Clinical validation of Photochemical internalisation (fima VACC) – a novel technology for enhancing cellular immune responses to peptide- and protein-based therapeutic cancer vaccines

Aim

To investigate the safety and immune response of fime VACC- based peptide- and protein antigen vaccination in healthy voluntees

Summary and Conclusions

Background:

For generating a proper anti-tumour immunological response it is essential to stimulate cytotoxic T-cells (CTLs) to attack the tumour cells. Activation of CTLs is typically mediated through MHC Class I antigen presentation by antigen presenting cells (APCs).

Fimaporfin (TPCS_{2a}) is a photosensitiser drug for use in Photochemical internalisation (PCI) to enhance the effects of other drugs in a site-specific, light-directed manner.

The PCI technology is used to re-localise endocytosed molecules from endosomes to cytosol. The photosensitiser fimaporfin co-localises with peptide and protein antigens in endosomes, and illumination releases of the antigens into the cytosol. PCI can thereby be used to enhance MHC Class I presentation by making access for antigens to the MHC Class I presentation machinery in the cytosol of APCs. This application of the PCI technology is called **fime** *VACC*.

Results:

fima VACC can increase MHC Class I presentation of peptide antigen by APCs up to 20 times (in vitro studies).

fime VACC strongly increases the amount of antigen specific CD8 T-cells in blood and short peptide antigens in C57BL/6 mice (more than 100 times enhancement).

fime VACC strongly enhances antigen-specific production of IFN-γ and TNF-α from CD8 and CD4 T-cells (blood and spleen), as well as antigen-specific antibody production.

fima VACC and commonly used adjuvants (e.g. poly(IC), poly(ICLC) have strong synergistic effects when used in combination.

fima VACC significantly enhances anti-tumour response after therapeutic vaccination with a HPV long peptide antigen vaccination in the TC-1 model for HPV-induced cancer.

On the basis of these promising preclinical results, a phase I clinical study with fima VACC has recently been started in healthy volunteers.

Background

Photochemical Internalisation (PCI) is a technology for inducing cytosolic delivery of endocytosed molecules by illumination. A photosensitising molecule (fimaporfin (TPCS_{2a}) is used to make endocytic membranes light sensitive, with illumination inducing permeabilisation of the membranes. Thus, PCI has a clear potential for enhancing CTL responses; re-routing antigen presentation from MHC class I to MHC Class I by making access for the antigen to the MHC Class I presentation machinery in the cytosol of APCs.

In addition to the use in vaccination the PCI technology can also be used for cytosolic delivery of a variety of drug molecules. A completed phase I clinical study showed that the photosensitiser fimaporfin can be delivered safely to humans and provided promising signs of efficacy (Lancet Oncol (2016) **17**(9):p1217–1229); clinical studies where the technology is used in combination with chemotherapeutic drugs (bleomycin and gemcitabine) are completed/on-going.

PCI can strongly enhance MHC Class I antigen presentation by inducing endosomal release of antigens to the cytosol in APCs STEP 1: • The photosensitiser (S) and the drug/antigen (D) are injected into the body and

S

meets the cells containing the drug target (T) (or in vaccination approaches: an APC)

The PCI component - Light sensitive component - Fimaporfin

The target - Target for the active molecule

MHC II Vaccine

STEP 2:

Fimaporfin (S) and the active molecule (D) are taken up by the cell, but D is unable to reach the target (T), as it is encapsulated in an endosome
S is washed away from the cell membrane, but is trapped in endosomes

STEP 3:

- Light activates the photosensitizer fimaporfin (S) in the membrane of the endosome
- The membrane integrity is affected (*permeabilised*) and the drug/antigen is released

STEP 4:

The drug/antigen molecule (D) can now bind to its target (T) and initiate the therapeutic response or MHC Class I antigen presentation
For fime VACC: Access of antigens to the MHC Class I presentation machinery in the cytosol of APCs, and thereby increasing MHC I presentation and activation of CD8 T cells

Fimaporfin photosensitiser

- Easily produced
- Cheap
- Very stable (can be autoclaved, stable at room temperature for several years
- Has been tested in patients without severe adverse effects (Iv and ID administration)

No PCI –

antigen in

endosomes

PCI induces re-localisation of ovalbumin antigen from endosomes to cytosol in JAWSII dendritic cells

After fime VACC treatment – release of antigen in cytosol

Intradermal photosensitisation and immunisation of mice

The mice were injected intradermally with 100 µl of a mixture of antigen (50 µg), and TPCS_{2a} (25 µg) and/or poly(IC) (5 µg) and/or Hiltonol (5µg) when applied. 18 h after immunisation the mice were placed on a light source (LumiSource®, PCI Biotech AS) for activation of the photosensitiser by illumination (6 minutes). Typically, mice were bled on day 7 after immunisation by tail bleeding for analysis of antigen-specific CD8 T cells by flow cytometry. The antigens used were ovalbumin peptides (see figure), HPV short peptide (RAHYNIVTF), HPV long peptide (GQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIR), TRP-2 melanoma antigen (SVYDFFVWL), HBV surface antigen and KLH (Keyhole Limpet Hemocyanin)

