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LETTER FROM THE EDITOR

When you are faced with an intractable problem, one way you can make progress
is to master a particular example. To keep one’s focus, it helps to choose a famous
example, or one with historical significance. That’s why we pay so much attention to
factoring the RSA Challenge numbers, or finding Traveling Salesman routes through
actual German cities. This issue’s first article is about classifying arrangements of
lines in a plane—a problem that can be posed in many ways, some quite intractable.
So Jerry Alexanderson and Jack Wetzel have attacked a test case first posed by Fourier
in 1788, and previously addressed in this MAGAZINE in 1980. Have they mastered the
example? See the adventure unfold. (The article has a supplement by D. Lichtblau and
W. Wichiramala; you can find it at our website.)

Next, Khristo Boyadzhiev takes us on a tour of the Stirling Numbers of the Second
Kind. He traces them from Stirling’s book in 1730, to their uses in Newton series, to
the contributions of Griinert and Euler, and beyond. If you make these numbers your
own, you’ll start to see them everywhere!

Here’s something different: David Kong and Peter Taylor treat us to a dialog, in
which they discover the core principle of dynamic programming and apply it to the
classroom game of SKUNK. As often happens, first impressions are misleading. The
truth lies deeper, and the proof deeper still.

Football fans: Have you seen a sudden-death overtime yet this season? There is a
new rule, designed to reduce the influence of the coin toss at the start of sudden death.
Will it work? Chris Jones tells us, in the Notes Section. There is good news there, too,
for those of you who have always wanted to be Brahmagupta Triangles, but lack the
integrity required. Are you are at least rational? Then you can aspire to the related
class of triangles described by Herb Bailey and William Gosnell. Frank Sandomierski
shows us an instant proof of a matrix theorem. And, Jgrn Olsson and James Sellers
have given us a quick reaction to the “Remarkable Identity” that appeared in our June
issue—they offer a combinatorial proof, and it turns out to involve Stirling Numbers.
Did I say you would see them everywhere? But these Stirling Numbers are of the
First Kind.

Speaking of quick reactions, credit is due to the committee members who have
prepared the problems and solutions to this year’s USAMO, USAJMO, and IMO
problems.

The issue finishes with this year’s Allendoerfer Award citation. The winners for
2012 are Mark Kayll and John Adam, for articles that appeared in this MAGAZINE
during 2011.

Walter Stromquist, Editor
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ARTICLES

Perplexities Related to
Fourier’s 17 Line Problem

GERALD L. ALEXANDERSON

Santa Clara University
Santa Clara, CA 95053
galexand@math.scu.edu

JOHN E. WETZEL

University of lllinois at Urbana-Champaign
Urbana, IL 61801
jewetz@comcast.net

Fourier’s 17 line problem

In 1788, the 20-year-old Joseph Fourier posed the following problem in a letter to his
friend and teacher C. L. Bonard, as reported by John Herivel in his 1975 biography of
Fourier [4, p. 244]:

Here is a little problem of a rather singular nature: it occurred to me in connection
with certain propositions in Euclid we discussed on several occasions. Arrange
17 lines in the same plane so that they give 101 points of intersection. It is to be
assumed that the lines extend to infinity, and that no point of intersection belongs
to more than two lines.

Fourier asked for an example, and no doubt Bonard, who was Professor of Mathemat-
ics at the Ecole Royale Militaire of Auxerre where Fourier had been a student until the
previous year, was able to provide one.

There seems to have been no particular reason for the choice of the numbers 17 and
101, for in his letter Fourier went on to add, “The problem must be reduced purely to
analysis so that given m and n one can arrive at the necessary equations.”

Shortly after Herivel’s biography appeared, Turner [8] and Webster [9] indepen-
dently found the four different arrangements pictured in FIGURE 1. (The drawings are
based on those in Turner [8, p. 218].) The captions give the numbers of lines in the
parallel families, using superscripts to code repetitions.

Although their reasoning differs in detail, both Turner and Webster suppose the 17
lines are sorted into p parallel families 7; of u; > 1 lines and find that there are just
four sets of possible values for 1, us, ..., i, that satisfy the conditions 25;1 Wi =

17and 37, _;_;_, wipt; = 101, or, equivalently, > °7_, u5 = 87.

Parallel equivalence. Both Turner and Webster found four different solution ar-
rangements, but precisely what is it that there are just four of?

Let us agree to call a set of 17 lines in the plane that intersect to form 101 points a
Fourier arrangement. Euclidean arrangements of lines having no point of intersection

Math. Mag. 85 (2012) 243-251. doi:10.4169/math.mag.85.4.243. © Mathematical Association of America
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(a) (8,4,2,1%) (b) (8,3%,2, 1) (©)(7,5,3,2) ) (6,5% 1)

Figure 1 The four solutions

lying on more than two lines are commonly called simple in the literature. We write
F; for the collection of all simple Fourier arrangements.

For the moment we regard a line having no parallel partners as a parallel family of
order 1.

DEFINITION. Suppose the p parallel families 7; of a simple arrangement A are
indexed so that ;1 > pwp, > --+ > u, > 1, where u; = # (77;). We call the p-tuple

(//Lla I'LZa ey Mp)
the parallel data of A.

In 1826 Steiner [7] showed by induction that if oy and o, are the first two elementary
symmetric functions on the parallel data w1, o, ..., up,ie.,if

14
O (s e ) = Y I
j=1

o2t oy s ) = Y Wil

I<i<j<p
then the simple arrangement A forms
C=1+4+0,+0, regions,
E =0y, 4+ 20, segments and rays, )
V =0, points.

Although Steiner gave only the first of these formulas, it is convenient to call them all
Steiner’s formulas.

Now we can define the appropriate equivalence relation on the collection JF; of all
simple Fourier arrangements.

DEFINITION. Two simple Fourier arrangements are parallel-equivalent, and for
our purposes, essentially the same, if they have the same parallel data—that is, if they
have the same number of parallel families having respectively the same cardinalities.

This relation is clearly an equivalence relation on J;, and it partitions J; into equiv-
alence classes. What Turner and Webster found is that this equivalence relation has
precisely four equivalence classes.

It follows from Steiner’s formulas (1) that, in addition to forming V = 101 points
of intersection, these arrangements all form C = 119 regions and £ = 219 segments,
including rays.
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A generalization. Fourier asked that his problem be “reduced purely to analysis so
that given m and n one can arrive at the necessary equations.” This would require that
the parallel counters satisfy Y 7, u; =mand }_,_,_;_ Wij; = n, or, equivalently,

P
j=1

[ = m*> — 2n, because

2

P P
ZIM = ZM? + Z i
j=1 j=1

I<i<js<p

This seems to have provoked remarkably little response; in addition to [8] and [9],
the only followup article of which we are aware is Woeginger [12], who recast the
question as a decision problem:

Fourier’s general problem: For given positive integers S and Q, decide whether
there exist positive integers p and i, 4z, ..., i, so that Zj'):l u; =S and

jor 13 = 0.

Woeginger’s principal result is a polynomial time algorithm for determining whether
such integers exist for given § and Q. He also opines (in §4) that the problem of
enumerating such solution tuples is likely to be NP-hard.

Two related 17 line problems

More than 30 years ago, in an unfortunate moment of idle curiosity, we wondered what
happens if multiple oints—points that lie on more than just two lines—are permitted in
Fourier’s 17 line problem. There are, then, two natural questions that parallel Fourier’s
challenge to Bonard:

1. (No parallels) Arrange 17 lines in the plane so as to form 101 points of intersec-
tion, assuming that no two lines are parallel. How many essentially different such
arrangements are there?

2. (No restrictions) Arrange 17 lines in the plane so as to form 101 points of intersec-
tion, but impose no restrictions on the number of multiple points or the number of
parallel families. How many essentially different such arrangements are there?

In each case we agree that a multiple point contributes just one point to the point
count. FIGURE 2(a) shows an example of a “parallel free”” Fourier arrangement having
amultiple point of order (multiplicity) 9, as demanded by Question 1; and FIGURE 2(b)
shows an example with multiple points of orders 3 and 4 and a parallel family of order
8, as sought in Question 2.

The enumeration part of each question requires an understanding as to when two
arrangements are to be regarded as “essentially the same.” We simply agree to call two
arrangements “essentially the same” if they have the same numbers of multiple points
having the same orders and the same numbers of parallel families having the same
orders. Without question this minimal notion of “sameness” has many weaknesses,
some of which we examine in the last section, but it seems appropriate as a start.

Although it was convenient when we considered Steiner’s formulas to count a sin-
gleton line—that is, a line having no parallel partners—as a parallel family, this lan-
guage is inappropriate in much of what follows. Let us agree from now on that “a
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(a) Parallel-free Fourier arrangement (b) Fourier arrangement with both
parallels and multiple points

Figure 2 Two Fourier arrangements

parallel” is a line having at least one parallel partner, and “a parallel family” has at
least two parallel lines.

In 1982 we announced our findings on these two questions in an abstract [1]. We
found that there are just 20 essentially different Fourier arrangements having no par-
allels, and 900 essentially different Fourier arrangements having at least one parallel
family and at least one multiple point, for a total of 924 unrestricted Fourier arrange-
ments.

Clearly both Question 1 and Question 2 can be asked for m lines and n points. We
know of no literature whatsoever on these more general problems.

Roberts’ formulas. Formulas based on subtracting off the various parts that are not
formed because the lines of the arrangement fail to be in general position were given
in 1889 by Roberts [6]. This paper, an amazing example of “intuitive” geometric rea-
soning, is concerned in large part with the heuristic development of formulas for the
number of cells, faces, edges, and vertices that are formed by a completely arbitrary
arrangement of planes in 3-space. More recently, a definitive algebraic investigation of
similar face-count formulas for arrangements in d-dimensional Euclidean and projec-
tive spaces was given in 1975 by Zaslavsky [13]. We shall need Roberts’ formula in
the plane for the number of points of intersection.

First we recall the well-known formulas for arrangements of n lines in “general
position,” i.e., simple arrangements having no parallel pairs. These formulas have been
known at least since the early nineteenth century and may well date back another
century or more:

1
C=14+n+ (;l) = E(nz—i—n—i—Z) regions,

n

E = 2
n+ (2

> =n? segments and rays,

V_n_l(2 ) it
_2—271 n) points.

They are immediate consequences of Steiner’s formulas (1) and are readily proved by
induction. Other proofs are possible; see, for example, [2] and [3].

Roberts’ formulas in the plane are the following, in which we agree that empty sums
(sums from 1 to 0) have the value 0. Suppose the 7 lines of an arrangement A in the
plane form m points Py, P,, ..., P, of orders A, A5, ..., A, and p families of parallel
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lines of orders w1, o, ..., . Then A forms

corone()-[0 )5 (2) o

Jj=1

E=n"—)Y L —2) -2 / ts and rays, 2
n ; ( ) Z<2> segments and rays )

Jj=1

o=(0)-S[0) ]S () o

An elaborate heuristic discussion of these formulas together with accessible proofs
can be found in [11].

Question 1: No parallels. Let .4 be a Fourier arrangement having no parallel fam-
ilies. For each point P, let A(P) be the number of lines of A that pass through P. If
A(P) > 2,then we call P amultiple point of order A(P). Since ('27 ) > 101, the Fourier
arrangement .4 must have at least one multiple point. We write m for the number of
multiple points formed by A, and we index the multiple points Py, P, ..., P, so that
A > Ay > o> A, > 3, where A; is the order of P;. It will be convenient to call the
m-tuple (A1, Az, ..., Ay) the point data of the parallel-free arrangement A.
In the absence of parallels, Roberts’ formula for V requires that

i [(3) — 1} = (127> — 101 = 35. 3)

Evidently the multiple point of largest order must lie on no more than 9 lines, and if
A1 =9, no other multiple points are possible. An example is pictured in FIGURE 2(a).
It follows from Roberts’ formulas that this arrangement forms C = 126 regions and
E = 226 segments and rays, and, of course, V = 101 points.

Suppose next that A; = 8. Formula (3) then demands

B[] ()]

and the only possibility is m = 5 and A, = A3 = A4 = A5 = 3. Such an arrangement
has point data (8, 3*), and an example is pictured in FIGURE 3(a). It forms C = 129
cells and E = 229 edges and, of course, V = 101 points.

Examining successively the cases with A; equal to 7, 6, 5, and 4 (we omit the repet-
itive and tedious details), we find the results collected in TABLE 1, which shows for
each arrangement the largest order, the point data, and the numbers C and E of cells
and edges it forms. Plainly A; = 3 is impossible, because then Formula (3) would
demand that 35 be even.

