State Year
Arizona 2001 Montana 2005
California 2002 Nevada 1997
Colorado 2004 New Hampshire 2007
Connecticut 1999 New Jersey 2001
Delaware 2005 New Mexico 2002
Hawaii 2004 New York 2004
Illinois 2005 North Carolina 2007
lowa 1983 Ohio 2008
Kansas 2009 Oregon 2007
Maine 1999 Pennsylvania 2004
Maryland 2004 Rhode Island 2004
Massachusetts 1997 Texas 1999
Michigan 2008 Washington 2006
Minnesota 1997 West Virginia 2009
Missouri 2008 Wisconsin 1999

Source: Upton and Snyder (2015). Notes: West Virginia's RPS was repealed in 2015.
Vermont passed an RPS in 2015, but was not included in the analysis due to its passage
occurring beyond the time frame in this study.

projects, and no change in RPS states relative to similarly situated
non-RPS states may be observed for either outcome.

The third hypothesis is that RPSs lead to increases in electricity
prices, but do not increase renewable energy generation relative to
comparable non-RPS states. There are two explanations for why this
is plausible.

First, the mechanism through which RPSs spur renewable energy
generation is through renewable energy credit (REC) markets. When
a renewable energy source produces a MW h of renewable energy it
receives a REC. Because RPSs set a consumption based mandate - nota
generation based mandate - utilities have the choice to either produce
enough renewable energy themselves to meet the RPS requirement
and retire the RECs at the end of the year or purchase the needed
RECs from the market. While some states have attempted to limit
RECs such that they can only be produced in-state, this practice has
been challenged legally (Elefant and Holt, 2011) and utilities have
been known to import RECs from out of state (Mack et al., 2011),
thus subsidizing renewable generation in surrounding states while
passing the cost onto in-state ratepayers.?

The second potential explanation for increases in electricity
prices without an increase in renewable energy generation rela-
tive to non-RPS states is that there are multiple potential funding
sources for renewable energy, only one of which is higher electric-
ity prices. When a utility builds more expensive renewable capacity,
or purchases RECs from the market, this cost is passed onto ratepay-
ers in the form of higher electricity prices. But this is not the only
mechanism that a state can use to incent renewable energy gen-
eration; the obvious alternative being direct taxing and spending.
For instance, many states without RPS policies have implemented
other financial incentives such as property tax exemptions for util-
ity scale renewable energy projects (Nebraska, Tennessee), sales
tax exemptions for expenditures associated with renewable energy
projects (Georgia, Utah),? and state renewable production tax cred-
its (Nebraska, Oklahoma, South Carolina, Utah) that serve as direct
subsidies to renewable projects. These states might still experience
increases in renewable energy generation and still have to pay a pre-
mium for this generation, but the cost passes through to taxpayers
in the form of increased taxes or decreased spending on other gov-
ernment services — not increased electricity rates. Thus, both RPS
and non-RPS states may experience a similar increase in more costly
renewable generation, but in RPS states this may increase electric-
ity prices while in non-RPS states the generation may be paid for via
other channels.

It is also unknown whether RPSs have impacted CO, emissions
associated with electricity generation. Hereafter “emissions” will
refer specifically to CO, emissions associated with electricity gen-
eration. Fig. 2 shows that RPS states have had lower emissions per
capita for the last two decades, even before RPSs were implemented.
But both RPS states and non-RPS states have seen declines in emis-
sions in recent years, likely due to increases in awareness about
potential harms of emissions on global climate (Tiefenbeck et al.,
2013; Jacobsen et al., 2012), but also due to income shocks associ-
ated with the Great Recession of 2009 (Burnett et al., 2013; Branch,
1993) and the displacement of coal power generation with available
and inexpensive natural gas.

Finally, we test the impact of RPSs on electricity demand. This
serves two purposes. First, if an electricity price increase is observed,
then we will expect to also see a decrease in electricity demand.
Because the estimated shock to electricity price is induced by the
RPS, the subsequent change in electricity demand also induced by
this shock can provide insight into the long run price elasticity of

2 RECs can be transferred both from RPS states to other RPS states, as well as from
non-RPS states to RPS states (Holt, 2014).
3 Georgia’s sales tax exemption is limited to the purchase of biomass.
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Fig. 1. State level RPS policies.

electricity demand that has been estimated in a number of empir-
ical studies (Narayan et al., 2007; Nakajima and Hamori, 2010;
Alberini and Filippini, 2011). Second, if we do observe a decrease in
CO, emissions, the impact on electricity demand will inform us on
the potential channel through which these reductions are achieved.
Emissions reductions are potentially achieved through the supply
side (i.e. new renewable generation) but emissions reductions could
also be achieved through the demand side (i.e. reductions in elec-
tricity consumption associated with response to increased electricity
prices). The channel through which emissions are plausibly reduced
is of pertinence to policymakers interested in emissions reductions.

We estimate that RPSs are associated with increases in electricity
prices of approximately 0.86¢ to 0.90 ¢/kW h (or about 10.9-11.4%)
and that electricity demand decreases after RPS implementation
by 0.71 to 0.92 MW h per person (or about 5.6 to 7.2%) likely due
to the increase in price. This implies a long run price elasticity of
approximately —0.5 to —0.6, which is consistent with prior esti-
mates (Narayan et al., 2007; Nakajima and Hamori, 2010; Alberini
and Filippini, 2011).* We find no evidence that renewable energy
generation increases in RPS states relative to similar non-RPS states
and weak evidence of emissions reductions.

1.1. Review of literature

Menz and Vachon (2006) test for the impact of RPSs on wind
energy capacity, finding that RPS states have higher wind generating

4 These estimates likely imply a long-run elasticity, as the average treatment effect
estimated is over the entire post-RPS adoption period.

capacity, on average, than non-RPS states. Carley (2009) extends
this analysis and estimates that RPSs have had a statistically signif-
icant and positive effect on state-wide renewable generation even
after controlling for a number of covariates.” Yin and Powers (2010)
expand on this literature by taking into account the heterogeneity
in stringency across states’ policies and finds increases in renewable
energy development in states with relatively ambitious generation
goals. While the statistical strength of these studies have varied,
the overwhelming conclusion from this literature has been that RPS
states have more renewable capacity than non-RPS states. Notably,
Shrimali and Kniefel (2011) present a contrarian finding that RPSs
have a negative impact on renewable capacity.

