Photochemical internalization technology induces strong enhancement of CD8+ and CD4+ T-cell responses to vaccination

Tone Otterhaug¹, Gaute Brede³, Markus Haug³, Monika Håkerud^{1,2}, Anne Grete Nedberg^{1,2}, Victoria Edwards^{1,2}, Øyvind Halaas³, Pål Kristian Selbo^{1,2} and Anders Høgset¹

¹PCI Biotech AS, ²Oslo University Hospital – The Norwegian Radium Hospital, ³Norwegian University of Science and Technology

Correspondence: Tone Otterhaug, PCI Biotech AS, Ullernchausséen 64, 0379 Oslo, Norway. E-mail: tone@pcibiotech.com. Tel.: +47 6711 5400

Summary and Conclusions

Background:

- For generating a proper anti-tumour immunological response it is essential to stimulate cytotoxic T-cells (CTLs) to attack the tumour cells. Activation of CTLs is typically mediated through MHC Class I antigen presentation by antigen presenting cells (APCs).
- Fimaporfin (TPCS_{2a}) is a photosensitizer drug for use in Photochemical internalisation (PCI) to enhance the
 effects of other drugs in a site-specific, light-directed manner.
- The PCI technology can re-localise endocytosed molecules from endosomes to cytosol and can therefore be used to enhance MHC Class I presentation by making access for antigens to the MHC Class I presentation machinery in the cytosol of APCs.

Aims of the work

To demonstrate if the PCI technology can enhance the effect of peptide or protein vaccines assessed by induction of antigen-specific antibodies, CD4 helper T-cell and CD8 cytotoxic T-cell responses, and anti-tumour responses.

Results

Peptide antigen co-localizes with

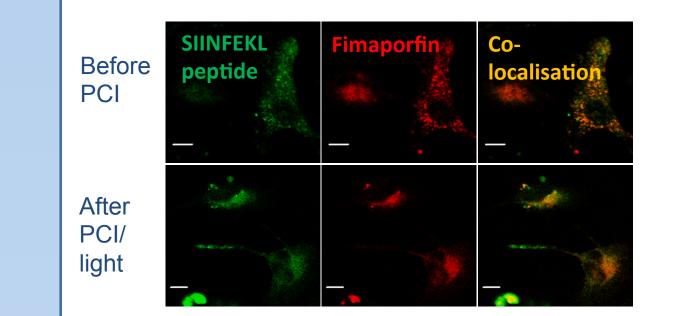
PCI increases MHC I presentation of SIINFEKL (OVA)

Results:

- The photosensitizer fimaporfin co-localizes with peptide and protein antigens in endosomes, and illumination releases the antigens into the cytosol.
- PCI can increase MHC Class I presentation of peptide antigen by APCs up to 20 times (*in vitro studies*).
- PCI strongly increases the frequency of antigen specific CD8 T-cells in blood and spleen after intradermal vaccination with various long and short peptide antigens in C57BL/6 mice (more than 100 times enhancement).
- PCI vaccination strongly enhances antigen-specific production of IFN-γ and TNF-α from CD8 and CD4 T-cells (blood and spleen).
- PCI vaccination strongly enhances antigen-specific antibody production.
- PCI and commonly used adjuvants (e.g. poly(IC), poly(ICLC) have strong synergistic effects when used in combination.
- PCI significantly enhances anti-tumour response after therapeutic vaccination with a HPV long peptide antigen vaccination in the TC-1 model for HPV-induced cancer.