Solution to Question 1. It follows that the answer to the enumeration part of Ques-
tion 1 is that there are just 20 equivalence classes of arrangements of 17 lines that form
101 points of intersection, as we announced [1].

Somewhat remarkably, our investigations have shown that apart from the first, (9),
each entry listed in the table can be realized by a suitable Fourier arrangement in
which every line lies on at least one multiple point. FIGURES 3(a) and 3(b) show
such arrangements for the second entry, (8, 3%), and for the last entry, (4,3 15y, Finding
examples of the other cases would be a challenging exercise for the interested reader.
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TABLE 1: Realizable Steiner data

| 3 | Pointdata | ¢ | E |

1|9 (9) 126 | 226
2|8 (8,34 | 129 | 229
3 07| (7,533 | 130|230
4 (7,4% | 130 | 230
5 (7,4,3% | 131 | 231
6 | 6| (6%.4,3) | 130|230
7 (6,5,3% | 132 | 232
8 (6,43,3%) | 132 | 232
9 (6,4,3%) | 133 | 233
10 (6,5,4%,3) | 131 | 231
115 | (55,3 |132]232
12 (52, 43,3) | 132 | 232
13 (5%,4,3% | 133 | 233
14 (5,4, 3% | 133 | 233
15 (5,42,3%) | 134 | 234
16 (5,313 | 135|235
17| 4 (47) 133 | 233
18 @,3% | 134 | 234
19 (43,310 | 135 | 235
20 4,315 | 136 | 236

Question 2: No restrictions. Similar methods can be employed for Question 2, but
the details are more complicated. Having already considered the cases in which there
are no multiple points and no parallel families, we turn next to arrangements having
both. We write F* for the collection of all Fourier arrangements having both multiple
points and parallel families, and as before we introduce an equivalence relation in F*

(a) (8,3% (b) (4,31)

Figure 3 Two parallel-free Fourier arrangements
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by agreeing to call arrangements A, and A, essentially the same if they have the same
numbers of multiple points and parallel families of respectively the same orders.

Let A be an arrangement in F*, with multiple points of orders Ay, As, ..., A,, and
parallel families of orders w;, u,, ..., i, both of which we assume are indexed in
nonincreasing order: Ay > Ay > -+ > A,, > 3and pg > o > - -+ > p, > 2. We call
the (m + p)-tuple

0:()"17)\27-"7)‘%1|/'L15M23~"’/‘Lp) (4)

the data tuple of the Fourier arrangement A, and we observe that the entries in o sat-

isfy the conditions 1 <m < 17,1 < p <8,8> XA > A, >3,and8 > | > pu, > 2.
The converse question, whether a given (m + p)-tuple (4) whose entries satisfy the

above inequalities is the data tuple of some Fourier arrangement, is a difficult one.

Necessary conditions for realizability. Three necessary conditions help. First, if o
is to be the data tuple of a realizable arrangement, then Roberts’ formula (2) for V

must hold:
S -]
— 2 2 ’

i=1 j=1

Second, there being only 17 lines available,
p
D oy =17. ©)
j=1

Third, at most one line from each of the p families of parallels together with the 17 —
Z}’;l w; lines lacking parallel partners are available to form a multiple point, so the
multiplicity A; of the largest multiple point must satisfy

P
M<p+1T=Y uj @)

j=1

Independent computer-assisted counts by W. Wichiramala and D. Lichtblau show
that there are 2195 tuples that satisfy (5). Of these, just 901 also satisfy (6). And only
one of these 901 fails test (7)! Indeed, Lichtblau found that just § = (6 | 42, 3%) failed
test (7); since there are only 5 parallel families and no lines lacking parallel partners,
there are not enough lines to build a multiple point of order greater than 5.

Solution to Question 2. Thirty years ago we announced (in [1]) that just 900 data
tuples are realizable, so that our answer to the enumeration part of Question 2 was
900 + 4 + 20 = 924. Although we believed the question too special to justify pub-
lishing the details, we had, and we continue to have, considerable confidence in our
count of 900 realizable tuples, which we found by writing and running numerous small
FORTRAN programs to check a variety of specific configuration-based sufficient con-
ditions, followed by hand-checking the remaining cases. The details of that work have
been long since discarded.

With considerable confidence, however, we repeat our contention that there are just
924 unrestricted Fourier arrangements, and we leave the re-verification of this count
as a challenge for others.

Much additional information about the above computer counts is reported in the
article supplement [5], “Perplexed calculations,” by D. Lichtblau and W. Wichiramala,
which can be found at this MAGAZINE’s website.
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Trouble, trouble, trouble

Throughout we have taken the point of view that two Fourier arrangements should be
regarded as “essentially the same” if they have the same number of multiple points of
the same order and the same number of parallel families of the same order. This seems
reasonable at first glance, but how well do these “minimal” requirements capture the
intuitive meaning of “essentially the same”? Not very well, it seems to us.

The difficulty is apparent already in the initial Fourier challenge to Bonard, which
may be why Fourier asked only for an example. Suppose, for example, the three lines
lacking parallel partners in FIGURE 1(a) are relocated so as to form a triangle having
all of the 56 points in which the parallel families of orders 8, 4, and 2 intersect in its
interior. Does one want to call that Fourier arrangement “essentially the same” as the
one pictured in FIGURE 1(a)? We wonder.

Even the enumeration question for lines in general position (“In how many differ-
ent ways can n lines in general position be arranged?”) is unresolved, according to
West [10].

The situation is even more perplexing for parallel-free arrangements. Call a line in
such an arrangement lonely if it does not pass through any multiple points. Then the
number s of lonely lines needed to bring the line count up to 17 depends not only
on the number and orders of the multiple points, but also on their configuration. For
example, FIGURE 4 shows schematically nine Fourier arrangements having point data
(8, 3*) that require various numbers of lonely lines. Evidently, different configurations
of the same multiple points can require different numbers of lonely lines, and differ-
ent configurations of the same multiple points can require the same numbers of lonely
lines. It seems clear that arrangements in which the multiple points are configured dif-
ferently should somehow be distinguished in any intuitively reasonable enumeration,
and simply incorporating the lonely line count into the definition of the equivalence
relation would not accomplish this result.

We confess that we know of no way systematically to enumerate all the possible
distinct configurations of the multiple points and the number of lonely lines they re-
quire. Clearly the situation is even more confusing if parallel families are permitted.
At this point we throw up our hands and admit defeat.

9’9‘29

(@s=0 (b)s =1
©), (8]
®4§%LB /04ﬁ§N&
ds=3 (e)s =4

(gs=>5 (h)ys=5 ()s=5

Figure 4 Some lonely line possibilities for (8, 3%)
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Conclusion

Until someone formulates a truly intuitively satisfactory definition of “essentially the
same” for arrangements of 17 lines intersecting in exactly 101 points—something we
seem quite unable to do—a satisfactory solution of all these Fourier problems will
remain a tantalizing mystery. Somewhere the ghost of Fourier is chuckling.

Acknowledgments ~ We are grateful to Wacharin Wichiramala (Chulalongkorn University, Bangkok, Thailand)
and Daniel Lichtblau (Wolfram Research, Champaign, Illinois) for their significant contributions to the enumer-
ation part of Question 2.
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Summary In 1788 a young Joseph Fourier posed to his teacher the following little problem in geometry: arrange
17 lines in the plane so as to form 101 points of intersection, assuming there are no “multiple points”; that is,
no more than two lines are concurrent. It is not difficult to show that there are just four essentially different such
arrangements.

In this note we recap results we found 30 years ago and show more generally that if multiple points are
permitted but no two lines are allowed to be parallel, then there are 20 essentially different such arrangements;
and if both parallels and multiple points are permitted, there are 924 essentially different such arrangements.

The perplexing question is what, exactly, is meant for two arrangements of lines to be essentially the same.
‘We consider this matter briefly and conclude that we do not know how to formulate a suitable definition.
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Close Encounters with the
Stirling Numbers of the Second Kind
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Let n = 4, and consider the terms in row n of Pascal’s triangle, with alternating signs:
(1, —4, 6, —4, 1). Treat this list as a vector and take its scalar product with a vector of
consecutive integer squares:

1,-4,6,—-4,1)-(0,1,4,9,16) = 0.
Next, try cubes:
(1,—4,6,—-4,1)-(0,1,8,27,64) = 0.

So far, this is getting us nothing. Vectors of first powers and of zeroth powers also give
scalar products of zero. We get something more when we try fourth powers:

(1,—4,6,—-4,1)- (0,1, 16, 81, 256) = 24,

which is equal to n!.
These are all instances of the strange evaluation,

"\ (n kg 0 ifm < n,
Z(k)( Dk _{(—1)”n! if m=n, M)

k=0

which we see from time to time in books and articles. For example, Katsuura [12] gives
the following theorem, extending (1) a little bit: For any two real or complex numbers
x, y and for any positive integers m and n,

" . m 0 ifm <n,
Z<k>( D (xk + y) _{(—1)”x”n! ifm = n. @

k=0

From this form we see that the mth powers do not need to be of consecutive integers;
the identity holds for the mth powers of consecutive terms in any arithmetic sequence.
This, indeed, is a very strange result!

Is it just a curious fact, or is there something bigger behind it? Also, what happens
when m > n? The theorem obviously deserves further elaboration. Therefore, we want
to fill this gap now and also to provide some related historical information.

Identity (2) is not new. It appears in a more general form in H. W. Gould’s Com-
binatorial Identities [7]. Namely, if f(t) = co + cit +--- + ¢,,t" is a polynomial of
degree m, then Gould’s entry (Z.8) says that

" n o B 0 ifm < n,
Z(k>( . f(k)_{(—l)”nlcn itm =n, v

k=0
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which implies (2). As Gould writes on p. 82: “Relation (Z.8) is very useful; we have
numerous interesting cases by choosing f(¢) ....” Identity (2) was later rediscovered
by Ruiz [16], who proved it by induction.

Here is a simple observation (made also by Katsuura)—expanding the binomial
(xk 4+ y)™ in (2) and changing the order of summation, we find that (2) is based on
the more simple identity (1) (which, by the way, is entry (1.13) in [7]). In his pa-
per [8] Gould provides a nice and thorough discussion of identity (1), calling it Euler’s
formula, as it appears in the works of Euler on nth differences of powers. See also
Schwatt’s book [17, pp. 18-19, 48].

The mystery of identity (1) is revealed by its connection to the Stirling numbers.
An old result in classical analysis (also discussed in [8]) says that

n

(~D)'n!S(m,n) = (Z)(—l)"k"’, )

k=0

where S(m, n) are the Stirling numbers of the second kind [2, 5, 8, 9, 11, 19]. They
have the property S(m,n) = 0 when m < n, and S(m, m) = 1. We can define these
numbers in combinatorial terms: S(m, n) counts the number of ways to partition a
set of m elements into n nonempty subsets. Thus we can read S(m, n) as “m subset
n.” An excellent combinatorial treatment of the Stirling numbers can be found in [9].
Pippenger’s recent article in this MAGAZINE [14] mentions, among other things, their
probabilistic interpretation.
A simple combinatorial argument ([9, p. 259]) provides the important recurrence

Sm,n) =nSm—-1,n)+Sm—1,n—-1), 5)

valid for m > 0 and for all integers n, which together with the initial conditions
S(0,0) =1 and S(0, n) = 0 for n # 0, gives an alternative definition for these num-
bers. Using this recurrence we can compute

Sm+1,n)=nSn,n)+Sn,n—1)
=n+Shn,n—-1)
=n+m—-—1D+Sh—-1,n-2)

nn+1)

=n+m—-D+n—-2)+---+1= 5

ire,S(n+1,n) = "(”T“); and now from (4) we find

2 <Z><—1)"k”+' = (_12)'1,1(” + D,

k=0

which extends (1) to the case of m = n + 1. A proof of (5) using finite differences is

presented in [8].
m
S(m,n) = { " }

The alternative notation
suggested in 1935 by the Serbian mathematician Jovan Karamata (see [9, p. 257]) fits
very well with the combinatorial interpretation. With this notation, the recursion (5)

becomes
e[ o] e
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which parallels the well-known property of binomial coefficients

()=0)+(5)

= + )

n n n—1

With the help of equation (4) we can fill the gap in (2) for m > n. Namely, we have

n

n m . m j.m—j .
,Z:(; <k>(—1)’<(xk + )" = (=Dn! ; (j)x’y 18(j, n).

For the proof we just need to expand (xk + y)”, change the order of summation, and

apply (4).
Identity (3) has a short and nice extension beyond polynomials. The representation

n

> (Z)(—l)"f(k) = (=1)"n!Y_ cuS(m, n) 6)
k=0

m=0

is true for any n > 0 and any function f(t) = ¢y + ¢t + - - - that is analytic on a disk
with radius R > n. To prove this, we multiply (4) by ¢,, and sum for m from zero to
infinity.