There has been limited academic research on the impact of RPSs
on electricity prices, and these prior studies have presented large
ranges of estimated costs of RPS compliance. For instance, Palmer
and Burtraw (2005) estimate that a hypothetical 20 percent RPS
could lead to an 8 percent increase in electricity prices, with signif-
icantly lower costs for less ambitious (lower percent RPS) policies.
Similarly, Kydes (2006) estimates that electricity prices would rise
by about 3% in response to a theoretical 20 percent federal RPS
being implemented. Most recently, Barbose et al. (2015) find that RPS

5 Carley (2009) also tests for the impact of RPS policies on renewable generation as
a percent of total generation, but does not find evidence to support this result.

6 There is a distinction between renewable capacity, a stock, and renewable energy
generation, a flow. Most of the previous literature focuses on the impact of RPSs on
renewable capacity — not renewable generation. Because RPSs target generation goals,
not capacity goals, all empirical estimates presented in this paper are for generation.
Results for the impact of RPS on capacity are presented in Online Appendix Table A.16,
but do not differ qualitatively from the results on renewable generation.
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Renewable Energy Generation
Comparison of RPS and non-RPS States
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Fig. 2. Trends in renewable energy generation, electricity prices, CO, emissions, and electricity demand. Comparison of RPS and non-RPS states.

compliance costs constituted < 2% of average retail rates in most U.S.
states over the 2010-2013 period. This analysis uses a bottom’s up
approach, accounting for total costs and savings associated with the
implementation of the policy. No study to date has found an impact
of RPSs on electricity prices using an ex-post econometric analysis.
Sekar and Sohngen (2014) test the effect of RPSs on carbon inten-
sity and find that RPS states have 30% less carbon intensity on average
than states that did not implement a RPS.” Most recently Eastin
(2014) finds that RPSs are negatively associated with CO, emissions
and coal powered electricity generation. Thus, previous evidence
suggests that RPSs are effective at decreasing CO, emissions, but
none of these studies have explored the possible mechanisms for
the decrease in emissions. Furthermore, there have been no stud-
ies that have empirically estimated the impact of RPSs on electricity
demand that could also be driving declines in CO, emissions.
While these studies examining a number of outcomes have com-
pared RPS states to non-RPS states, taking into account both variation
over time and between states, only one study to date has taken
into account the likely endogenous selection into the policy. Hitaj
(2013) tests the impact of a number of policies (including RPSs, cor-
porate tax credits, property tax credits, production incentives, among
others) on county level wind development using an IV approach
where political factors and pollution levels are used to predict policy

7 Carbon intensity is defined as carbon emissions per dollar of GSP.

adoption. While a number of policies are found to be significant
predictors of investment in wind power, RPSs are found to have a
negative impact on wind capacity additions in one specification, and
positive impacts in another.®

2. Data

We utilize data from a panel of forty-nine states from 1990
to 2013.° Outcome variables include state level renewable energy
generation, electricity prices, emissions associated with electricity
production and electricity demand. Wind and solar resources, the
number of Democrats and Republicans in the state house and senate,
the political party of the governor, gross state product, and mining
and manufacturing gross state product are utilized to create syn-
thetic control groups. Cooling degree days (CDDs) and motor gasoline
consumption per day are used as outcome variables in falsification
tests. State level population is used to normalize many of these vari-
ables for appropriate across state comparisons. Table 2 shows the
summary statistics for each variable.

8 In addition to the inconclusive results of this study with regard to RPSs, Hitaj
(2013) self admittedly makes a number of strong assumptions that might threaten the
identification strategy. For instance, electricity prices are assumed to be exogenous
and not impact by RPS adoption.

9 Alaska was excluded due to the fact that solar and wind capacity in Alaska are
simply not comparable to the other U.S. states due to the abnormal size and location
of Alaska.
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Table 2
Summary statistics.
Sample average Std. Dev. N

Outcome variables
Renewable energy generation (kW h) per person 475.5 835.4 1176
Average electricity price (¢/kW h) 7.87¢ 3.06¢ 1176
CO, emissions (tons) per person 24.16 18.89 1176
Electricity demand (MW h) per person 12.79 3.83 1176
Synthetic control construction variables
Percent legislature democrat?® 53.4% 15.7% 1078
Democratic governor 43.3% 49.2% 1176
GSP per person $39,036 $10,926 1176
Mining GSP per person $1000 $2470 1176
Manufacturing GSP per person $5099 $2272 1176
Wind resource potential (GW h/yr)P 753,713 1,380,380 49
Solar resource potential (kW h/m? day)® 4.64 1.02 49
Falsification test outcome variables
Cooling degree days (CDD) 1166 919 1176
Gasoline consumption (gallons/day) per person 1.30 0.21 1176

2 Nebraska’s state legislature is unique in that it is non-partisan. Therefore data is not available on the political

affiliation of its legislators.

b Wind and solar resource potential vary across states but not across years. State legislature political party data only

available until 2011.

The four dependent variables of interest are provided by the U.S.
Energy Information Administration (EIA). EIA provides estimates of
renewable energy generation (kW h) and includes all electric power
producers including electric utilities, independent power producers,
and commercial power as well as all major renewable energy sources
including geothermal, biomass, solar thermal and photovoltaic,
wind, and wood derived fuels (EIA, 2014a). Average electricity price
is provided by EIA’s Questionnaire 826 which collects information
on retail sales of electricity and associated revenues from a statisti-
cally chose sample of electric utilities (EIA, 2014c). EIA’s State Energy
Data System provides estimates of state level CO, emissions associ-
ated with electricity power production (EIA, 2014e). CO, emissions
include all emissions associated with the consumption of energy and
are based on consumption data for three categories of coal, natural
gas, and ten petroleum products.!® CO, emission does not include
emissions due to agriculture and land use change but does include
emissions associated with electrical generation and transportation.
Electricity demand (MW h) is sales of electricity to all end users and
includes all customer classes; residential, commercial and industrial
customers (EIA, 2014b).

The eight variables used to construct synthetic controls were col-
lected from three sources. Political data on the number of democrats
and republicans in each chamber of each state’s legislature and the
party of the governor were collected from Klarner (2013).!" For all sta-
tistical results, the total Democratic members of both the house and
the senate as a percent of the total members of both bodies are used.

Data on the gross state product and the mining and manufac-
turing gross state products were collected from the U.S. Bureau of
Economic Analysis (2016). Data from 1997-2013 are in chained 2009
dollars while data from 1990-1996 are in chained 1997 dollars and
inflation adjusted to 2009 values.