Background

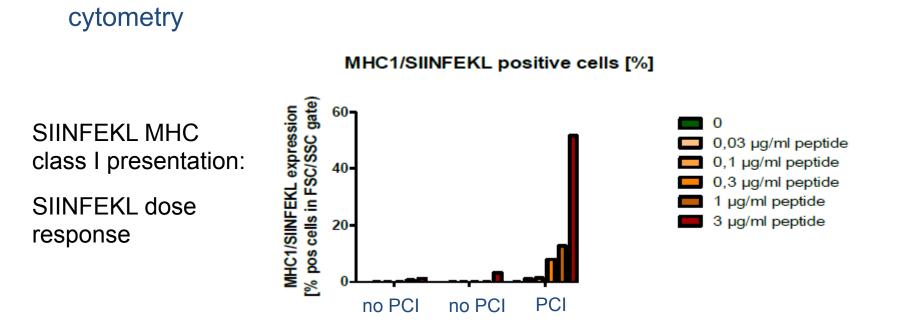
Photochemical Internalisation (PCI) is a technology for inducing cytosolic delivery of endocytosed molecules by illumination. A photosensitising molecule (fimaporfin (TPCS_{2a})) is used to make endocytic membranes light sensitive, with illumination inducing permeabilisation of the membranes. Thus, PCI has a clear potential for enhancing CTL responses; re-routing antigen presentation from MHC class II to MHC Class I by making access for the antigen to the MHC Class I presentation machinery in the cytosol of APCs.

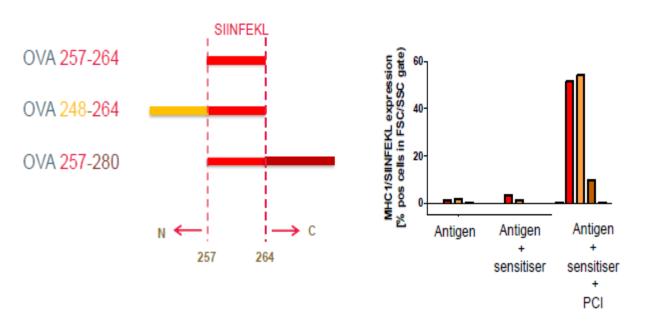

In addition to the use in vaccination the PCI technology can also be used for cytosolic delivery of a variety of drug molecules. A completed phase I clinical study showed that the photosensitiser $TPCS_{2a}$ can be delivered safely to humans, and two clinical studies where the technology is used in combination with chemotherapeutic drugs (bleomycin and gemcitabine) are on-going.

No PCI –

antigen in

endosomes

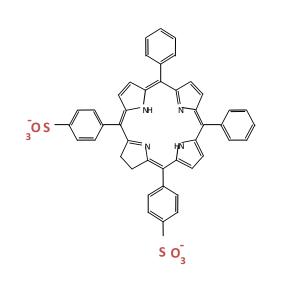

the photosensitiser (fimaporfin) in endosomes and is released upon illumination

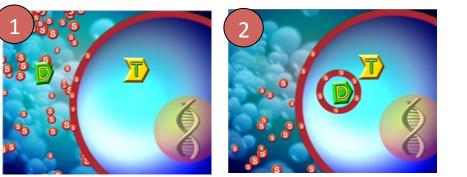

- Peptide and fimaporfin co-localises in endosomal structures in macrophages (peptide inside cell)
- Diffuse distribution after light indicates endosome disruption and cytosolic escape of the peptide

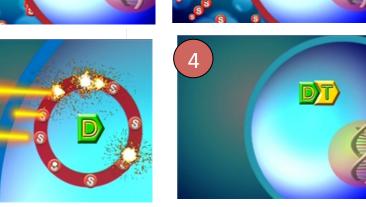
peptide and N- and C-terminal extentions

Macrophage cell line incubated with SIINFEKL peptides and fimaporfin
SIINFEKL MHC Class I complex detected by antibody staining and flow

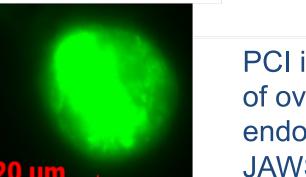
- PCI enhanced MHC Class I presentation of both SIINFEKL and SIINFEKL with N-terminal extension about 20 times.
- PCI also enhanced, at a lower extent, MHC Class I presentation of SIINFEKL with C-terminal extension