A combinatorial proof of (4) based on the combinatorial definition of S(m, n) can
be found in [5, pp. 204-205]; a proof based on finite differences is given in [11, p. 169;
see also 177-178 and 189-190]. We shall present here two proofs of (1) and (4). For
the first one we shall visit the birthplace of the Stirling numbers.

James Stirling and his table
The name “Stirling numbers” comes from the Danish mathematician Niels Nielsen

(1865-1931). On p. 68 of his book [13] Nielsen attributed these numbers to James
Stirling, a Scottish mathematician (1692-1770), who worked on Newton series.

Methodus Differentialis :

SIVE

TRAGCTATUS
SUMMATIONE

ET

INTERPOLATIONE

SERIERUM INFINITARUM.

AucTtore FACOBO STIRLING, R.S.S.

Figure 1 Part of the front page of Stirling’s book
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Stirling studied at Oxford, then went to Italy for political reasons and almost be-
came a professor of mathematics in Venice. In 1718 he published through Newton a
paper titled Methodus Differentialis Newtoniana Illustrata. In 1725 Stirling returned
to England and in 1730 published his book Methodus Differentialis (The Method of
Differences) [18]. The book was written in Latin, as were most scientific books of that
time. An annotated English translation was published recently by Ian Tweddle [19].

At that time mathematicians realized the importance of series expansion of func-
tions, and various techniques were gaining momentum. A Newfon series is an expan-
sion of a function, say f, in terms of the difference polynomials, Py(z) = 1, Pi(z) =
z, P(z) = z(z — 1), P3(z) = z(z — )(z — 2), and in general P (z) = z(z —1)---
(z—k+1). That is,

f@=) azz—DE—-2) - (—k+1)

k=0
=ataztmzz—D+azz—D(E—-2)+---. (7N

The difference polynomials are also called falling powers, and they are a basis for the
space of polynomials. In this way a Newton series resembles a Taylor series, which
is an expansion of f in terms of another basis, the power polynomials p;(z) = z*,
k =0,1,.... The attention paid to both series raised the question of the relationships
between the difference polynomials and the power polynomials.

At the beginning of his book Stirling studied carefully the coefficients A” in the
representations

M =ATz+AYz(z - D)+ AYz(z - D(z = 2)
+o o+ ANz =D (@ =m A+ 1) ®)

where m = 1,2,.... On p. 8 he presented a table containing many of these coeffi-
cients, reproduced here as FIGURE 2.

Tabulam priorem.

—

1)1 |1 1| 1 &e.
15 ] 31| 63| 127 | 255 | &ec.

Ell

—
[« )% ]

25 | go | 301 | 966 | 3025 | &c.

—

10 | 65 | 350} 1701 | 7770 | &c.

1 | 15 |140} 1050 | 6951 | &c.
1 | 21 | 266 | 2646 | &c.
1 28 | 461 | &c.

1 36 | &c.
1 | &c.
&c.

Figure 2 Stirling’s first table
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In the table m changes horizontally, left to right, and n changes vertically, from top
to bottom. Therefore, by following the columns of the table we find
=2,
Z=z+z(z- D),
P =z+3z2z- 1)+ 2z = )(z - 2),
=747 -1 +62z— Dz —2) + 2z — Dz —2)(z = 3),
2 =z+15z(z— 1) +25z2(z — 1)(z — 2) + 10z(z — D)(z — 2)(z — 3)
+z2(z—=1D((z—2)(z—3)(z—4), etc.

The coefficients A}' are exactly the numbers which we call today Stirling numbers of
the second kind. For completeness, we add to this sequence also A) = 1 and A}’ =0
when m > 0. The following is true.

THEOREM 1. Let the coefficients A" be defined by the expansion (8). Then

m_l ¢ n _1\n—kpm
An—n!;(k)( 1"k, ©)

and the right side is zero when n > m.

It is not obvious that (8) implies (9). For the proof of the theorem we need some
preparation.

Stirling’s technique for computing this table is presented on pp. 24-29 in Ian
Tweddle’s translation [19]. As Tweddle comments on p. 171, had Stirling known the
recurrence relation (5), the computation of the table would have been much easier.

Newton series and finite differences

The theory of Newton series, like (7), also resembles the theory of Taylor series. First
of all, one needs to find a formula for the coefficients a;. In the case of Taylor series, the
function f is expanded on the power polynomials and the coefficients are expressed in
terms of the higher derivatives of the function evaluated at zero. In the case of Newton
series, instead of derivatives, one needs to use finite differences. This is suggested
by the very form of the series, as the function is expanded now on the difference
polynomials.
For a given function f(z) we set

Af(z)=fz+ 1 — f(2).
Then

A f(@)=AAN@ = fz+2) =2f@+ 1D+ f),

Nf@)=AA )@ =fE+3)=3f@+D+3f@+ D~ f(2),ete.
We notice the binomial coefficients appearing here with alternating signs. Following
this pattern we arrive at the representation

n

Af@ =) <Z)(—1)”_kf(z +).

k=0
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In particular, with z = 0,

AFO) =Y (Z)(—l)”"f(k). (10)
k=0

We use this formula now to compute the coefficients a; in the Newton series (7). With
z = 0 we see that ay = f(0). A simple computation shows that A P,(z) = kPi_1(2),
k > 1 and so

Af(z) =a; +2az +3azz(z— 1)+ -- -,
which yields a; = Af(0). Also,
A’ f(z) =2a,+2 3asz+3-4z(z — 1)+ -

and 2a, = A? f(0). Continuing this way we find 3!a; = A% £(0), 4! ay = A* £(0), etc.
The general formula is k! a; = A*£(0), k =0, 1, . Thus (7) becomes

- "f()
f@=Y 2@=1DE =2 —k+1). (11)

k=0

Proof of Theorem 1. Take f(z) = z™ in (11) to obtain (in view of (10))

B ST ol (R RS

Comparing this to (8) yields the representation (9). Note also that the series (12) trun-
cates, as on the left-hand side we have a polynomial of degree m. The summation on
the right-hand side stops with n = m, and

1 & (m x
— P (D" k" = 1. [
m! —

This is not the end of the story, however. In the curriculum vitae of the Stirling
numbers there is another remarkable event.

Griinert’s polynomials

Amazingly, the same Stirling numbers appeared again, one hundred years later, in a
very different setting. They appeared in the work [10] of the German mathematician
Johann August Griinert (1797-1872), professor at the University of Greifswald, Ger-
many. He taught there from 1833 until his death. Griinert, a student of Pfaff and Gauss,
was interested in many topics, not only in mathematics, but also in physics. He wrote
a number of books on such diverse subjects as conic sections, the loxodrome, optics,
and the solar eclipse. Some of his books, including Optische Untersuchungen (Studies
in Optics) and Theorie der Sonnenfinsternisse (Theory of the Solar Eclipse) are avail-
able now as Google books on the Internet. In 1841 Griinert started to edit and publish
the highly respected Archiv der Mathematik und Physik (known also as “Griinert’s
Archiv”). His biography, written by his student Maximus Curtze, appeared in volume
55 of that journal.
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Griinert came to the numbers S(m, n) by repeatedly applying the operator x% to
the exponential function e*. This procedure generates a sequence of polynomials

d X X
xd—xe = Xxe ,
d\’ .,
(xd—) ef = (x* + x)e",
X
a\}
(xd—) ef = (x° +3x2 + x)e”,
X
d " X m m m m._..m X
o) e =(By +B'x+ B} +---+ B, x")e", (13)

with certain coefficients B;". We shall see that these coefficients are exactly the Stirling
numbers of the second kind. This fact follows from the theorem below.

THEOREM 2. (GRUNERT) Let the coefficients B! be defined by equation (13).
Then

m_l - n _1\n—kpm
B! _H!Z(;(k)( ke, (14)

Proof. From the expansion

we find

form =0,1, ..., and from (13),

[o.¢]
k™ xk
By 4 BY'x + By’ - Bl = e )

k!
* (=1)/xi {i kmxf}

= Z— . (15
= ! k!

Multiplying the two power series on the right-hand side yields
"\ (n
By + By'x + By'x® + - + Bix" Zx" {— > (k>(—1)”‘kk'"} :
" k=0

and again, comparing coefficients we see that the series on the right-hand side is finite
and (14) holds. The theorem is proved! ]

From (14), (9), and (4) we conclude that A” = B = S(m, n).
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Intermediate summary and the exponential polynomials

We summarize the story so far.

The coefficients A" defined by the representation (8) are the same as the coefficients
B" defined by equation (13), and also the same as the Stirling numbers of the second
kind S(m, n):

A" =B = S(m,n)
1 n—kgm
=—!Z —1)" kg,
k=

Also, S(m,n) = 0 whenm < n, and S(n, n) = 1. In particular, this proves (1).
The Stirling numbers of the second kind are used in combinatorics, often with the
notation S(m,n) = {'Z} The number S(m, n) gives the number of ways by which a

set of m elements can be partitioned into n nonempty subsets. Thus {': } is naturally

defined for n < m and { } = 1. Whenm < n, {’”} = 0. The numbers { } equal A”
because they satisfy (4) as proven in [5].
The polynomials

¢,(x) =Sn,0)+ S, Dx + -+ S(n, n)x",

n=20,1,..., appearing in Grunert’s work, are called exponential polynomials. They
have been rediscovered and used by several authors. These polynomials are defined by
equation (13), i.e.,

_ d\"
Pp(x) =e™" <x5> e* (16)

or by the generating function (see [2]),

00
ex(e’—l) — Z ¢"(;x) tn‘
n:

n=0
Here are the first five of them.
do(x) =1
oi(x) =x
P (x) = X2+ x

P3(x) = x4+ 3x2+x
Ga(x) = x* +6x° +7x% +x

A short review of these polynomials is given in [2]. Replacing x by ax in (16),
where a is any constant, we see that (16) can be written as

d n
(x—) e = ¢, (ax)e™. 17
dx

This form is useful in some computations.



260 MATHEMATICS MAGAZINE
The exponential generating function for S(m, n)

For any integer n > 0, let us expand the function f(x) = (¢* — 1)" in a Taylor series
about x = 0 (i.e., a Maclaurin series):

. Fm
f@=> fm,( ) o

m=0

For this purpose we first write

(ex _ l)n — Z <Z>(_1)n—kekx’

k=0

and then, according to (14) or (4) we compute f ™ (0),

d m ) ) n n o
(a) (e" =1 =k2=;<k>(—l) kg™ = n! S(m, n).

—(e 1" —ZS(m n)— (18)

x=0

Therefore,

This is the exponential generating function for the Stirling numbers of the second
kind S(m, n). The summation, in fact, can be limited to m > n, as S(m, n) = 0 when
m < n. Equation (18) is often used as the definition of S(m, n).

Euler and the derivatives game

Let |x| < 1. We want to show that the numbers S(m, n) naturally appear in the deriva-

tives
d m 1 o0
—_— = m n 1
(xdx) T— ngzon x", (19)

where m = 0, 1, . ... To show this we first write

1 o0 o0
= / eI gr = / ele”" dt.
1—x 0 0
Then, in view of (17),

d\" 1
x_
dx 1-—

:/ O (xt)e e dt

0

- ZS(m,n)x”/ e~ 1 gy
n=0

- ZS(m n)x )n-H

1 - X
- m;S(m,n)n! (1 —

) . (20)
X
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For the third equality we use the well-known formula (which defines the Laplace trans-
form of %)

Stx+l

e+l _ /oot"‘e”dt
0

Introducing the polynomials
on(2) =Y Sm,mn! 2",
n=0

we can write (20) in the form

ind 1 X
> onnxt = com( ) 1)
1—x 1—x

Thus we have

wo(x) =1,
w1 (x) = x,
wy(x) = 2x> + x,

wa(x) = 24x* +36x° + 14x% + x, etc.

The polynomials w, can be seen on p. 389, in Part 2, Chapter VII of Euler’s book [6].