Data on the potential wind and solar resources by state were
collected from the U.S. Department of Energy’s National Renew-
able Energy Laboratory (NREL). The solar resource is defined as the
average irradiance received per day by the average m? of area in the

10" This only includes CO, that is actually emitted at a power plant located within
the state. For instance, if a State A burns coal to generate electricity and exports that
electricity to State B, these emissions will be counted in State A.

11 While the names of state legislatures vary, the larger legislative chamber in each
state was considered the “house” while the smaller chamber was considered the
“senate ". Nebraska’s legislature is unique in that it is non-partisan. Therefore, the
average weight of surrounding states’ legislatures political affiliation was used as a
proxy for Nebraska.

state. The irradiance is then averaged over the year to give irradi-
ance in kW h/m?/day. Direct normal irradiance (DNI) is used as an
indicator of the solar resource; DNI is a measure of the irradiance
received by a unit of area that is always normal (perpendicular) to the
sun’s rays and is the standard measure used in choosing utility scale
project locations (NREL, 2010). Data on the potential wind resource
by state is based on their analysis of the maximum potential wind
generation by state. NREL's study defined “windy” areas as those
areas with wind speeds above 6.5 m/s at an 80 m hub height, con-
sistent with utility scale criteria. NREL then subtracts land area that
is unsuitable for wind development to generate an estimate of the
potential electricity generation if all commercial viable (windy) land
area in a state was to be used to generate electricity, after excluding
for incompatible land use. Data were on a GW h/yr basis.!2

The two variables used for falsification tests are collected
from two sources. Cooling degree days (CDDs) are computed by
the National Weather Service’s Climate Prediction Center. Cooling
degree days are the positive differences in the mean temperature
above a 65 °F base. For example, if a mean temperature of 68 °F is
recorded on a given day, that day would be recorded as 3 CDDs. The
annual number of CDDs is simply the summation of daily values
over the course of the year. Mean temperatures are based on obser-
vations from individual weather station located across the country.
CDDs serve as an appropriate falsification test because they are pre-
dictive of electricity demand (higher CDDs are associated with higher
electricity demand), but should not be impacted by RPSs.

Demand for motor gasoline was taken from EIA’s Prime Suppliers
Sales Volumes. Prime suppliers are defined as a firm that produces,
imports, or transports selected petroleum products and sells the
product to local distributors, local retailers, or end users. Data are
based on Form EIA-782C (EIA, 2014d). Motor gasoline demand also
serves as an appropriate falsification test as it is a measure of energy
demand that should not be impacted by RPSs.

12 The solar and wind resource potential are not directly comparable due to the
fact that solar resources are provided in kW h/m?/day while the wind resources are
provided in total GW h/yr aggregated over the entire state. These reporting differ-
ences are due to the specifics and technicalities of the two very different renewable
resources. Theoretically, the solar resource could be aggregated and compared to the
wind resource through multiplying by total state land area and excluding incom-
patible land use, however, this requires significant assumptions about solar energy
development and land use patterns which are unnecessary and unwarranted for the
current purpose.
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The population of each state in each year was used to normal-
ize variables on a per capita basis where appropriate. Population
data were collected from the U.S. Centers for Disease Control’s (CDC)
National Center for Health Statistics (U.S. Center for Disease Control,
2014) and are estimates of the population of each state as of July 1 of
a given year. The data are estimated jointly by the CDC and the U.S.
Census Bureau.

3. Empirical strategy
3.1. Difference-in-differences(DD) estimation

Eq. (1) illustrates the commonly used DD estimation strategy that
will be used to test for the impact of RPS programs on state electricity
markets.

Vst = O+ 5(5Rp5 X RPSSt) + Y1 Ds + 'YzD[ + & (1)

where y,, is the outcome of interest - renewable energy generation,
electricity price, emissions or electricity demand - in state s in year
t. Sgps is an indicator variable corresponding to the treated states and
is zero for the control states. RPSs is an indicator variable that indi-
cates the time periods after the RPS was implemented for a particular
state. The treated states and the corresponding years of treatment
are presented in Table 1.13

There are thirty states that have implemented an RPS, and these
states are considered the “treatment group” in this analysis. Ds and
D; are state and year fixed effects that are included in all regres-
sions. The coefficient of interest is 6, as it represents the estimated
treatment effect of the RPS.

Three sets of empirical results are presented, all of which will
utilize this DD framework. First, as a baseline, we simply use the
nineteen states that do not have an RPS as a control group compared
to the thirty states that have implemented an RPS as the treatment
group. The estimated & simply provides us with the change in these
four outcomes of interest in RPS states relative to non-RPS states
after policy adoption, but does not address endogenous adoption of
policies. Thus, this baseline specification is a descriptive analysis that
simply shows the actual change in outcomes of interest in RPS states
before and after policy implementation relative to non-RPS states.
A graphical representation of this baseline DD analysis is illustrated
in Fig. 2. A comparison of these baseline point estimates to the esti-
mates discussed below will provide insight as to the importance of
addressing the endogeneity of RPS adoption.

Given that selection into RPSs is likely not random, for the next
two empirical tests we will utilize synthetic control (SC) groups.
First, we create a synthetic control state for each state that imple-
mented an RPS. SC analysis is unique in that it enables the researcher
to create a specific synthetic control for each treated state. Fol-
lowing (Abadie et al., 2010) synthetic control groups are made by
choosing a weighted average of non-RPS states that are most simi-
lar to the RPS state with respect to politics, economic characteristics

13 For purposes of this research, we consider the date the RPS was made law in
the state as the treatment date, as this is earliest time utilities could reasonably
be expected to act to procure renewable energy resources in response to the RPS.
While final RPS goals are commonly set in the distant future, virtually all states that
have implemented RPS policies have mandated a schedule of intermediate goals that
must be achieved in the near term, usually within two to five years of RPS adop-
tion. Therefore, it is reasonable to expect utilities to respond rapidly to RPS passage.
As a robustness check, results are also presented with lagged treatments (and years
between passage and lagged treatment as null values) of differing time intervals from
one to five years for both the baseline specification and synthetic control specifica-
tion. Results are presented in the Online Appendix Table A.17. These results show that
the treatment effects tend to increase as the treatment is lagged, thus indicating that
empirical estimates presented are likely conservative.

and renewable energy generation potential.!* Thus, this approach
allows us to compare the change in the four outcomes of inter-
est after RPS implementation to a “synthetic” state that is similar
among observables in the pre-RPS time period. The “synthetic con-
trols” are created by taking a weighted average of non treated units,
so in this application each synthetic state will be constructed as a
weighted average of the nineteen non-RPS states that have similar
pre-treatment characteristics to the treated state.!”

