BUILDING A HOME /S ROCKET SCIENCE

What is Rocket Science?

Goal:

-Successful mission

- Parameters:
 - Weight
 - Size
 - Fuel supply
 - -Comm systems
 - Life support
 - Route
 - -MANY more

What is Rocket Science?

Literally BILLIONS of possible designs

How can we choose the design with the highest probability of success?

What is Rocket Science?

How can we make smart decisions?

Determine evaluation criteria and simulate all your options.

Rocket Science --> Home Building

Rocket Science --> Home Building

Options for Wall Systems

- 2x4 or 2x6 (or more!)
- Advanced Framing
- 16" O.C. or 24" O.C.
- Fiberglass or Foam?
- R11, R13, R15, R19, R21...
- Exterior Continuous Insulation

7

Options for HVAC

- Furnace/AC or Heat Pump
- 14 SEER or 16 SEER
- 80, 92, or 96 AFUE
- Natural Gas, Propane, Electric?
- Single Speed or Variable?
- Proper sizing

Image from www.mcair.com

Options for Water Heating

- Tankless, 50G, 80G
 EF (Energy Factor)
- Natural Gas or Electric
 Condensing?

Claims from Manufacturers

20-30 percent less energy

save more than \$350 million each year

What do they mean? Who do you trust?

SAVE \$600

Other Parameters

Goals:

- ENERGY STAR
- HERS Scores
- EFL
- LEED
- NGBS
- Focus on Energy

Codes:

- IECC
 - Current Code
 - Future Code
- Local amendments
- Many compliance paths

Incentives:

- Rebates
- Tax Credits
- Loans
- RECs

national**grid**

A Possible Solution

- 1. Upstream energy analysis to integrate it into the design process.
- 2. Determine key parameters and evaluation criteria.
- 3. Use computing power to simulate performance and cost to find optimal designs.

How Building Design Process Works Today

How Building Design Process Works Today

How Building Design Process Works Today

Capital Cost of Energy Related Components

Capital Cost of Energy Related Components

Capital Cost of Energy Related Components

Does this really make a difference?

REAL SCENARIOS

Real Scenarios

Survey Question

In a 5,000 ft² house in Indianapolis, how much does using R15 walls instead of R13 save a homeowner per month?

- A. More than \$50
- B. \$25 \$50
- C. \$10 \$25
- D. \$5-10
- E. Less than \$5

Wall Diminishing Returns More is not necessarily better

\$ Lost Through Wall per Month

Real Scenarios – Unexpected Tradeoffs

Monthly Utility Bill Savings

Same Net Construction Cost

24

Real Scenarios – Utility Rebates

Real Example of Impact of Optimization w/ Utility Incentives

	Initial House Design (No rebate)	Optimized With Performance-based Utility Rebate
HERS	69	55 (-14)
Capital Cost w/ Incentives	Baseline	-\$1,366
Payback Period	N/A	Instant
Monthly Energy Bills	\$138	-\$15

Results from one large production builder in North Carolina

Real Scenarios – Total Ownership Costs may be less for a more expensive new home

A Real Use Case – New Mexico

Purpose: Identify optimal energy specification that is the most cost effective; comparing performance (HERS, energy bills), code, cost and sales velocity

Phase 1^{*}- Maximum HERS vs. Cost (Forced Air Options)

A Real Use Case – New Mexico Changes to Baseline Spec

= changes from Builder Spec

	1. Baseline	Option 3	Option 5	Option 6	Option 8
	(HERS 58)	(HERS 61)	(HERS 58)	(HERS 57)	(HERS 55)
Capital Cost w/incentives	\$6.35MM	\$5.81MM	\$5.85MM	\$5.89MM	\$5.97MM

Only changes are represented below. All other materials stay the same.

Attic Insulation	R49 Blown	R30 Blown	R38 Blown	R49 Blown		
Slab	R23 ICF + R5 Under	R5 Footer		R10 Footer	R10 Footer + R5 Under	
Above Grade Wall	2x6 R20.4 + 2" EPS	2x4 R13 + R6 Insulated Sheathing				
Air Conditioner	15 SEER	13 SEER				
Heating Equip	95.5 AFUE Furnace	92 AFUE Furnace	95.5 AFUE Furnace			
Water Heater	50 Gal NG	50 Gallon GE GeoSpring Hybrid Electric			NG Tankless (0.95 EF)	

How to Implement this?

Few Options:

- Manual analysis with HERS Rater
- Ekotrope
- BEopt

How do you determine energy specs today? Let's share techniques!

Questions?

Nick Sisler

Co-Founder, Lead Engineer Ekotrope

nick@ekotrope.com 617-453-8041