Cc APUT VI 3'89
fen hoc modo exprimantur :
q

a ="
Lk
1. 2
693+ 69>t g
=" a3
249+ 369° + 1492 +9
R ET
1209° + 24044 + 15093 + 309* + ¢
o I 2. 3. 4 § |
7209° + 1800g% + 156094 + 5409° + 624° + ¢
L= I 2. 3. 4. 5. 6 '
so407? 1 131209 L16800g3 4 840094 1180643 J1264° +g
I. 2. 3 4§ 6.7 &e. |
ubi quilibet coefficiens 16800 oritur, fi famma binorom fu-
perioram 1560 + 1800 per exponentem ipfins 4, qui hic
eft 3. multiplicetyr. _

g =

R

3 =

I

Figure 3 The geometric polynomials in Euler’s work
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Essentially, Euler obtained these polynomials by computing the derivatives (19)
directly. We shall see now how all this can be done in terms of exponentials.
Here is a good exercise. Let us expand the function

10 = o

in Maclaurin series (A, u are two parameters). We need to find the higher derivatives
of f at zero. Assuming for the moment that |pe’’| < 1 we use the expansion

1 n _itn
//Le“—i-l - 1—( /Le)") Z( 1)'e

From this

d " 1
_)\’m n m Atn

and in view of (21)

1 1 —pet
A 1 = A lwm A 1/’
pnert + pner + nert +

d m 1 )\’m _M
- = oM , (22)
dt) per+1|,_, pn+1 w+1

which yields the desired representation

1  — —u \ "
M4 - lzkm“’m( 1>_|'
pnert + w1 = n+1/) m!

In particular, with A = u =1,

-3 o (;) Z{Z Sem, mynt }t—, (23)
m=0 m

The polynomials w,, appeared in the works of Euler, but they do not carry his name.
In [8] and [17], they are used to evaluate the series on the right-hand side of (19) in
terms of Stirling numbers. These polynomials were studied in [4] and called geometric
polynomials, because of their obvious relation to the geometric series. It was shown
in [4] that w,, participate in a certain series transformation formula. In [3] the ge-
ometric polynomials were used to compute the derivative polynomials for tan x and
sec x.
One can write (21) in the form

m._.n Am (X)
> =
x)erl

n=0

so that

where A,, are polynomials of degree m. These polynomials are known today as Eule-
rian polynomials and their coefficients are the Eulerian numbers [5, 9].
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At the same time, there is a sequence of interesting and important polynomials car-
rying the name Euler polynomials. These are the polynomials E,,(x), m =0, 1, ...,
defined by the generating function

ZAN 24
o = 2 e (24)
m=0
Using (23) we write, as in (15)
2e*! = X" > (—1) tk}
- e (35
e +1 {n:() n! {k=0 2 ) k!
=t | &S (m =1\
S NG
m=0 k=0
Comparing (24) and (25) yields
E (x)—i m 1) _—1 xmk
T k)2
k=0
with
E,(0) = -l
> s
= S(m,n)n
n=0
Relation to Bernoulli numbers
The Bernoulli numbers B,,, m = 0, 1, ..., can be defined by the generating function
L _vyp 2 26
e,_l—Z;) e <27 (26)
[1, 5, 9]. From this
d\" t
B,=\|— . 27)
dt) e —1|,_

It is tempting to evaluate these derivatives at zero by using the Leibnitz rule for the
product ¢ - ﬁ and formula (22) with u = —1, A = 1. This will not work, though,
because the denominator ¢ + 1 on the right-hand side becomes zero. To find a relation
between the Bernoulli and Stirling numbers we shall use a simple trick and the gener-
ating function (18). Writing t = Ine’ = In(1 + (¢’ — 1)) we have for ¢ small enough

r In(1 4+ (¢' — 1))
et —1 el —1

[
n=0

GO
n—i—l(e b
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GO = "
e {n!ZS(m, n)%}

m=n

m

= . Nl
' {g(—l) mS(m,n)}.

Comparing this to (26) we find form =0, 1, ...,

~

e 1M

3

0

3
Il

m n!
B, = —1D)"——8(m, n). 28
g( ) n—+1 (m, m) (28)

Sums of powers

The Bernoulli numbers historically appeared in the works of the Swiss mathemati-
cian Jacob Bernoulli (1654—1705) who evaluated sums of powers of consecutive inte-
gers [1, 9]

R 1
1™ +2m ++(I’l— l)m — <m+ )Bknm+1—k’
m+1 — k

for any m > 0, n > 1. This is the famous Bernoulli formula. It is interesting to see
that sums of powers can also be evaluated directly in terms of Stirling numbers of the
second kind. In order to do this, we invert the representation (4); i.e.,

=3 (Z)S(m, k). (29)

k=0

This inversion is a property of the binomial transform [15]. Given a sequence {ay}, its
binomial transform {b;} is the sequence defined by

"\ (n
bn = s 30
Z ( k)ak (30)
k=0
and the inversion formula is

a=3 (Z)(—l)""bk.

k=0

Next, from (29),

142" 4L = 2”: {2”: (Z)S(m,k)k!}

p=1 L k=0
n n p
= S(m, k)k! )
> son okt 5 (1)
k=0 p=k
by changing the order of summation. Now using the well-known identity

> (1) =)

p=k
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we finally obtain

" 1
1" 42" oo™ = ("+ )S(m,k)k!,
2 \k+1

which is the desired representation.

Stirling numbers of the first kind

Inverting equation (8) we have

m

=D @—m+1) =) sm k)

k=0
where the coefficients s(m, k) are called Stirling numbers of the first kind. The follow-

ing inversion property is true.

0 m#n,

1 m=n.

Z S(m, k)s(k, n) = 8y =

k=0

The coefficients here come from the representation (m = 1,2, ...)

1 _i om+k,m)
2z+ 1) (z+m+k)’

m+1
< k=0

following the columns of the table. The numbers o (m, k) are called today the Stirling
cycle numbers or the unsigned Stirling numbers of the first kind [5, 9]. An often-used

notation is
o(m, k) = [’]11} .

Tabula pofierior.

6 13 6 ' 2
24 50 35 1o | 1

120 | 274 225 85 15 1
720 | 1764 | 1624 | 735 | 175 | 21 1
5040 | 13068 | 13132 | 6769 | 1960 | 322 | 28 | 1

40320109584 10505667284 |22449] 4536 | 546 ‘36 1 l
&c. &e &c. &, & &c. & &c. &c. &c.

Figure 4 Stirling’s Second Table
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We have

s(m, k) = (=) *o(m, k).

Stirling’s book [18, 19] contains a second table showing the values of o (m, k);
see FIGURE 4. More properties, combinatorial interpretation, details, and generating
functions can be found in the excellent books [5, 9, 11].
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Peter Taylor opens his linear algebra course at Queen’s University by having the stu-
dents play and analyze a simple dice game called Skunk Redux. This is a variation of a
common game known as Skunk or Pig. The dialogue below is an account of what hap-
pened last fall, when David, one of Peter’s students, asked some intriguing questions
which prompted the two of them to wrestle with an unexpected problem.

Skunk is a dice game played in elementary classrooms to illustrate the fundamentals
of probability [1]. Players are given a table with the letters SKUNK across the top
like this:

S|K|U|N|K

Each column is used to record the results from one of the five identical rounds. Several
players play simultaneously. The objective is to have the highest cumulative payoff
(the sum of the payoffs from the five rounds) at the end of the game. This is how
points are earned in each round:

1. At the beginning of the round, you stand.

2. Two dice are thrown.

3. If at least one 1 appears, the round is over and you have payoff 0. Otherwise you
begin with a score equal to the total showing on the dice.

If you wish, you may sit down. If you do, your payoff is your score.
Otherwise, the dice are thrown again.
If at least one 1 appears, the round is over and your payoff for the round is 0.

N ok

Otherwise you add to your score the total showing on the dice. This gives you a
new, larger score.

8. Go back to 4.

Eventually a 1 appears and the round is over.

For example, for the sequence of rolls (2, 5), (4, 2), (6, 1), if you sit after the first
roll you get payoff 7, if you sit after the second roll you get payoff 13, and if you stay
standing for the third roll you get payoff 0.

Extensive work has been done on variations of this game, most notably a 2-person
game where an optimal strategy must take into account the opponent’s score and strate-
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gies [2]. For example, the player in second place would likely use a riskier strategy than
the player in first place.

This paper is concerned with a 1-person game—one person and a single round.
Our analysis focuses on optimizing the expected payoff for this single round—hence,
“Skunk Redux.”

The first day of class

PETER: I open my linear algebra course with this game because it creates a fun envi-
ronment, generates a lively discussion, and encapsulates many of the important con-
cepts in the course—strategy, probability, movement between states, taking an average,
and so on.

After playing something like 10 rounds in a row, I have the students average their
10 payoffs. This serves as an estimate of “average payoff per game.” Naturally there
is a tendency to see who receives the highest payoff, or more precisely, once we start
talking about strategies, what strategy receives the highest payoff.

I want to get a good class discussion going about the different types of strategies.
First of all, what is a strategy? It is a rule that tells you whether to sit or stand in any
situation. Any situation in this game can be specified in terms of two variables: the
number of times the dice have been rolled, and the current score.

I find that students have differing opinions on how to make use of these two vari-
ables. Some strategies are highly intuitive and students sit when they “feel” the time
has come. Some sit after a certain number of rolls while others pay attention only to
the score (e.g., “‘sit when I get above 257). Still others use a mixture (e.g., “sit after 25
or after the third roll, whichever comes first”).

DAVID: Surely the number of rolls is irrelevant and should not be a factor in any
optimal strategy. The rolls are independent events! The only quantity of relevance is
the current score.

PETER: David is, of course, correct. But this issue always generates a fascinating and
surprising debate. A number of students will argue quite vociferously that if the dice
have been thrown, say, ten times without showing a 1, the chances are increased that a
1 will appear on the next roll.

Moving on, we restrict attention to strategies that take account only of the current
score. Such a strategy must specify, for each possible score s, whether you should
stand or sit.

DAVID: Let’s begin by defining s as your current score. If you decide to sit, your
payoff will be s. If you decide to stand, your score will be either better or worse. If,
on average, your new score is greater than s, you should stand for the next roll; if it is
less, you should sit.

To calculate your average new score, note that with probability 25/36 (see TABLE 1
below) your score increases by the dice sum and with probability 11/36 your score
drops to 0. Now the average dice sum, given that a 1 does not appear, is 8. (This is
nicely seen in TABLE 1 by pairing each entry with its mirror image in the diagonal
of 8’s.) The average new score from standing is then:

W Bt
36 360 T
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TABLE 1: Addition to the score for each of
the 36 possibilities

INENEIENES ER KD

1

2 4 5 6 7 8
3 5 6 7 8 9
4 6 7 8 9 10
5 7 8 9 10 11
6 8 9 10 11 12

You should remain standing when this exceeds s, and that happens when

25(s + 8) > 36s
s <200/11 ~ 18.2.

Thus you should remain standing as long as s < 18 and sit when s > 19.

Peter started rolling the dice on that first day of class. As usual, I did not bring
anything to class, not even a calculator, so I had to ballpark it. “How much would I be
willing to risk to get an average reward of 8?” Somehow I came up with the number
20, which in hindsight was fairly close to the actual answer. From there, I rigorously
abided by my strategy, sitting when the score surpassed that critical value. It took
some willpower not to allow my emotions to steer me toward the standard freshman
crowd—the eternal optimists who luckily see the world as their oyster, untainted by
the rationality I sometimes wish I could do away with. There were times when I would
begrudgingly sit from the sidelines while the most risk-friendly participants racked up
unimaginable sums. But in the long haul, my strategy paid off.

First day of class and already an interesting (yet accessible) problem. I was truly
excited for university. What I did not realize at this point was that I was soon to be led
to something even more interesting.

The assignment

PETER: For their first assignment, [ usually give the students an extension of the game
to analyze. For example, the dice may be replaced by a few coins. One of my favorite
(and most demanding) extensions has been the following:

Suppose that, before each roll, you are able to specify the number of dice that are
to be rolled, and you can change this number from roll to roll based on your score. As
before, the round is over with zero payoff, if you are standing and any of the dice show
a 1. A strategy must now specify, for each score s, whether to remain standing and if
so, how many dice to use. Find the optimal strategy.

DAvID: Now that’s an enticing problem! Rolling more dice at a time will help you
increase your score more quickly, but it also increases the probability of rolling a 1.
The key difference between this problem and the simpler one is that now there are two
decisions to make for each value of s—whether to remain standing, and if so, how
many dice to roll. But I expected the solution not to be much different than before.
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PETER: Like David, most students find this problem challenging. Not many manage
to come up with a good argument. But there are always a few students who produce
the following solution and for some years I have always accepted it as being correct.
It is based on the idea that we employed in the solution for the original game, that the
correct decision at each step is the one that maximizes the expected new score.

The A(n) strategy. Let A(n) be your expected new score if you stay standing and
choose to roll n dice. Note that the probability of not throwing a 1 is (5/6)" and (as
above) the average outcome on a single die is 4. Then:

A(n) = (5/6)"(s + 4n).

DAVID: I got the above equation for A(n) without much difficulty. Now the problem
was to find the maximum value of A(n). When in doubt, a first-year student differenti-
ates. The result was correct enough but it was ugly with logarithms and decimals. A bit
later, I found a much nicer algebraic solution. I thought of it as discrete maximization,
and it worked beautifully. The idea was that for A(n) to be a maximum at a particular
n, it must be at least as great as the neighboring A(n) values, A(n — 1) and A(n + 1).