RPS adoption is not random. It has consistently been shown that
political and economic factors can impact a state’s decision to imple-
ment an RPS (Upton and Snyder, 2015; Fowler and Breen, 2013;
Chandler, 2009; Ming-Yuan et al., 2007; Lyon and Yin, 2010). In
addition, some studies have tested whether states with significant
renewable potential have been more likely to adopt RPS policies
(Upton and Snyder, 2015; Matisoff, 2008; Chandler, 2009; Lyon
and Yin, 2010). Therefore political, economic and natural resource
endowment variables shown in Table 2 are used to construct the vec-
tor of pre-intervention characteristics for purposes of creating syn-
thetic states. This will account for differences in observable factors
that can impact RPS adoption.

To illustrate this further consider the state of Massachusetts that
implemented one of the first RPSs in 1997. Comparing the change
in renewable energy generation in Massachusetts, a state with lit-
tle potential for wind energy due to its size and population density,
to a midwestern non-RPS state like Nebraska or Wyoming is likely
not a reasonable comparison. Potentially Nebraska and Wyoming
experienced large increases in wind generation because they have
significant wind potential, despite the fact that Massachusetts imple-
mented an RPS while Nebraska and Wyoming did not. Thus, we
create a “synthetic state” that is a weighted average of other states
that are most similar to Massachusetts along the observable charac-
teristics in the pre-RPS time period listed in Table 2. The “synthetic
Massachusetts” for purposes of analyzing renewable energy gener-
ation is comprised of 64.8% Virginia and 35.2% Louisiana. A similar
synthetic state is created for each RPS state for each outcome of inter-
est. Comparing outcomes of interest in RPS states relative to these
synthetic states is a more plausible counterfactual than the base-
line specification that simply pools all non-RPS states together as the
control group.

The differences in outcomes in synthetic states compared to RPS
states will provide an estimated treatment effect of RPSs on four out-
comes of interest. Synthetic states corresponding to each RPS state
for the four outcomes of interest are presented in A.18 to A.25 in the
Online Appendix.

We will conduct two empirical tests using the SCs. First, we will
pool all of the RPS states and synthetic states into one regression
and estimate the treatment effect using the DD framework shown
in Eq. (1). This will provide the average treatment effect of the RPS
compared to synthetic non-RPS states for each outcome.

Next, we estimate a treatment effect for each RPS state com-
pared to its synthetic state individually. A variation of Eq. (1) will be
employed.

Yst = 0 + Y1Sgps + Y2PreRPS; + 6(Sgps x RPSt) + &t (2)

14 More specifically, synthetic control groups are made by choosing a W* that mini-
mizes /(X1 — XoW)V(X; — XoW) where X is a vector of pre-intervention characteris-
tics for the exposed regions (or treatment group) and Xj is a vector of pre-intervention
characteristics of the non-exposed regions (or control group). Following Kaul et al.
(2017), we use the average of pre-intervention outcomes and covariates in construct-
ing the synthetic control group. Wis a (J x 1) vector of positive weights that sum to
one. Vis some (k x k) symmetric and positive semidefinite matrix.

15 While there are thirty states with an RPS, lowa’s RPS was passed in 1983 and
therefore no pre-treatment observations are available. Therefore, lowa is not included
in the SC analysis. Weights contained in W*, which are estimated econometrically, can
be found in Online Appendix Tables A.18-A.29.
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where Sgps is an indicator for the RPS state and zero for the
synthetic state. PreRPS; is an indicator variable that represents the
pre-treatment time period and & represents the estimated treat-
ment effect of the RPS compared to the synthetic state. An estimated
treatment effect will be obtained for each treated state individu-
ally compared to its synthetic control state. Using a simple t-test we
will test whether the average of these estimated treatment effects is
statistically significantly different than zero.

Next, three robustness checks are employed. First, a placebo test
will be employed where synthetic states are constructed for the
nineteen non-RPS states as a weighted average of other untreated
states. A random placebo treatment year is assigned between 1997
and 2009 to each state.'6 We estimate both a pooled treatment effect
using Eq. (1) as well as an estimated treatment effect for each state
individually using Eq. (2). We expect that these treatment effects will
be randomly distributed around zero.

Next we implement two falsification tests. We estimate a treat-
ment effect on two outcomes that we do not expect to be impacted
by RPSs. First, we estimate a treatment effect of RPSs on state level
cooling degree days (CDDs). While CDDs are commonly used to pre-
dict electricity demand, CDDs are a function of the weather and
therefore RPSs should have no impact. If we find that policy adoption
leads to changes in the weather, we will have reason to be concerned.

While the SC approach can account for observable factors that
impact non-random policy adoption, this approach is imperfect in
that it does not control for unobservable factors that can simul-
taneously impact RPS adoption and outcomes of interest therefore
potentially biasing results. While results in this research do find
changes in outcomes in RPS states relative to non-RPS states with
similar economic, political and renewable natural resource charac-
teristics, the specification fails to account for potential unobservables
that can also impact both policy adoption and outcomes of interest.
For this reason, we implement a second falsification test to address
the extent to which unobservable factors are plausibly driving results
of the SC analysis. Specifically, the second falsification test outcome
is state-wide demand for motor gasoline. This is chosen because it is
an alternative form of energy demand that should not be impacted
by an RPS but might be impacted by unobserved shocks that would
simultaneously predict RPS adoption and the outcomes of interest.

As a final robustness check, we address the potential impact of
heterogeneous RPS stringency on our results. If RPSs differ in terms of
their stringency, and therefore their effectiveness, not accounting for
heterogeneity between policies might induce a bias towards zero in
average treatment effects, especially if some states pass policies that
might be ineffective. Therefore, we test the sensitivity of our results
to a measure of RPS stringency (Carley and Miller, 2012).

4. Results

First, we estimate the average differences in the change in the
four outcomes of interest in RPS and non-RPS states using the stan-
dard DD framework. This specification does not take into account
endogenous selection into the RPS policy, and therefore these esti-
mates are simply a baseline illustration of the actual observed
changes of the two groups relative to one another. The baseline esti-
mates shown in Table 3 suggest that renewable energy generation
actually decreased by 287 kW h per person per year (or approxi-
mately 60%) in RPS states relative to non-RPS states after policy
adoption. This result is not statistically significant and the point
estimate is not in the expected direction.