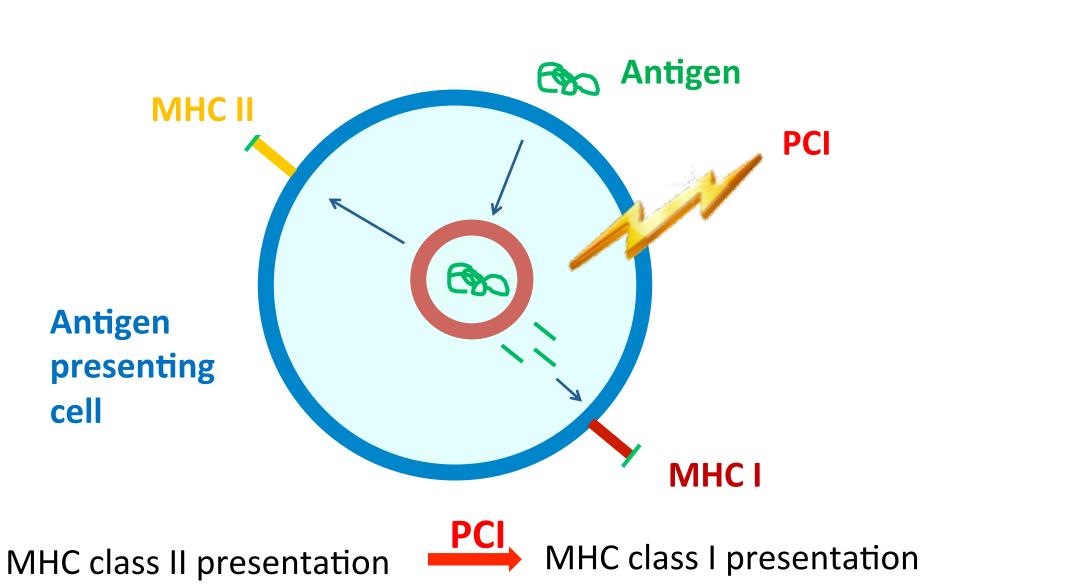

PCI combined with poly(IC) (adjuvant) enhances the frequency of SIINFEKL (OVA) peptide antigen-specific CD8 T-cells > 100 times compared to antigen + poly(IC) without PCI


The photosensitiser (S) and the drug/ antigen (D) are injected into the body and meets the cells containing the drug target (T) (or in vaccination approaches: an APC)

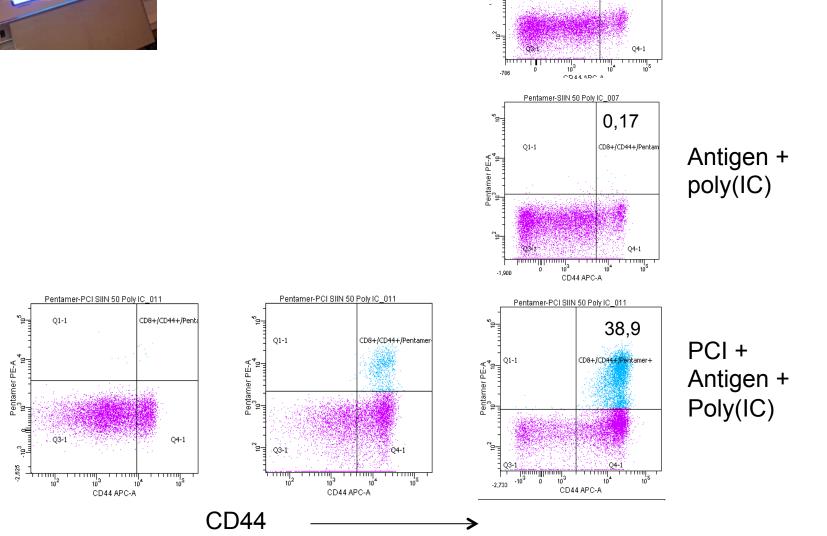

Light activates the photosensitiser in the membrane of the endosome. The membrane is *permeabilised* and the drug/ antigen is released.