An—1)=An) = A(n+1)
The first part is:
A(n—1) < A(n)
(5/6)" (s +4(n — 1)) < (5/6)"(s + 4n)
s+4n—1) < (5/6)(s +4n)
4n <24 —5
and the same for the second:
A(n) > A(n+1)
(5/6)"(s +4n) > (5/6)" "' (s + 4(n + 1))
(s +4n) = (5/6)s + (5/6)4(n + 1)
4n > 20—
Putting these together, the condition for a maximum A(n) is that
20—s<4n <24 —s
For example, given the score s = 10, there is only one integer value (n = 3) that

satisfies this inequality.

PETER: David’s analysis so far is the one I have always accepted, and posted on the
website for the class. It says that 4n has to be between 20 — s and 24 — 5. We can
summarize this condition with TABLE 2. When s is a multiple of 4, there are two
values of n that give the same average score. [At s = 20, the “other” value is n = 0,
which means siz.] And by the way, it can easily be verified directly for s < 20, that
A(n) > s for the indicated n, signifying that you gain on average by standing.

And then David came up to me after class. ..

DAVID: T had the solution outlined above and it seemed really elegant (isn’t that table
beautiful?) but it worried me. Maximizing A(n) only maximizes the score after the
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TABLE 2: The A(n) strategy: Roll n dice

with score s
score § roll n dice
s=0 n==~6
0<s<4 n=>5
4<s5<8 n=4
8<s <12 n=3
12<s5s<16 n=2
16 <s <20 n=1
s >20 n=0

next roll, whereas the objective of the game is to have the highest possible payoff,
which is your score at the moment you sit down. Do we need to worry about this dis-
tinction? It is tempting to think that they lead to the same outcome—if you put yourself
ahead in the immediate future, wouldn’t that also put you ahead in the long run? But
I could see no valid argument for this. I spent an entire night (my first university all-
nighter) tangled with this question.

At some point I decided that my only hope was to look for a strategy that outper-
formed the A(n) strategy. I became interested in the strategy of always using one die
because it was the simplest strategy around. I decided to “put it to the test,” using EX-
CEL to compare it with the A(n)-strategy I had developed so far. After 50,000 Monte
Carlo iterations, the differences were insignificant and inconclusive.

The breakthrough occurred when I looked at the case of s = 15. I made a few
calculations that put the issue to rest.

A counterexample to the A(n)-strategy. Take the case of s = 15. The A(n) strategy
tells you to use n = 2 dice. If double 2s are rolled you stand for one more round using
1 die. Otherwise, you sit. The result is summarized in TABLE 3. The average score is
approximately 15.98.

Now compare this with the strategy that uses only one die and stands whenever the
score is less than 20 (TABLE 4).

TABLE 3: How the A(n) strategy plays out at s = 15

\16/@ prob.  score = X

%
S

A =
N [z ] 5/216 23
N 2/36 20
e
e 3136 21
, 4136 4/36 22
5/36 N 5/36 23

4/36 24

326 3/36 25

0. 25 2/36 26

1/36 27
ED
D

EX) 15.97685
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TABLE 4: How the 1-die strategy plays outat s = 15

\/6/@

%
HF@

E(X) 16.00463

\/: ) 6 prob.  score = X
/6 5/216 23
& . 1736 20
AS %, 136 21
e 23
1/6 \16/@ 5/36 22
. 5/6 5/36 23
//Z /@ 1/6 20
) 1/6 1/6 21
2

The average score is a bit above 16, and higher than was obtained starting with 2
dice. For this particular s-value, the 1-die strategy outperforms the A(n) strategy!

PETER: David’s 1-die strategy was a revelation to me and for a time I had a bit of
trouble thinking clearly about the situation. The example above of s = 15 certainly
shows that the A(n) strategy is not optimal. But is the 1-die strategy optimal? Are
there situations when it might be better to roll more than 1 die? And suppose that the
1-die strategy is optimal. When do we stop? Is s = 20 the right place to sit? I was
thrown for a bit of a loop and decided to go back to the beginning.

It is surprisingly easy to get confused, particularly when there is more than one
question buzzing around. What’s needed is to focus on one thing at a time, and hope
that it’s the right thing to begin with. The next day David came to me with a ridicu-
lously simple argument that nothing could possibly outperform the 1-die strategy.

DAVID: Peter is right—it’s so easy to miss simple things. And this is one of them.
Suppose your score is s and you are using a strategy that tells you to roll 3 dice. Then
you would have exactly the same outcome by standing for the next 3 turns and rolling
1 die each time. The reason for this is that the condition for the game to end with a
zero payoft is the same in each case—getting a 1 on any of the three dice. So the 1-die
strategy will do just as well as the one you are using. But furthermore, it might even
do better because it gives you the option of stopping before the third turn.

PETER: Indeed that’s exactly why the 1-die strategy outperformed the A(n) strategy
at s = 15. If you happen to roll a 6 on your first die (giving you s = 21) the 1-die
strategy lets you stop and sit down, whereas the A (n) strategy rolls again. Now if you
stop, your payoff is 21, but if you roll again, your average score becomes

04+23+24+254264+27 125

N

which is less than 21.

DAVID: Always roll one die.
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The meeting

After the revelation about a pure 1-die strategy, the final challenge was to determine
and prove the critical s-value for when to sit. This appeared obvious enough but a
formal proof took quite a while to formulate. We sat down for a final meeting to dis-
cuss this.

PETER: So the only question left is, when do you sit?
DAvID: Ats = 20.
PETER: How do we know?

DAVID: Use the same calculation we made above at s = 21. It works for any s > 20.
Your expected score after one roll will always be less than s.

PETER: Right. It is worth emphasizing that. The A(1) strategy (which is optimal) asks
you to compare:

G+ + G+ +GE+DH+G+5+(+6)
6

On the left is the payoff if you sit and on the right is your expected new score if you
stand. For s < 20 the right side is bigger, for s > 20 the left side is bigger, and for
s = 20 they are equal. So the strategy says sit when s > 20. But as you pointed out
long ago, this only considers the next roll instead of the indefinite future. What we
really need on the right is some indication of your payoff at the end of the game, given
that you stand and play optimally.

s and

DAVID: We need the notion of what a strategy is “worth.” If you have score 19, you
can expect to increase that on average by staying in the game, so having a score of 19
is actually worth more than 19. However, if you have 21 you can’t do any better (in
fact, by staying in the game you’ll do worse on average), so 21 is only worth 21.

PETER: We could formalize that. Define v(s), the value of s, to be the expected pay-
off for a player who currently has score s and who plays optimally. For example,
v(19) > 19 and v(21) = 21.

DAVID: In fact

v(21) + v(22) 4+ v(23) + v(24) + v(25)
6 9

v(19) =

and v(s) in general would be

< v(s+2)+v(s+3)+v(s—|—4)+U(s+5)+v(s+6)>
v(s) = max | s, .

6

The first term represents the payoff if you sit. The second term represents the average
payoff if you stand and play optimally. You choose whichever one is greater. If we
knew that v(s) = s for big enough s, say for all s > 100, then we could use the re-
cursive equation to work backwards. We would get v(99) = 99, then v(98) = 98, and
that would keep on working all the way to v(20) = 20. The first time s would be less
than the expression on the right would be at s = 19.
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PETER: So what we need to do is to find some large enough s* for which we can show
that v(s) = s for all s > s*.

Pretty Black Cat. One way in which Peter creates exercises for the students is to con-
struct variations on what happens when a 1 is rolled. One such variation seems at first
quite uninteresting, but in fact it holds the key to a lovely proof of the result we are
searching for.

PETER: I’ve been thinking about a modification called Pretty Black Cat (“PBC”) in
which you always roll one die, and when a 1 is rolled, the game ends but you do not
lose your current score.

DAvVID: Not very interesting, of course, because you’d simply always stay in the
game.

PETER: Indeed. But the game is so simple that we ought to be able to calculate its
v(s) values easily.

DAVID: No doubt. But I'm wondering where this is headed.

PETER: I’m thinking that whatever strategy you choose to use in Skunk, the same
strategy used in PBC will give you a payoff that is at least as high. It surely follows
that the v(s) values for PBC will always be at least as big as those for Skunk Redux, so
PBC’s v(s) will give us an upper bound on Skunk’s v(s). .. and that might be useful.

DAVID: Indeed it might. Let’s see...in PBC a player with score s would get exactly
one more roll with probability 1/6, exactly two more with probability (5/6)(1/6),
exactly three more with probability (5/6)%(1/6), etc., and the average payoffs would
be, s, s + 4, s 4+ 8, etc. We just have to add a bunch of terms.

PETER: Or perhaps we could try a recursive argument.

DAVID: Yes. I might have thought of that, as it is one of the big themes of the course.
Let k be the amount you gain on average by continuing to play. Then, if your next roll
isa 1, k is zero, and otherwise, you gain 4 on average and you are able to keep playing
so your overall gain is on average 4 + k. This gives us the recursive equation:

k= (1/6)(0) + (5/6)(4 + k)

and that solves to give k = 20.

PETER: Nicely done. So for Pretty Black Cat, the value of having a score s is v(s) =
s + 20.

DAVID: We can conclude that for Skunk Redux, v(s) < s + 20.
PETER: Maybe that will be enough to find a score s for which v(s) = s.

DAVID: Let’s see. Returning to Skunk Redux, v(s) = s if

vis+2)+vis+3)+vis+4) +vis+5) +vis+6) -
6 <
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and since v(x) < x + 20, that will hold if

(s +22) + (s +23) + (s +24) + (s +25) + (s + 26) -
6 =

and that simplifies to s > 120.
PETER: Wow.
DAVID: We conclude that v(s) = s for every s > 120.

PETER: That elusive but utterly unsurprising conclusion is just what we need to start
the backwards recursion and make all of our deductions legitimate. Finally, we can
safely say that 20 is indeed the place to sit.

Epilogue

And thus the four-month journey concludes with the astounding realization that our
initial reasoning is flawed. For the (n = 2)-dice game we discussed at the beginning,
a comparison of the expected immediate gains by sitting and by standing fails to take
account of the long-term possibilities. The answer to sit when s > 200/11 is correct
but requires a more rigorous argument involving v(s).

The reason the 1-die strategy is optimal in an n-dice game, as previously mentioned,
is that any gain you can make by rolling n dice can be obtained by rolling 1 die n times.
Also, it is important to notice that while the 1-die strategy is optimal, it is not the only
optimal strategy. For example, since you will never leave the game with s < 20, and 3
dice can only take you to 18, you might just as well throw 4 dice at the very beginning.
The same reasoning continues to apply. For example, an optional strategy allows a
play of 2 dice for 8§ < s < 14, and so on.

An interesting problem arises if we exclude the option of using 1 die, that is, you
can roll any number of dice except 1. In this case your effective choices become sit,
stand with 2 dice, or stand with 3 dice. This is because any number n > 3 can be
written as a linear combination of 2 and 3. The optimal strategy for this game (found
with EXCEL) is displayed in TABLE 5. It has an intriguing pattern.

TABLE 5: An optimal strategy when 1
die is forbidden

score § optimal n
s=0 n=3
1<s5s<6 n=2
T<s<1l1 n=3
12<s<18 n=2
s > 18 n=0

More generally, suppose there is a given set of available numbers of dice to roll:
{ni,ny,...,ng, ...}, where no n; is a nonnegative-integer linear combination of the
other n;. We invite others to conduct further research on optimal strategies for this and
other variations.
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The New Rules for NFL Overtime
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As many readers may be aware, beginning in the 2010 season the NFL has changed its
overtime rules. In this article we will look at why the rules needed changing, how they
were changed, and why the new system—at least mathematically—looks so appeal-
ing. We will also look at an alternative rule change that might have been even more
appealing to mathematicians.

The rule

In the previous system, a coin toss took place and the team that won the toss had the
choice either to kick off or receive the ball. The game was played with regular NFL
rules and the first team to score won.

Most teams with the choice elected to receive the ball, because that gave them the
first possession and the first good chance to score. According to ESPN.com, since 1994
about 60% of games that went into overtime under these rules were won by the team
that won the toss. This advantage is statistically significant [2] and seems to have been
increasing over time. Perhaps thinking that a coin toss should not have such a large
influence on the outcome of a game, the NFL became convinced that a rule change
was needed.