Electricity prices are shown to have increased by 0.91 ¢/kW h (or
about 11.6%) in RPS states relative to non-RPS states. CO, emissions

16 This is the range of years in which RPS was actually implemented in other states
as shown in Table 1.

decreased by 0.897 MT per person (3.7%) 7 and electricity demand
decreased by 0.954 MW h per person (7.5%). These baseline results
are not an estimate of the effect of RPSs on these outcomes of inter-
est, but instead are a simple comparison of what actually occurred
in RPS states relative to non-RPS states after RPS implementation.
These results show that RPS states have not experienced increases
in renewable energy generation relative to non-RPS states, but have
experienced increases in electricity prices. These results also show
that CO, emissions have decreased in RPS states relative to non-
RPS states likely due to decreases in demand associated with higher
electricity prices, not renewable energy generation.

Next, Table 3 presents the results of the DD analysis utilizing the
synthetic control states. Using the SCs, the estimated effect of RPSs
on renewable energy generation is small and not statistically sig-
nificant. While the baseline specification (also presented in Table 3)
shows that RPS states experienced 60% less renewable energy gen-
eration growth than non-RPS states in general after implementation,
this point estimate attenuates to < 2% (or 7.4 kW h per person) when
the synthetic control group is employed as the control group. There-
fore, while both RPS states and non-RPS SCs experienced increases in
renewable energy generation over the sample period (as illustrated
in Fig. 2), we do not find evidence that RPS states have experienced
a change in renewable energy generation relative to non-RPS states
with similar renewable energy potential, political and economic
conditions.

We again find a statistically significant and positive impact of
RPSs on electricity prices. Using the SCs, we estimate that electricity
prices increased by 0.86 ¢/kW h (10.9%) in RPS states relative to the
synthetic states. This point estimate is very similar to the baseline
specification.

Using SCs, the coefficient for CO, emissions attenuates relative to
the baseline specification and is no longer statistically significant, but
we still do find a strong statistically significant estimated impact of
RPS on electricity demand. Specifically, we find that RPS states have
experienced a 0.713 MW h (5.6%) per person decrease in electric-
ity demand on average relative to synthetic states. This decline in
electricity demand associated with the estimated increase in elec-
tricity price of 10.9% implies a long run price elasticity of demand of
—0.51. Nakajima and Hamori (2010) provide a list of studies that esti-
mate the long run price elasticity of residential electricity demand.'®
Estimates range from very inelastic (—0.04) to elastic (—1.56). The
mid-point of these estimates is approximately —0.5 which is con-
sistent with our estimate. It should be noted, that unlike these
estimates, our estimate not only focuses on residential customers but
includes commercial and industrial customers as well.

Table 4 presents the estimated treatment effect for each RPS state
relative to its specific SC as illustrated in Eq. (2). The average treat-
ment effect on renewable energy generation is —21.75 kW h per
person (4.6%). This average treatment effect is not statistically sig-
nificantly different than zero using a simple two-tailed t-test, thus
we consistently do not find evidence that RPS states have achieved
increases in renewable energy generation relative to states with
similar renewable energy potential, political and economic condi-
tions. Consistent with previous results, we estimate that RPSs are
associated with a 0.90 ¢/kW h (11.4%) increase in electricity prices.

17 These emissions are associated with power plants that are actually located within
a state. So if a state purchases a REC from out of state, the renewable energy produc-
tion, and therefore decrease in emissions associated with that displaced production,
will be accounted for in the state that the power is produced — not the state that
purchases the power.

18 Estimates presented in this research are interpreted as the average change in each
outcome over the post treatment time period. Therefore, these are more reasonably
compared to a long run elasticity estimate in response to a permanent change in price,
not a short-run elasticity that measures changes in electricity demand in response to
transitory shocks.
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Table 3
Estimated impact of RPS: baseline specification.
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Renewable generation

Electricity price

CO, emissions Electricity demand

(1) (2) (3) (4)
Baseline differences-in-differences
RPS —-286.9 0.910™* —0.897* —0.954"*
(203.6) (0.379) (0.513) (0.284)
Observations 1176 1176 1176 1176
Synthetic control specification
RPS —7.424 0.860"* —-0.256 —0.713™*
(84.02) (0.387) (0.390) (0.166)
Observations 1392 1392 1392 1392
Placebo treatment
Placebo RPS -81.75 0.104 0.105 0.0583
(96.26) (0.0636) (0.245) (0.131)
Observations 912 912 912 912

Standard errors clustered at state level. State level fixed effects included in all regressions; full regression output can
be found in online Appendix. Variable units are as follows: renewable energy generation — kW h per person; electricity
price — cents per kW h; CO, emission — metric tons per person; electricity demand — MW h per person. Baseline
differences in differences specification uses non-RPS states as control group. Synthetic control specification utilizes
synthetic states as controls. Placebo treatment compares non-treated states to synthetic states using random placebo
treatment year. lowa was excluded from the SC analysis because its RPS was implemented before the first year of data
available and therefore no pre-treatment characteristics are available.

*,**, and *** represent significance at the p < .10, p < .05, and P < .01 respectively.

We do not find statistically significant evidence of a decrease in
CO, emissions but estimate that electricity demand decreased by
0.92 MW h per person (7.2%). Similar to the pooled results in Table 3,
these results imply a price elasticity of 0.63. The estimated treatment
effects for each state relative to its SC are presented in Appendix
Table A.12.

4.1. Robustness checks

4.1.1. Placebo treatments

The first robustness check tests for the impact of a “placebo treat-
ment” on non-RPS states relative to synthetic controls. The first step
in conducting placebo tests is to create a synthetic state for each of
the non-RPS states as a weighted average of other non-RPS states.!?
Once these synthetic states are created, a random placebo treatment
year was chosen for each state between 1997 and 2009, the range of
years when RPSs were implemented in treated states.

As a corollary to the main results we conduct placebo tests using
both the pooled DD specification and a comparison of each state rel-
ative to its specific SC as illustrated in Eqgs. (1) and (2), respectively.
Table 3 presents the pooled placebo results utilizing all non-RPS
states with the placebo treatment compared to the pooled SCs. The
point estimates for renewable generation, electricity prices, CO,
emissions and electricity demand are all statistically insignificant.
In addition, the placebo coefficient estimates for the two variables
that are found to be significantly impacted by RPSs - electricity price
and electricity demand - are orders of magnitude smaller than the
estimated effect in RPS states.