Fimaporfin photosensitiser


- Easily produced
- Cheap
- Very stable (can be autoclaved, stable at room temperature for several years
- Has been tested in patients without severe adverse effects (Iv administration)


The photosensitiser and the drug/ antigen are taken up by the cell, but the drug is unable to reach the target, as it is encapsulated in an endosome

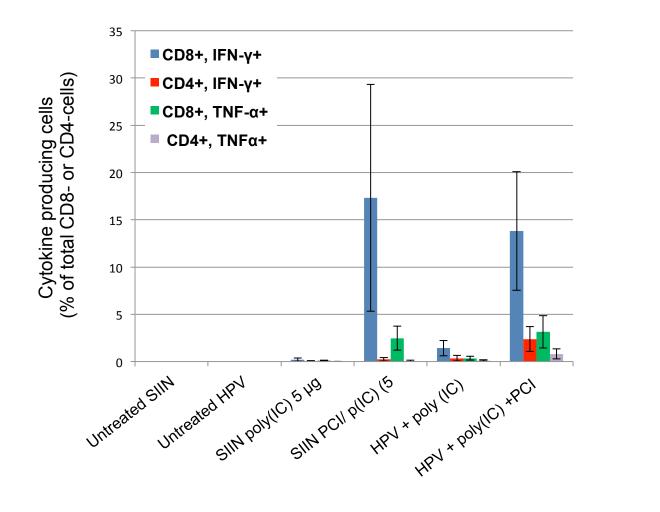
The drug/antigen molecule can now bind to its target, initiating a therapeutic response or MHC Class I antigen presentation



PCI induces re-localisation of ovalbumin antigen from endosomes to cytosol in JAWSII dendritic cells

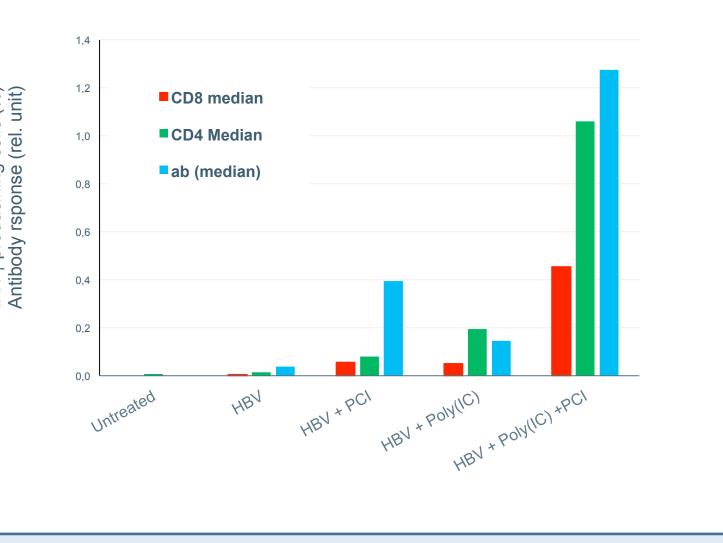
PCI – antigen in cytosol

- A mixture of photosensitiser (fimaporfin), poly(IC) and peptide antigen was injected intradermally to the abdomen of the mouse
- 18 h later, the injection area of the skin was illuminated with blue light for 6 min
- 3 vaccinations given at 14 days interval
- Blood samples were collected 8 days after each vaccination and analysed for SIINFEKL pentamer, CD8 and CD44 using flow cytometry



1st vaccination

2nd vaccination 3rd vaccination


PCI enhances antigen-specific induction of cytokines from CD8 and CD4 T-cells after *in vivo* immunisation

Vaccination with poly(IC) and SIINFEKL or HPV long peptide +/- PCI

PCI enhances antigen-specific IFN-γ and antibody production after *in vivo* immunisation with HBV surface antigen