In April 2010 the NFL owners installed a new system that initially applied only to
playoff games. In April 2012 they extended the new rules to all games. In this new
system, as before, any team scoring a touchdown or safety wins immediately. So does
any team scoring a field goal, except that if the initial receiving team scores a field goal
(3 points) on its first possession, then the team that kicked off has a chance to reply.
If they fail to score, they lose. If they score a field goal, the game again reverts to the
old sudden-death rules, and if they score a touchdown they win the game. The game is
played until one team wins, removing the possibility of a tie.

The Markov chain

We shall study the effect of this rule change using a Markov chain model. We will
define the states of the system, determine the initial conditions and the transition prob-
abilities between states, and then draw conclusions about the outcomes of games using
the new rule.
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We begin by defining the states of the system. Throughout our work we shall refer
to the team that receives the ball (and has the first possession) as Team A, and the team
that kicks off as Team B. There are two absorbing states, those in which either team
has won; we call these “A’s winning state” and “B’s winning state,” or just “A wins”
and “B wins.” Every game eventually reaches one of these states and stays there.

There are four other, non-absorbing states. We have the initial possession for Team
A in which a touchdown will win the game, but a field goal leads to the additional
possession; we will refer to this state as A*. We have the possession for Team B when
they are down by one field goal, a state that can occur (if it occurs at all) only after A’s
first possession; we will refer to this state as B*. Finally we have the two sudden-death
states, in which either team has possession under the old rules; we refer to these states
as A and B.

Every game begins in state A*. From that state it moves to state B, state B, or either
absorbing state. From state B* it can move to state A or to an absorbing state. Then the
game continues through any number of possessions (zero or more) alternating between
states A and B, before finally moving to state “A wins” or “B wins.” Except for the
absorbing states, each step of the Markov chain is identical with one possession, so in
general we will refer to the steps of the chain as possessions. FIGURE 1 below has the
state diagram for the new rules.

— State A* State B* —
State A State B
A wins B wins

Figure 1 The state diagram

We notice that if a game reaches state A or state B, then we are back to the sudden-
death game played according to the old rules. This means that there are plenty of data
about what happens in these states, and we will use this data to estimate transition
probabilities.

The transition matrix

TABLE 1 below shows the probabilities p;; of going from a given game state (in a row)
to another (in a column). We shall determine these p;;’s, initially based on game data.

We note that the majority of the entries are zero. For example, after the initial pos-
sessions there is no way to return to the A* and B* states, and thus other than p,,, which
is the probability of a field goal in the initial possession, the first two columns are all
zeros. The remaining nonzero probabilities p;; represent either a change in possession
or a score.

In all the analysis that follows we assume two evenly matched teams. Therefore, by
symmetry, in the sudden-death scenario we have ps3 = ps4, P3s = Pas, and pszg = pas.
We are also making the assumption that drives begin from an average starting point.
Clearly a team that starts from its own one-yard line has a lower probability of scoring
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TABLE 1: Transition probabilities

to Poss. Poss. Poss. Poss. A B
from A* B* A B wins wins
Poss. A* 0 P12 0 D14 D15 P16
Poss. B* 0 0 D23 0 D25 D26
Poss. A 0 0 0 P34 p3s P36
Poss. B 0 0 D43 0 D45 P46
A wins 0 0 0 0 1 0
B wins 0 0 0 0 0 1

than one that begins inside the opponents’ 10-yard line, but for simplicity we treat all
drives in a given state as the same.

In the A* possession we shall assume that Team A plays as it would during the
first four quarters of a game. Here a team would like to score a touchdown, but will
settle for a field goal. (There is speculation as to whether this will be the case in state
A*, or whether teams may opt to be more bold and take risks going for a touchdown
to avoid giving the opponents the right to reply [3].) We can find an estimate for the
probabilities to fit into row one of our matrix using game data. In the 2008 season there
were 5461 total possessions not ended by the completion of a half. TABLE 2 breaks
down how each of these 5461 possessions ended.

TABLE 2: Outcomes of 5461 possessions in

2008

Result Number
Offensive touchdown 1122
Field goal 845
Punt 2294
Turnover on downs 231
Missed field goals 155
Non-scoring turnovers 708
Safety 21
Turnovers for touchdowns 85

Thus, in any given possession we may assume the following probabilities:

845

* A field goal will be scored in 3 = 0.15 of possessions, leading to the B* posses-
sion.
* A touchdown will be scored in % = 0.21 of possessions, resulting in A winning.

o 2294+4231+4708+155
5461

= 0.02 result in the defense winning via a turnover or safety.

= (0.62 result in a change of possession to B.

o 21485
5461

If we assume that, in possession A*, the team plays as it would during a non-overtime
possession, we can assign the values p;; = 0.15, pjs = 0.62, p;s = 0.21 and pig =
0.02.

The B* row is more complex, requiring that we make some estimates as to how a
team’s decisions would effect the probabilities of scoring on a given possession. We
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note that in this scenario, down by 3 points, Team B will never punt, as that would
mean losing the game. In general the team will play more aggressively, resulting in
more turnovers (in particular, on downs), but also more scores. Thus we need to split
the 2294 possessions that result in punts into scores and losing the ball on downs.
In the NFL, around 50% of fourth-down attempts are successfully converted, although
the majority of these are for relatively short yardage. Using this fact combined with
the number of successful late-game drives, in which a similar situation to Team B’s
occurs, we estimate subjectively that, of the 42% of possessions that would normally
end in a punt, 60% will result in a turnover on downs and 40% will end up with scores.
Of those that end up in a score, we shall keep the touchdown to field goal ratio as it is
given in our game data, 1122 : 845 ~ 57 : 43.

All outcomes other than a field goal or touchdown result in Team B losing the game.
The probabilities are therefore

* Touchdown 0.21 + (0.42 x 0.4 x 0.57) = 0.31,
* Field goal 0.15 4 (0.42 x 0.4 x 0.43) = 0.22,
* Change of possession 1 — (0.31 4-0.22) = 0.47.

Thus we can assign py; = 0.22, pos = 0.47, and py = 0.31.

Having established the top two rows and first two columns we can consider the
lower-right four-by-four portion of the matrix, which is a significant matrix in its own
right. If we reach one of these states, we are back to the sudden-death scenario of
the previous rules. This portion of the matrix was analyzed in [1], which included a
Markov-chain treatment of the previous rules. Following that treatment, initially we
consider using the average game data as we did above. Recall that at this point there
are only three possible outcomes from a possession: winning, giving up possession,
or losing. Based on the game data and what we have already seen we could assume a
team scores in 0.15 4 0.21 = 0.36 of its possessions, and the probability of a change
of possession and the defense scoring are, as before, 0.62 and 0.02, respectively. This
would give a four-by-four matrix of the form

0 062 036 0.02
062 0 0.02 0.36
0 0 1 0
0 0 0 1

T, =

However, as noted in [1], this matrix does not do a good job of modeling the previous
overtime system. In a typical NFL quarter, there are on average six possessions. If we
take T to the sixth power to model a single quarter of overtime, we get

0.06 0 057 037

Fo_| 0 006 037 057

r=lo o 1 0|
o 0 o0 1

which heavily overestimates the number of games that were not concluded at the end
of the first quarter of overtime. Under the old rules, in the event of there being no score
after one quarter, a regular season game was declared a tie; however, of the nearly
100 games that went into overtime between 2004 and 2010, only once did a game
end with such a result. The obvious explanation for this is that a team can play more
conservatively as they get closer to the opposition’s goal line, knowing a field goal
will suffice to win the game. We would therefore expect the probability of a score to
rise and the probability of a change in possession to decrease. In [1] we show that the



VOL. 85, NO. 4, OCTOBER 2012 281

matrix 7, given below, when taken to the power six, gives an excellent estimate of the
true outcomes of overtime games:

0 05 048 0.02
05 0 0.02 048
0 o0 1 0
0 0 0 1

T, =

When taken to the sixth power, this matrix gives

0.02 0 064 034

.0
76 — 0 0.02 034 0.64
2 0 0 1 0
0 0 0 1

This matches closely with the actual results from games from 2004-09, in which
the receiving team won 64% of the time and the kicking team 35% of the time, with
1% ending in a tie. (We note that the advantage for the receiving team has actually
increased over the past twenty years. This gives a higher value for teams winning
than the previously quoted value from ESPN.com.) It also fits with our intuition that
a team, by playing conservatively, should score more often when faced with a sudden
death situation.

We can now use T, from above to give p3y = ps3 = 0.50, p3s = pss = 0.48, and
Pas = p3g = 0.02 in TABLE 1. Our transition matrix is now therefore

015 0 0.62 021 0.02

022 0 047 031
0 050 048 0.02

050 0 0.02 048
0 0 1 0

0
0
0
0
0
0 0 0 0 1

eNeNoNoNol

By raising this matrix to high powers, we can see the ultimate outcomes of each
state:

0 0 0 0 052 048
0 0 0 0 061 0.39
lim 77" — 0 0 0 0 065 035
n—oo 3 0 0 00 035 0.65
000 0 1 0
0 00O0 O 1

The first row of this matrix gives the probabilities of reaching the absorbing states,
given that we begin the chain in state A*. We expect Team A to win 52% of the time,
and Team B to win 48% of the time.

The overall advantage to the team first receiving the ball is thus reduced to 52—48.
It may seem surprising that such a small change would result in apparently removing
most of the advantage for the team that receives the ball first; however, we now have
two advantages balancing out. Team A has the benefit of receiving the ball first and,
should they score a touchdown, they win without an opportunity for reply. However,
in the B* possession, Team B has the advantage of knowing what they need to do to
win, or at least to prolong the game. In a situation where they might otherwise punt
they will attempt to gain a first down, knowing that they have nothing to lose. These
advantages seem to balance out quite nicely, creating an even field.
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The mathematicians’ proposal—“cut and choose”

One further proposal that is suggested by mathematicians (though has gained little
traction in football circles [2]) is based on the cut-and-choose technique employed
by cake lovers worldwide. This is the simplest form of the fair division problem in
game theory. Suppose we have one piece of cake to share between two siblings. One
sibling gets to cut while the second chooses the slice she wishes to eat. Any deviation
from a 50-50 split will guarantee the “chooser” gets the larger share and so there is
an incentive for the “cutter” to cut as accurately as possible. How can we transfer this
idea to football?

In football the analogous situation would involve one team placing the ball at a
point on the field, say the offensive team’s own 15-yard line. The other team then
chooses whether they wish to be the offensive team in that position, or let the other
team have the first possession. They then proceed to play the traditional NFL overtime
rules, in which the first team to score wins. As demonstrated in game situations, given
the chance to start between, say, their own 20- and 30-yard line (the typical result of a
normal kickoff and return) a team always chooses to have the ball. But suppose a team
is told they would start with the ball on their own one-yard line: would they still take
the ball? Unlikely, even for a high-powered offense. Thus there must be a break-even
point, where teams are unsure as to whether they would wish to start with the ball or
on defense.

Taking this back to our cake analogy, suppose that one team (the cake cutter) gets
to choose where the team with the ball begins. The other team (the cake chooser),
knowing where on the field the team on offense would begin, gets to choose whether
to start on offense or defense. The incentive for the choosing team is to place the ball
at the fairest point on the field. Too close to the offense’s own goal line and they will
end up with the ball there. Too far away and the opposition will take the ball and have
the chance to drive down the field and score. Variations of this have been proposed
in which the two teams submit sealed bids for where they would wish to begin an
overtime possession and the one who offers to start closest to their own goal line gets
the ball. This, however, is the same basic concept as cut and choose.