Next, we compare each non-treated state to its SC separately
and obtain an estimated treatment effect as shown in Eq. (2). The
results presented in Table 4 are similar to the pooled placebo test.
The average placebo treatment effect for non-RPS states is not statis-
tically significantly different than zero for any of the four outcomes
of interest. In addition, the magnitude of the coefficients for electric-
ity price and electricity demand is orders of magnitude smaller than
the estimated treatment effect for RPS states.

19 These weights can be found in Online Appendix Tables A.26-A.29

4.1.2. Falsification outcomes

As a second robustness check we conduct falsification tests. We
estimate the impact of RPSs on two outcomes that we do not expect
to be impacted by an RPS; cooling degree days and end user gaso-
line consumption. Tables 5 and 6 show results for the falsification
tests for both outcomes. These results are corollaries to the main
empirical results presented in Tables 3 and 4 and we present results
using (a) the pooled non-treated states as the control group, (b)
pooled synthetic controls and (c) each state relative to its specific
synthetic state. We also present placebo treatment tests where we
treat each non-RPS state for each falsification outcome. If the main
results of this research are valid, we should see no effect of RPSs on
the outcomes of interest and should not see systematic differences
in placebo treatment coefficients relative to estimated treatment
effects for RPS states.

The first potential threat to identification that is addressed in
these falsification tests is potentially changing weather patterns in
RPS states relative to non-RPS states that could lead to systematic dif-
ferences in electricity rates and demand. For instance, if the number

Table 4
Comparison of estimated treatment effects.
Average treatment effect Standard error N

Renewable energy generation per person
Actual treated -21.75kWh 54.25 29
Placebo treatment —74.61 kW h 215.31 19
Electricity price
Actual treated 0.90¢*** 0.332 29
Placebo treatment 0.19¢ 0.145 19
Emissions per person
Actual treated —0.276 tons 0.360 29
Placebo treatment —0.347 tons 0.544 19
Electricity demand per person
Actual treated —0.923 MW h*** 0.250 29
Placebo treatment —0.201 MW h 0318 19

Iowa was excluded from this analysis because its RPS was implemented before the first
year of data available and therefore no pre-treatment characteristics are available.
*,**, and *** represent significance at the p < .10, p < .05, and P < .01 respectively.
Statistical significance based on two tailed t-test.
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Table 5
Falsification test: baseline specification.
CDD Gasoline demand
(1) (2)
Baseline differences-in-differences
RPS -12.63 -0.0119
(20.34) (0.0282)
Observations 1176 1176
Synthetic control specification
RPS -21.19 —0.00490
(19.09) (0.0251)
Observations 1392 1392
Placebo treatment
Placebo RPS —7.475 -0.0130
(15.77) (0.0154)
Observations 912 912

Standard errors clustered at state level. State level fixed effects included in all regres-
sions; full regression output can be found in online Appendix. Variable units are as
follows: CDD — a measure for the number of days in which the average user in the
state will use air conditioning due to the average temperature in that day exceeding 65
°F. Gasoline demand is prime supplier sales of motor gasoline sold for local consump-
tion. Placebo treatment utilizes non-treated states to synthetic states using random
placebo treatment year. lowa was excluded from the SC analysis because its RPS was
implemented before the first year of data available and therefore no pre-treatment
characteristics are available.

of CDDs declines in RPS states relative to non-RPS states, then elec-
tricity demand would also decrease which could then lead to higher
electricity prices associated with the higher average cost needed to
support the utility grid’s infrastructure.2? As shown in Table 5, using
the baseline specification and SCs, we do not find a statistically sig-
nificant effect of RPSs on CDDs (point estimates suggest a change of
< 1%). The placebo treatment is also statistically insignificant. Table 6
shows results for each treated state relative to its specific synthetic
state. The average treatment effect for CDDs is —45.33 (or about 3.9%)
and not statistically significant. The placebo treatment is also small
and not statistically significant.

The second threat to identification is that RPS states might have
experienced decreases in energy consumption in general relative to
non-RPS states potentially due to concerns about climate change in
RPS states relative to non-RPS states. This could lead to both lower
electricity demand and therefore higher electricity prices (through
the same mechanism discussed in the previous paragraph). While
the SCs attempt to mitigate this concern by choosing a compara-
ble synthetic state that is very similar along economic and political
dimensions, if a decline in gasoline demand is observed in RPS states
relative to SCs, this will cause concerns that the increase in elec-
tricity prices and decrease in electricity demand might not be due
to the RPS, but instead these results might simply be picking up on
decreases in energy demand in general within the state. Results in
Tables 5 and 6 show no change in gasoline demand in RPS states rel-
ative to both the baseline control group and SCs. Placebo treatments
are also not statistically significant and oscillate around zero.

Of the ten coefficient estimates presented in these falsification
tests, none are statistically significant at 10%. Thus, these falsification
test results do not reveal any concerns to our initial empirical findings.

4.1.3. Policy heterogeneity
Another potential threat to identification is that not accounting for
RPS heterogeneity might induce a bias towards zero in the average

20 Electric utilities are natural monopolies. Rates are set based on a revenue require-

ment which is the depreciated capital expenditure times some allowed rate of return.
If electricity demand declines, this necessarily increases electricity rates, as the com-
pany still must meet its revenue requirement. Therefore, if changes in climate are
impacting electricity demand, this will impact electricity rates as well.

Table 6
Falsification test: comparison of estimated treatment effects.
Average treatment effect Standard error N

CDDs
Actual treated —45.33 28.95 29
Placebo treatment 4.58 15.02 19
Gasoline demand
Actual treated 0.011 gal/day 0.023 29
Placebo treatment 0.011 gal/day 0.357 19

Iowa was excluded from this analysis because its RPS was implemented before the first
year of data available and therefore no pre-treatment characteristics are available.
Statistical significance based on two tailed t-test.

treatment effect, especially if some states pass policies that are ineffec-
tive. Potentially, some states that passed stringent RPSs have indeed
experienced significant increases in renewable generation due to the
policy, but this effect is not picked up empirically due to the slue of
other states with less stringent policies. To test whether this hetero-
geneityin policy stringency might be downward biasing our treatment
effects, we incorporate stringency into our empirical estimates.