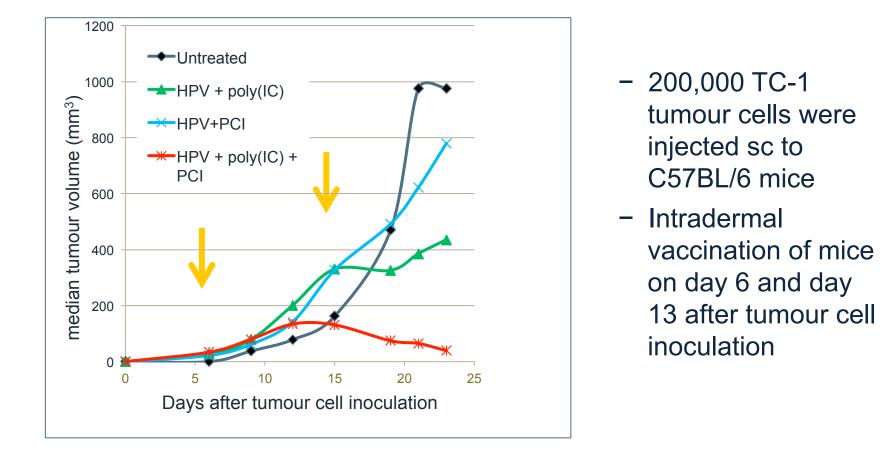
Vaccination with poly(IC) and HBV surface antigen +/- PCI

PCI can switch antigen presentation from MHC Class II to MHC Class I by making access for antigens to the cytosol in APCs

Materials and Methods

Intradermal photosensitisation and immunisation of mice

C57BL/6 mice were injected intradermally with 100 µl of a mixture of antigen (50 µg), and fimaporfin (25 µg) and/or poly(IC) (5 µg) when applied. 18 h after immunisation the mice were placed on a light source (LumiSource®, PCI Biotech AS) for activation of the photosensitiser by illumination (6 minutes). Typically, mice were bled on day 7 after immunisation by tail bleeding for analysis of antigen-specific CD4 and CD8 T-cells by flow cytometry, and antigen-specific antibodies by ELISA. The antigens used were: ovalbumin peptides (see figure), HPV short peptide (RAHYNIVTF), HPV long peptide (GQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIR) and TRP-2 melanoma antigen (SVYDFFVWL)


Analysis of immune responses by flow cytometry and ELISA

Immune responses were evaluated in cells from blood or spleen. The frequency of antigen-specific CD8 T-cells in blood was monitored by staining the cells with anti-CD8 antibody and antigen-specific pentamer (Proimmune, Oxford, UK) for analysis by flow cytometry. The activation status of the cells was further analysed by testing the expression of CD44. Antigen-induced activation of CD4 and CD8 T-cells was assessed as intracellular staining with IFN- γ or TNF- α of blood or spleen cells. Cells were re-stimulated with the peptide antigens overnight in 24-well plates at 37 °C. Brefeldin A was added during the last 4 hours. The cells were then washed and fixed with 4% formaldehyde in PBS for 10 min on ice. Anti-CD16/32 was added to block unspecific binding to Fc receptors. The cells were stained with anti-CD44, anti-CD8 and anti-CD4 antibodies before permeabilised with 0.1% NP40 in PBS for 3 min, washed and stained with anti-IFN- γ , TNF- α antibodies (eBioscience or BD Pharmingen). The cells were analysed using FACSCanto (BD Biosciences, San Jose, USA) and FlowJo 8.5.2 software.

Therapeutic vaccination in the TC-1 model.

200,000 TC-1 cells were injected subcutaneously into the right flank of C57BL/6 mice. After approximately 6 days, when the tumour was palpable, the mice were vaccinated as described above by intradermal injection followed by illumination. Tumour growth was monitored by measuring the size of the neoplasm with a calliper.

PCI induces strong anti-tumour response after therapeutic vaccination with HPV long peptide antigen in TC-1 mouse tumour model

Oslo universitetssykehus Norwegian Radium Hospital

Image: Norwegian University of Science and Technology

Conclusions:

- PCI has a completely novel mechanism of action as a vaccination technology, representing a potent tool for stimulation of cytotoxic CD8 T-cell responses, CD4 T-cell responses as well as antibody production.
- PCI can give strong synergy with commonly used immunological adjuvants.