Conclusion

The analysis confirms that the new rule does balance out a large proportion of the
advantage that comes from winning the toss. In [1] we look at the possibility of playing
first to six, another possibility that was proposed as the solution to the advantage the
toss provides. If we require a total of six points scored to win in overtime, there is
some reduction in the advantage for the team winning the toss to a 56-44 edge. In
this case, however, there is the unfortunate byproduct of a considerable increase in
the average length of games, likely to be unpalatable to a league so geared to TV
schedules. The cut-and-choose method might marginally extend the game, since the
offense would likely start closer to their own goal line, but makes no great changes
to the format of the game and would thus not significantly adjust the length of time.
It is, however, perfectly fair; perhaps the stronger team has an advantage in terms of
its bidding policy, but any system that gives advantage to the better team can only be
good. The downside of this method is its complexity. Sports fans, notoriously resistant
to change, are happy and accepting of a system in which a coin is tossed. It is harder to
see them embracing a system in which two teams submit sealed bids for the yard-line
they wish to start on.
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The new system, the one installed by the NFL, has clear advantages over each of
the alternatives we have mentioned. Although it is a little more complicated than the
previous system, it is a recognizable method, with only a small change from the famil-
iar rule. It successfully balances out most of the advantage to the team that wins the
toss, while barely raising the expected length of the game. No doubt these were among
the considerations of the NFL, and it appears that their selection of a new technique
was a reasonable choice.
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Summary In 2010 the NFL changed the rules for football overtime for playoff games, and in 2012 extended
the change to apply to all games. We look at how the previous rule favored the team winning the coin toss with a
statistically significant advantage, and then use Markov Chains to analyze the new method. It can be demonstrated
that, allowing for certain assumptions about a team’s risk tolerance, the new method neatly balances out the coin
toss advantage without significantly extending the expected length of the game. One other proposed technique
for determining the winner of an overtime game is considered.
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In the June, 2012, issue of this MAGAZINE, Frumosu and Teodorescu-Frumosu [1]
proved that, for all integers m > 2,

m

-1y !
2 > )= M

|
p:l p. k]+...+kp=m 1 p

where the inner sum is taken over all p-term ordered partitions of m. Their proof
is calculus-based, relying on power series manipulations. In this note, we provide a
combinatorial proof of this identity, which the authors requested at the end of their
article. The proof gives a more general form of the identity, which allows us to state a
number of other concrete results of the same type. Related results may be proved using
character theory of the symmetric groups. This is discussed in the final section.
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First Combinatorial Approach—Stirling Numbers of the First Kind

The primary step in proving a generalization of (1) in a combinatorial way is to rewrite
the inner sum so that the sum is taken over partitions rather than ordered partitions.
We will utilize the rising factorial x™ which for m > 1 is defined by

Mi=x(x 4D (x+m—1). )

For example, 1™ = m! and 2™ = (m + 1)! for all m > 1. Also, (—1)" = 0 when
m > 2, and (—2)" = 0 when m > 3.

The quantity x™ is a polynomial for each m > 1, and so it can be written as a sum
of ordinary powers:

X" = Zs(m, p)x? 3)
p=1

The coefficients s (m, p) which appear in (3) are called the (unsigned) Stirling numbers
of the first kind. There is a rich theory of these numbers [2, 4]. The key property which
we need in this note is that s(m, p) counts the number of permutations of the set
{1,2, ..., m} with exactly p cycles in their cycle decompositions.

We now show that

1 1 1
— > T = “)

P ky4tkp=m L P

where as in (1) the sum is on p-term ordered partitions of m.

Indeed
>
k1+---+kp=mk okp

1

= Z T X (number of ways to permute the parts)

kyzky> k=1 1P
ky etk p=m
1 p!

= X x

1122 .omin — flp) .t

1,12y tm =0
11412 2+ -+t -m=m
i+t ttm=p
where #;, 1 <i < m, is the number of occurrences of the part i in a given partition
of m. By writing the partitions of m as ¢, - 1 +1, -2 4 --- 41, - m we are able to get
an explicit handle on those partitions of m which contain exactly p parts.
From the above we see that

1 1 1 1
D k- ko > 1129 om0t

D kytetkp=m p 1.1t =0
114ty 24ty -m=m
t+o+Ftm=p

which is equivalent to

1 1 1 1 m!
ERp ki k, ml 2 e e S O

1,1,..stm >0
t1-14+ty 244ty -m=m
t+o++tm=p
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Now a summand in the sum on the right-hand side of (5) counts the number of
permutations of the set {1, 2, ..., m} which, for each 1 <i < m, have exactly t; cycles
of length i in their unique cycle decomposition. This fact may be deduced directly
using elementary counting methods. Therefore, the sum on the right-hand side of (5)
equals s(m, p), and this proves(4).

Together, equations (3) and (4) imply the following significant generalization of (1):

THEOREM 1. Let m > 1. We have the polynomial identity

m

xP 1 -
2 D el ©

ol
p=1 p: ki+-tkp=m

In particular, Theorem 1 shows that the left-hand side of (1) equals % (=1)™, which
in turn equals 0, whenever m > 2, by (2). Thus we have given a combinatorial proof
of (1).

Theorem 1 can also be used to prove other combinatorial identities that are related
to (1). For example, we see that

" (1 1
> 2 ! Y

!
p=1 p: ky+-tkp=m p

for each m > 1 by substituting x = 1 into (6). Similarly, the substitution x = 2 in (6)
yields

m 2P 1
N I S TR ®

_' Z
p=1 p ki+-tkp=m 1

for m > 1. Lastly, for m > 3, (6) gives

" (-2
2|

p=1 p:

Z ]k =0 ®)

ky+-tkp=m kl
via the substitution x = —2.

We return specifically to (7)—(9) below when we present our character-theoretic
perspective.

Second Combinatorial Approach—Character Theory

In this section we refocus our attention to group theory, in particular to the characters
of finite groups. Character theory was invented by Frobenius as a help to study the
structure of finite groups, but it has developed into an area of independent interest with
applications outside of group theory. See [3] for a very thorough introduction.

In this context, we consider the permutations of the previous section as elements of
symmetric groups. We will see that from this point of view, the results in the previous
section are all special cases of a more general formula involving characters. In addi-
tion, as often happens in abstraction, the more general formula quickly implies other
results that aren’t at all obvious from the results of the previous section.
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If G is a (finite) group, then a representation 7 of G is a map, associating to each
group element g € G an invertible square matrix 7' (g) with complex entries such that
T “respects multiplication.” This means that 7' (g;g,) = T (g1)T (g,) forall g, g, € G,
i.e., T is a homomorphism of groups. The character yr of T is defined by xr(g) =
trace(7'(g)), the sum of the diagonal entries in 7 (g). A character of G is the character
of some representation. One of the amazing facts about characters is that in a sense
you may recover a representation from its character. You are not losing information
by looking only at traces. The fact that similar matrices have the same trace implies
that character values are constant on the conjugacy classes of the group. It is known
that the sum and the product of two characters is again a character. A character is
called irreducible if it cannot be written as a sum of two other characters. The simplest
irreducible character of G is the trivial character 15, which maps all elements of
G to 1. Any character x may be decomposed into a sum of (not necessarily distinct)
irreducible characters and it can be shown that this decomposition is unique. We denote
by a(x) the multiplicity (number of occurrences) of the trivial character 15 in the
decomposition of the character y. It is well-known [3, Theorem 14.17] that

1
a0 =~ x(@ (10)

' geG

so a(y) is really just the average of all the values of the character ¥ .

The set of all permutations of {1, 2, ..., m} considered above forms a group, which
is called the symmetric group S,,. The characters of S,, turn out to be non-zero integer-
valued functions on the elements of S,,, which take the same value on permutations
having the same cycle decomposition. This is because these elements are in the same
conjugacy class of S,,,.

To involve the characters of §,, we start by replacing the term (—1)” in the left-hand

side of (1) with a “weight function” w(ki, k», ..., k). That is, we define
‘ m 1 wky, ..., kp)
smuy = (L3 e
p=1 Ky Akp=m

for m > 1 and suitable choices of the function w. Choosing w to be identically 1 or to
be (—1)"~7, we see that o (m, w) equals 1 or O, respectively, by (7) and (1). These are
also examples of a special kind of weight function which we now consider.

Any character of S, gives rise to a weight function. Thus, if x is any character of
Sm, then we may define a weight function w, as follows:

wy (ki, ..., kp) is the value of x on an element that is a product of disjoint cycles
of lengths ki, ..., k.

Since disjoint cycles in symmetric groups commute, this value is independent of the
order of the arguments. Apart from the trivial character 15, the simplest irreducible
character is the sign character sgng . It maps an even permutation to 1 and an odd
permutation to —1. If a permutation in S,, is a product of p disjoint cycles then it
is an even permutation exactly when m — p is even, i.e., when (—1)""” = 1. Thus
Wsgng, (ki ... kp) = (=1)"7P.

We can now prove a more general form of Theorem 1.

THEOREM 2. For any character x of Sy,

o(m,w,) =a(x).
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Proof. By definition w, (ki, ..., k,) is independent of the ordering of ki, ..., k,.
Therefore the calculation in the previous section shows that

“ (1 ki,.... k 1
o(m,wx)=z Z Wik, o k) =%Zx(g)=a(x). ]

p=1 p! ky -tk p=m ki kp " g€Sm

In view of the above remarks, the left-hand sides of (7) and (1) equal o (m, wi, )
and (—1)"o (m, Wsgng, ), respectively. Thus (7) and (1) follow from Theorem 2. We
also have that a(sgng, ) = 0. This is because 15, cannot occur in the decomposition of
the irreducible character sgng, . Thus we have gained the following additional insight:
The original identity (1) is equivalent to the well-known fact that there are equally

many even and odd permutations of {1,2, ..., m}.
This character-theoretic viewpoint also provides a new way to view (8). Namely,
consider the action of S,, on the power set P,, of {1,2,...,m}. The corresponding

character x,. has the property that xp.w(g) = 27 where p is the number of cycles
in g. Using [, Example 7.18.8], we see that a(xpow) = m + 1. Also a(sgng xpow) = 0.
(Note that sgng xpow 18 @ product of two characters and thus also a character.) Now (8)
and (9) follow from Theorem 2.

We now discuss one final example of a “relative” of the original identity (1) which
does not follow from Theorem 1. Consider the weight function w; defined by

wiky, ... ky) = [{i |k = 1.

That is, w(ki, ..., k,) is just the number of 1’s that appear among the arguments
ki, ..., kp. Further, w; = w,,, where x,, is the character of S,, acting naturally on
the set {1, 2, ..., m}. (Thus x,,(g) equals the number of fixed points of g.) As noted
in [3, Corollary 29.10], .. is a sum of 1, and another irreducible character. Thus
a(Xnar) = 1 and a(sgng, xna) = 0. Therefore, we have the following “relatives” of (7)
and (1) respectively:

THEOREM 3. Forallm > 2,

“ (1 ik =1
>l x EE)
p=1 p: ky+-tkp=m 1 P
and for allm > 3,

m

(=D i | ki = 1}]
Z Z ki -k, =0

|
p=1 p: ki+-tkp=m

We close by highlighting that the first equation in Theorem 3 is equivalent to the
following combinatorial statement:

The total number of fixed points in all permutations of {1, 2, ..., m} equals m!.

This is because the left-hand side of the equation is equal to a()n) and xn.(g)
counts the fixed points of g. We see also by (10) that in average the permutations of
{1,2, ..., m} have one fixed point.

There is a simple direct proof of the combinatorial statement: List the m! permuta-
tions in an (m! x m)-matrix where the ith row contains the ith permutation in some
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arbitrary ordering of the permutations. For example, the corresponding matrix for the
case m = 3 can be written as follows:

L0 W N DN =k
N — L = W N
— N = W W

The fixed points correspond to the occurrences of an integer j in the jth column
of this matrix. Clearly each column contains each of the integers 1, 2, ..., m with the
same multiplicity of (m — 1)!. In particular the jth column contains j with this multi-
plicity. Thus there is a total of m - (m — 1)! = m! fixed points in all the permutations
of {1,2,...,m}.
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Summary In the June 2012 issue of this MAGAZINE, Frumosu and Teodorescu-Frumosu proved that, for all
integers m > 2,

m

Y 1

DY
— p! _ k 1 k P

p=1 ky+-tkp=m

where the inner sum is taken over all p-term ordered partitions of m. Their proof is calculus-based, relying on

power series manipulations. In this note, we provide a combinatorial proof of this identity (which they requested

at the end of their article) and we use the insights gained via this argument to prove other results of a similar type.
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Two-sidedness of Matrix Inverses
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Beauregard in [1] gave a short proof of the two-sidedness of an inverse of a square
matrix over a field. Here we present another proof, which uses only basic notions from
an elementary matrix algebra course. There, students learn how to find the reduced
echelon form of the the matrix of a system of linear equations, from which it read-
ily follows that a homogeneous system of linear equations with more unknowns than
equations has a nontrivial solution.

Suppose A, B are n x n matrices over a field with AB = I, the identity n x n
matrix.

Proof of BA = I. It is a well-known exercise that if B has both a left inverse and
a right inverse, they are equal: If AB = BC = I, then C = IC = ABC = Al = A and
BA = I. So we need only find a right inverse of B.

We form the homogeneous system of n? linear equations, BX — xI = 0, where X
is an n x n matrix. The system has n? + 1 unknowns, x and the entries of X, so it has
a nontrivial solution (X, x) = (D, d).

If d = 0 then BD = 0, and then 0 = ABD = ID = D, a contradiction.