More specifically, Carley and Miller (2012) - hereafter referred to
as CM - calculated the stringency of each state’s RPS based on the ini-
tial renewable generation target, the final generation target, the time
between RPS adoption and the final generation target, and the pro-
portion of the state load covered by the RPS. CM calculated the initial
RPS stringency at the time of policy adoption and incorporated strin-
gency revisions through 2008. Because our analysis extends to 2013,
we updated CM’s stringency calculations to the end of our sample
period.?!

As a corollary to Eq. (1), Eq. (3) below incorporates the RPS
stringency into the empirical specification.

Vst = 0 + 8(Sgps x RPSs x Stringencyst) + y1Ds + y2Dr + &t 3)

where again y, is the outcome of interest - renewable energy gen-
eration, electricity price, emissions or electricity demand - in state
s in year t. Sgps is an indicator variable corresponding to the treated
states and is zero for the control states. RPS is an indicator variable
that indicates the time periods after the RPS was implemented for
a particular state. Stringencys, is the stringency measure developed
by CM. Appendix Table A.14 lists state level stringency and revisions
over the sample time period.

Table 7 shows DD results incorporating policy stringency using
both the baseline specification that uses all RPS states as the con-
trol group as well as the SC specification. Results are consistent
with results presented in Table 3. We estimate a negative treatment
effect associated with renewable generation in both the baseline and
SC model, with neither coefficient being statistically significant. We
again find that RPS states have experienced increases in electricity
prices relative to both control groups. The baseline specification sug-
gests that adoption of an RPS with average stringency (with a measure
of 69.0) is associated with a 1.35 ¢/kW h increase in electricity prices,
while adoption of the most stringent policy (with a measure of 105.1)
is associated with an increase of 2.06 ¢/kW h. The SC specification
suggests a more modest effect of a 0.67¢ increase associated with
an average stringency policy and 1.03¢ increase associated with the
most stringent policy. Using this stringency specification, we again
find evidence of decreases in electricity demand, likely associated
with electricity price increases, and no effect on CO, emissions. Thus,
results are robust to the inclusion of this measure of policy stringency.

21 This updating was done based on DSIRE database, which provides changes
through August of 2011. Author’s independent research found no examples of further
changes between August of 2011 and the end of our sample period in 2013.
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Table 7
Stringency and RPS effectiveness.

Renewable generation

Electricity price

CO, emissions Electricity demand

(1) (2) (3) (4)
Baseline differences-in-differences
RPS x stringency —4.262 0.0196** —-0.0108 —0.0139***
(3.443) (0.00869) (0.00789) (0.00467)
Observations 1152 1152 1152 1152
Synthetic control specification
RPS x stringency -1.133 0.00978* —-0.00157 —0.00330**
(0.707) (0.00560) (0.00505) (0.00157)
Observations 1392 1392 1392 1392

Stringency measures are from Carley and Miller (2012). Standard errors clustered at state level. State level fixed effects
included in all regressions; full regression output can be found in online Appendix. Variable units are as follows: renew-
able energy generation — kW h per person; electricity price — cents per kW h; CO, emission — metric tons per person;
electricity demand — MW h per person. Baseline differences in differences specification uses non-RPS states as con-
trol group. Synthetic control specification utilizes synthetic states as controls. lowa was excluded from the SC analysis
because its RPS was implemented before the first year of data available and therefore no pre-treatment characteristics
are available. lowa also excluded from baseline specification because stringency not available (see Carley and Miller,

2012).

*,**, and *** represent significance at the p < .10, p < .05, and P < .01 respectively.

It should be noted that, just as RPS adoption is not random, the
policy stringency chosen is also likely not random. Not only might
policy stringency be impacted by observables used in constructing
the SC analysis, but also changes to stringency might be impacted
by a state’s success in reaching the policy goals set in prior years.
Thus, a state that is having difficulty complying with its RPS target
might be more likely to revise the policy to become less strin-
gent, while a state with significant renewable energy growth might
decide to strengthen its policy. If such endogenous policy changes
exist, the SC analysis presented in this research will not be adequate
in accounting for this potential bias. For this reason, these results
should be interpreted as a test of robustness to the inclusion het-
erogenous policy stringency, not necessarily an unbiased treatment
effect of policy stringency on these outcomes.

5. Discussion
5.1. Policy implications

Results of this research have a number of policy implications.
The most notable result for policy makers is that RPS states have
not experienced increases in renewable energy generation relative
to non-RPS states. In fact, a simple descriptive analysis reveals the
fact that RPS states have actually experienced less growth in renew-
ables. But, on the other hand, RPS states have experienced increases
in electricity prices relative to non-RPS states. Results of electricity
price increases are consistent in the simple descriptive analysis (i.e.
baseline specification) as well as in the SC analysis that attempts
to account for non-random policy implementation by comparing
RPS states to non-RPS states with similar economic and political
conditions and similar renewable energy generation potential.

This main result has significant public finance implications, espe-
cially given the fact that electricity is one of the classic examples of
a regressive good. While it is generally known that RPSs can lead
to increases in electricity prices (Schmalensee, 2012; Kydes, 2006;
Palmer and Burtraw, 2005), this is the first paper to econometri-
cally find evidence of this increase from an ex-post difference-in-
differences style approach. Similar to carbon tax policies that have
been shown to be regressive (Hassett et al., 2009; Burtraw et al,,
2009; Dinan and Rogers, 2002; Metcalf, 1999), these results provide
suggestive evidence that RPSs may also be regressive in nature. Alter-
native policies, such as direct subsidies for renewable projects, might
also achieve the goals of an RPS through progressive taxation instead
of regressive electricity price increases.

Thisisalso the first paper to specifically link renewable energy poli-
cies to decreases in electricity demand through the electricity price
channel. RPSs can potentially lead to reductions in CO, emissions
through two channels; the supply side (i.e. new renewable genera-
tion) and the demand side (i.e. reductions in electricity consumption
associated with response to increased electricity prices). Results of
this research find weak evidence that RPS states have experienced
decreases in CO, emissions relative to non-RPS states, but that these
reductions are likely due to reductions in electricity demand, not
renewable energy generation. Thus, an electricity tax equivalent to
the estimated price increase might yield a similar demand reduction,
and therefore CO, emissions reduction, as the RPS policy. These tax
revenues could then be spent on other programs aimed at reducing
electricity demand and CO, emissions, such as energy efficiency for
low-income rate payers. Such policies might be less regressive (or
even progressive)in nature, and these investments can be keptin state
(unlike investments in renewables that are moving across state lines).