Analysis of immune responses by flow cytometry and ELISA

The frequency of antigen-specific CD8 T-cells in blood was monitored by staining the cells with anti-CD8 antibody and antigen-specific pentamer (Proimmune, Oxford, UK) for analysis by flow cytometry. The activation status of the cells was further analysed by testing the expression of CD44. For analysis IFN- γ or TNF- α production by intracellular staining, spleens were removed and the spleen cells were re-stimulated with the peptide antigens overnight in 24-well plates at 37 °C. Brefeldin A was added during the last 4 hours. The cells were then washed and fixed with 4% formaldehyde in PBS for 10 min on ice. Anti-CD16/32 was added to block unspecific binding to Fc receptors. The cells were then permeabilised with 0.1% NP40 in PBS for 3 min and washed before staining with anti-IFN- γ , TNF- α , anti-CD8 and anti-CD44 antibodies (eBioscience or BD Pharmingen). The cells were analysed using FACSCanto (BD Biosciences, San Jose, USA) and FlowJo 8.5.2 software.

Therapeutic vaccination in the TC-1 model. C57BL/6 mice were vaccinated as described above 6 days after tumour challenge with 200,000 TC-1 cells injected subcutaneously into the right flank. The 6 days after TC-1 injection represents the time required for the tumour to develop a palpable size. Tumour growth was monitored by measuring the size of the neoplasm with a calliper.

Peptide antigen co-localizes with the TPCS_{2a} photosensitiser in endosomes and is released upon illumination

- Peptide and TPCS_{2a} co-localises in endosomal structures in macrophages (peptide inside cell)

- Diffuse distribution after light indicates endosome disruption and cytosolic escape of the peptide Tone Otterhaug¹, Gaute Brede³, Markus Haug³, Monika Håkerud^{1,2}, Anne Grete Nedberg^{1,2}, Victoria Edwards^{1,2}, Øyvind Halaas³, Pål Kristian Selbo^{1,2} and Anders Høgset¹

¹PCI Biotech AS, ²Oslo University Hospital – The Norwegian Radium Hospital, ³Norwegian University of Science and Technology

Correspondence: Tone Otterhaug, PCI Biotech AS, Ullernchausséen 64, 0379 Oslo, Norway. E-mail: tone.otterhaug@pcibiotech.no. Tel.: +47 6711 5400

Results

Intradermal injection of fimaporfin – skin kinetics at injection site	fime VACC increases MHC I presentation of SIINFEKL (OVA) peptide and N- and C-terminal extentions
Skin fluorescence in animals after ID injection of fimaporfin	
Exposure Time : 1 Binning Factor : 4 Excitation filter : 540 Encitation filter : 2 Field of View : 13.6	OVA 257-264
ROI 1=5.708e+10 ROI 2=7.927e+10 ROI 3=5.954e+10 ROI 3=5.954e+10ROI 3=5.954e+10 ROI 3=5.954e+1	OVA 248-264 OVA 257 280 OVA 2

Intradermal vaccination with fime VACC induces strong anti-tumour response

TC-1 Mouse Model for HPV-induced cancer

Intradermal therapeutic vaccination with HPV long peptide, poly(I:C) and fime VACC

fima VACC enhances antigen-specific induction of B- and T-cell responses after in vivo immunisation

Vaccination with poly(IC) and HBV surface antigen +/- PCI

IFN-γ CD4 response

HBV

Untreated HBV

HBV

HBV

0 5 10 15 20 25 30 35 40	+ + +	+ + +	+ + +
	PCI Poly(IC) Poly(IC)	PCI Poly(IC) Poly(IC)	PCI Poly(IC) Poly(IC)
Days after tumour inoculation	+	+	+
	PCI	PCI	PCI

Clinical technology validation in healthy volunteers has been initiated	Conclusions
 An Open-label, Phase I/Proof of Principle Study aiming to enhance the cellular immune responses Main Study Objectives are to determine safety, tolerability and immune responses Up to 80 healthy volunteers will be enrolled Study treatments: Intradermal injection with 2 weeks between vaccinations Hiltonol is used as adjuvant (poly-ICLC) Two antigens have been chosen to improve chances of detecting induction of B- and T-cell immune responses (HPV and KLH) Study is initiated and with estimated completion in first half 2017 Early results shows that intradermal treatment with fimaporfin is tolerated 	 fime VACC has a completely novel mechanism of action as a vaccination technology, representing a new and potent tool for stimulation of cytotoxic CD8 T-cell responses. fime VACC can give strong synergy with commonly used immunological adjuvants fime VACC enhances both CD8-, CD4-, and antibody responses fime VACC strongly enhances the antitumour effect of therapeutic peptide vaccines A phase I clinical study with fime VACC has been started in healthy volunteers