Results of this research can also inform policymakers on how to
address, and if they should address, RPSs potential to spur renew-
able energy generation into other states at the expense of in-state
ratepayers. On the one hand, one might argue that states should
restrict out of state REC purchases, to the extent that this is feasible
and legal,?? so that the economic benefits associated with the con-
struction and operation of renewable energy projects are received by
in-state ratepayers who also bear the cost of this generation. On the
other hand, funding enough in-state renewables to meet the entirety
of an RPS requirement might lead to further increases in electricity
rates, as lower cost generation potential might be available across
state lines. This might particularly be true for states with lower
renewable energy generation potential, such as Delaware and Con-
necticut, but might not be as large of a concern for other states with
abundant renewable energy potential, such as Texas and Kansas.

5.2. Extensions for future research

Different states have very different ways of determining rates for
customers. In particular, there are two main categories of states: cost
of service states (i.e. states that did not go through electricity market
“restructuring”) and competitive states (i.e. “restructured” states).

22 While RPS states have made attempts to incentivize renewable projects to occur
in state (Mack et al., 2011), in general restricting trade of RECs across state lines is a
violation of the Commerce Clause of the U.S. Constitution (Elefant and Holt, 2011). In
addition, the 7th Circuit Court of Appeals ruled that Michigan’s in-state requirements
for their RPS were in violation of the Commerce Clause of the U.S. Constitution.
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How these different regulatory regimes might plausibly differ with
relation to an RPS are discussed in Schmalensee (2012). In addition,
Barbose et al. (2015) take restructuring into account when estimat-
ing RPS compliance costs. But no research to date has empirically
compared the impact of RPSs on outcomes of interest in restruc-
tured and un-restructured states. There is room for future research
on how market restructuring can augment, or diminish, the potential
effectiveness of an RPS.?3

While this is the first analysis to test the impact of RPSs on retail
electricity prices faced by consumers using an ex-post differences in
differences style approach, more research might explore why such
a large range of estimates on costs more generally associated with
RPSs exist in the literature (Barbose et al., 2015; Kydes, 2006; Palmer
and Burtraw, 2005). A number of factors might contribute to these
differences. Potentially not all costs associated with RPSs are directly
related to renewable electricity procurement. For instance, Texas’
CREZ project, a series of major transmission upgrades, was required
in order to get wind energy to the market. How to allocate such costs
as associated with an RPS compared to transmissions upgrades that
would be made regardless of the RPS on a project by project basis
is likely implausible. In addition, the effect of intermittent renew-
able sources on fossil fuel based plants is also difficult to quantify.
For these reasons, and potentially other technical reasons, adding up
plausible costs and benefits associated with an RPS might lead to over
or underestimation of the actual net increase in electricity prices.
Understanding the limits of different approaches in estimating costs
and benefits of RPSs and how the approach chosen can inherently
bias an estimate is important for policy makers who want a holistic
understanding of these policies.

6. Conclusions

In this research we test the impact of state level renew-
able portfolio standard (RPS) implementation on four outcomes of
interest; in-state renewable energy generation, electricity prices,
CO, emissions associated with electricity generation and electric-
ity demand. In contrast to a number of studies (Menz and Vachon,
2006; Carley, 2009; Yin and Powers, 2010), while both RPS states and
non-RPS states experienced increases in renewable energy genera-
tion during the sample period, we find no evidence that RPS states
have experienced increases in renewable energy relative to similarly
situated non-RPS states. If anything, point estimates suggest that RPS
states have actually seen less renewable energy generation growth
than non-RPS states, more consistent to results found by Shrimali
and Kniefel (2011).

However, we do find that RPSs are associated with a 10.9 to 11.4
percent increase in electricity prices compared to synthetic states
with similar economic and political conditions and similar renew-
able energy generation potential. Prior studies have presented large
ranges of estimated costs of RPS compliance. For instance, Palmer
and Burtraw (2005) estimate that a hypothetical 20 percent RPS
could lead to an 8 percent increase in electricity prices, with signif-
icantly lower costs for less ambitious (lower percent RPS) policies.
Similarly, Kydes (2006) estimates that electricity prices would rise
by about 3% in response to a theoretical 20 percent federal RPS being
implemented. Most recently, Barbose et al. (2015) add up specific
costs and benefits of RPSs and estimate compliance costs of < 2% of
average retail rates in most U.S. states over the 2010-2013 period.

23 Ofthe 29 RPS states, 15 of these states are restructured, while the other 14 are not.
Specifically, restructured RPS states include CT, DE, IL, ME, MD, MA, MI, NH, NJ, NY, OH,
OR, PA, RI, and TX (EIA, 2010). While the structure of utility rate design with respect
to RPS effectiveness is beyond the scope of this research, it should be noted that sim-
ply comparing state specific point estimates shown in Appendix Table A.12 across
these four outcomes of interest for restructured vs. non-restructured states reveals no
statistically significant difference.

Our results are on the high end of these estimates, but this is the first
paper to analyze the impact of RPSs on electricity prices in an ex-post
differences-in-differences framework.

We also find that RPSs are associated with a 7.2 to 7.5 percent
decrease in electricity demand. This decrease in electricity demand
is likely due to the increase in electricity price and therefore com-
parison of these results implies a long run price elasticity of approx-
imately —0.51 to —0.63, which is in the mid-range of prior empirical
estimates (Nakajima and Hamori, 2010).

While the specific implications of state level RPS policies as well
as the potential for a federal RPS will likely be debated for years
to come, research that analyzes the effect of RPSs on outcomes of
interest must consider the non-random selection into these policies.
Simple comparisons of the change in outcomes before and after pol-
icy implementation or comparisons of RPS and non-RPS states are
not sufficient in order to holistically understand the effect of these
policies on electricity markets. Furthermore, research should be con-
cerned not only with the most visible outcomes of RPSs, namely
increases in renewable generation and decreases in emissions, but
should also focus on other effects such as increases in electricity
prices and subsequent demand decreases. This is the first paper
to take non-random adoption of RPSs into account in the empir-
ical specification and is also the first empirical paper to examine
electricity prices and demand. Understanding the intricacies of how
effective RPSs are at achieving emissions reductions, and the chan-
nels through which these reductions are achieved relative to other
potential policies, is a necessary step towards the goal of carbon
emissions reductions.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.eneco.2017.06.003.
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