Thus, d # 0 and BDd~' = I. Now C = Dd~! is aright inverse of B. [ ]
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Summary For square matrices, if AB = I then BA = I. This is proved from the fact that a homogeneous system
of linear equations with more unknowns than equations has a nontrivial solution.
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Heronian Triangles with Sides in Arithmetic
Progression: An Inradius Perspective
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A triangle with rational sides and rational area is called an Heronian triangle after the
Greek mathematician Hero (or Heron) of Alexandria (born ca. AD 10). In this note we
consider Heronian triangles with sides in arithmetic progression, which we call H.A.P.
triangles. H.A.P. triangles have been considered in a number of recent papers including
those by Fleenor [2], MacDougall [3], and Beauregard and Suryanarayan [1]. Three ex-
amples are the triangles with sides (3, 4, 5), (25, 38, 51), and (15/11,26/11, 37/11).
Their respective areas are 6, 456, and 156/121, and their inradii are 1, 8, and 4/11.

One special class of H.A.P. triangles consists of those with consecutive integer sides
and integer area. These are called Brahmagupta triangles after the Indian mathemati-
cian Brahmagupta (born AD 598). After (3, 4,5) the next example is (13, 14, 15),
which has area 84 and inradius 4.

In this note we give a method to generate all H.A.P. triangles. We then show that
all Brahmagupta triangles can be generated as solutions of a difference equation with
certain initial conditions. The same difference equation with different initial condi-
tions generates another special class of H.A.P. triangles in which, like Brahmagupta
triangles, the side lengths differ from each other by 1 and from the inradius by inte-
gers, but whose side lengths are not themselves integers. The third example above is
in this class of triangles.

We note below that if a triangle has consecutive integer sides, then it has integer
area if and only if its inradius is an integer. Thus we might as well have defined a
Brahmagupta triangle as one with consecutive integer sides and integer inradius. The
computations for generating Brahmagupta triangles are made somewhat easier by fo-
cusing on inradius rather than area.

Preliminary results

If the sides a, b and c of a triangle are rational then the semiperimeter s = (@ + b +
c)/2 is also rational. Hence the area A of a triangle with rational side lengths is rational
if and only if its inradius r is rational, since A = sr. The triangle’s area is also given
by Hero’s (or Heron’s) formula,

A= \/s(s —a)(s —b)(s — ).

For an H.A.P. triangle the sides can be expressed as (a, b,c) = (b —d, b, b+ d),
where b and d are rational with 0 < d < b. The semiperimeter is s = 3b/2 and the

Math. Mag. 85 (2012) 290-294. doi:10.4169/math.mag.85.4.290. © Mathematical Association of America
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areais A = rs = 3br/2. Substituting the expressionsa = b —d,c =b+d,s =3b/2
into Heron’s formula and simplifying gives

16A> = 3b>(b — 2d)(b + 2d). (1)
Now, substituting A = 3br /2 and simplifying further gives the key relationship
b* — 12r* = 4d°. 2)

Equations (1) and (2) hold for any triangle whose sides are in arithmetic progression,
and for any such triangle, equation (2) gives the inradius r in terms of b and d. Any
triple of rational numbers b, d, and r satisfying 0 < d < b and equation (2) defines an
H.A.P. triangle.

From these equations we can prove a proposition about Brahmagupta triangles.

PROPOSITION 1. A triangle with consecutive integer side lengths has integer
area—that is, it is a Brahmagupta triangle—if and only if it has integer inradius.

Proof. From the hypothesis, b is an integer and d = 1. From (2), if r is an integer
then b is even, and thus s is an integer. Since A = rs the area A must also be an integer.
For the converse, if A is an integer then (1) shows that b is even. Also from (1) we have

= (b/2)+/3(b/2)? — 3d?, and since A is an integer then 3(b/2)?> — 3d* must be a
square integer divisible by 9. Thus r = A/s = (2A)/(3b) = (1/3)/3(b/2)* — 3d2 is

an integer.

Generating all H.A.P. triangles

If the sides of an H.A.P. triangle are divided by d, the resulting triangle has sides
(b/d — 1,b/d,b/d + 1) and the resulting inradius is rational. The scaled triangle is
then also an H.A.P. triangle. Thus to find all H.A.P. triangles, we need only seek those
whose sides differ by d = 1.

Hence by (2) we must find all rational pairs (b, r) satisfying b*> — 12r* = 4.

These pairs are found by a method having several names, including “rational slope
method” and “Diophantus chord method.” The problem is to determine all rational
points in the first quadrant on the hyperbola 5> — 12r% = 4. The point (ry, by) = (0, 2)
is on the hyperbola. For any value of m satisfying 0 < m < 24/3, the line b = mr + 2
passes through (0, 2) and one other point (r, ) on the hyperbola in the first quadrant.
(The slope m must be less than 2+/3 because b = 2+/3 r is an asymptote.)

Combining the equations of the line and the hyperbola gives r = 4m /(12 — m?)
and b = (24 + 2m?)/(12 — m?). Thus when m is rational, so are both r and b; when r
and b are both rational, so is m = r/(b — 2). Thus rational points on the hyperbola in
the first quadrant are in one-to-one correspondence with rational numbers m satisfying
0 <m < 2/3.

Replacing m by p/q, p and g positive relatively prime integers with p/g < 2+/3,
gives the first quadrant intersection

4pq . 24q* + 2p?

=4 = 3

12¢% — p? 12¢% — p? )
Each pair p, ¢ of positive, relatively prime integers with p/q < 2+/3 defines an H.A.P.
triangle with d = 1 by (3), and every H.A.P. triangle is a scaled version of one of these
triangles.
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The three examples in the introduction correspond to the (p, g) pairs (2, 1), (3, 2)
and (1, 1) respectively, where the second example requires a scaling factor of 13.
TABLE 1 gives the values of r, b and A corresponding to all p and g from 1 to 3
with p and ¢ relatively prime and p/q < 2/3.

TABLE 1: Properties of H.A.P. triangles with d =1,
for small values of p and g

plaf » [~ | 4
1|1 26/11 4/11 156/121
1 | 2| 9847 8/47 1176/2209
1 | 3 | 218/107 | 12/107 | 3924/11449
2 |1 4 1 6
2 | 3 28/13 3/13 126/169
3|1 14 4 84
3 2| 38/13 8/13 456/169

H.A.P. triangles with d = 1 and b — r an integer
We now classify H.A.P triangles with the two properties that

*d=1,and
* the side lengths differ from the inradius by an integer; that is, » — r = v for some
positive integer v.

The first and third examples in the introduction satisfy these requirements. So do all
Brahmagupta triangles, which have the additional property that the sides themselves
are integers. In this case we cannot rely on scaling, because when d = 1 the difference
b — r scales to a rational but not necessarily to an integer.

Setting d = 1 and b = r 4 v in (2) and solving the resulting quadratic for r gives

v+ 24302 — 11
re= @)

Since r is rational, 3v2 — 11 must be a square integer, say u?; and now r = (v +
2u)/11. We seek all pairs (u, v) with u and v positive integers such that

u? —3v* = —11. (3)

Each such pair (u, v) determines a triangle with the required properties.

A nice treatment of Diophantine equations of this type is given by T. Nagell [4].
A solution pair (u, v) is associated with the number u + v+/3. All the solutions of (5)
are determined by finding the fundamental solution x; + y;+/3 of x> — 3y2 = 1 and
the fundamental solutions, u; 4+ v;+/3 and u» + v2+/3, for each of the two solution
classes of u> — 3v*> = —11. (A fundamental solution is one with the minimum positive
integer value of the coefficient of +/3 within its class.) By inspection, these solutions
are (x1, y1) = (2, 1), (uy, vy) = (1, 2), and (u,, v;) = (4, 3). All solutions u + v/3 of
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(5), with u and v positive integers, are then given by one of the two following classes
of solutions.

Class I:
Ti(n) = (u; + viV3) (1 + 1ivV3)" = 1 +2vV3)2+V3)", n=>0;
Class 2:
To(n) = (uy + 133v/3) (01 + y1V3)" = 4 +3vV3)2+V3)", n=0.

For example (17)> — 3(10)> = —11, hence u = 17 and v = 10 is a solution of (5).
This solution, 17 4+ 10+/3, is in Class 2 with n = 1, since T»(1) = (4 + 3v/3)(2 +
V/3) = 17 4 104/3. For this triangle r = (v +2u)/11 =4, b=r +v =14, a =
b—1=13,c=b+1=155s =21,and A = rs = 84. It is the second Brahmagupta
triangle, which we mentioned above.

Focusing on Class 1, we have T7(0) = (1 + 2/3), Ti(1) = (1 +2/3)2 + V/3),
Tin—1) =2+ V3IHTi(n —2), n =3, and Ty(n) = Q+I)T1(n — 1), n > 2.
Combining the expressions relating 7)(n), Ty(n — 1), and T)(n — 2) gives Ti(n) =
Q+V3PTi(n—2) = B+ 4/HTi(n —2) = Ti(n —2) = 4Q + V3)Ti(n - 2) —
Ti(n — 2). Thus T;(n) satisfies the difference equation

Ti(n) =4Ti(n—1)—Ti(n —2), n=>2.

If Ty is expressed as Ty(n) = u;(n) + v1(n)/3, then u;(n), vi(n), ri(n) = (v;(n) +
2ui(n))/11 and sy (n) = 3(r;(n) + vi(n))/2 = (18v; + 3u;)/11 are also determined
by the difference equation.

From the known values of u;(0), v;(0), u;(1), and v;(1), we can calculate the first
two cases of r, s, and b. For example, since #1(0) = 1 and v;(0) = 2, we have r1(0) =
(v1(0) 4+ 2u,(0))/11 = 4/11. Also u;(1) = 8 and v, (1) = 5 and thus r; (1) = 21/11.
The difference equation then generates the values of u, v, r, s, and b for all n > 2.
Since A = rs, we also have the values of A for all n. Similar calculations give corre-
sponding results for the triangles in Class 2. Class 1 consists of an infinite number of
triangles and the values of r;(n), s;(n), b;(n), and A, (n) are all ratios of integers and
therefore rational.

We now show that the r(n) cannot be integers. If p;(n) = 11r;(n) = vi(n) +
2u(n), then p,(n) satisfies the difference equation. The first 12 least residues (mod
11) of py(n) are (4, 10,3,2,5,7,1,8,9, 6,4, 10). The least residues at n = 0 and at
n = 10 are equal, also the least residues at » = 1 and at n = 11 are equal. Since the
least residues satisfy the difference equation, they repeat in blocks of length 10, and
thus they are never 0. Hence p;(n) is never divisible by 11 and the values of r;(n),
n > 0, are not integers. Similar calculations show that s,(n) and A(n) are never inte-
gers.

For Class 2 triangles, the values of r,(0) and r,(1) are both integers and satisfy the
difference equation; thus r,(n) are integers for n > 0. Since there are no triangles with
integer inradius in Class 1, they are all in Class 2, and thus Class 2 triangles are all
of the triangles that have consecutive integer side lengths and integer inradii. Hence
triangles with consecutive integer side lengths are in Class 2 if and only if they have
integer inradius. By Proposition 1, the areas must also be integers. These are exactly
the Brahmagupta triangles.

Summarizing, we have the following propositions for H.A.P. triangles whose side
lengths differ from their inradii by an integer.
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PROPOSITION 2. (CLASS 1) All HA.P. triangles with side lengths b(n) — 1, b(n),
b(n) + 1, where the b(n) are rational non-integers and n an integer, n > 2, are gener-
ated by applying the difference equation

b(n) =4b(n — 1) — b(n — 2)
with b(0) = 26/11 and b(1) = 76/11.

PROPOSITION 3. (CLASS 2) All HA.P. triangles with side lengths b(n) — 1, b(n),
b(n) + 1, where the b’s and n are positive integers, are generated by applying the same
difference equation with b(0) = 4 and b(1) = 14.

The first example of the introduction is in Class 2 with n = 0. The third example
is in Class 1 with n = 0. Not all H.A.P. triangles with side lengths differing from
each other by 1 are included in Class 1. For example, the triangle with side lengths
(17/11,28/11,39/11) and r = 5/11 is not included in Class 1, since the side lengths
and inradius do not differ by an integer.

TABLE 2 gives the values of b, A, and r for triangles in each class and for0 < n < 3.
The initial conditions are the values atn = O andn = 1.

TABLE 2: Properties of H.A.P. triangles with d = 1, for
small values of p and g

| I r A
Class 1:
n=0 26/11 4/11 156/121
n=1 76/11 21/11 2394/121
n=2 278/11 80/11 33360/121
n=3 1036/11 299/11 464646/121
Class 2:
n= 4 1 6
n=1 14 4 84
n=2 52 15 1170
n=3 194 56 16296
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PROPOSALS

To be considered for publication, solutions should be received by March 1, 2013.

1901. Proposed by Angel Plaza, and César Rodriguez, Department of Mathematics,
Universidad de las Palmas de Gran Canaria, Las Palmas, Spain.

Let f : [a, b] — R be an n times continuously differentiable function on (a, b), and
let aj, ay, ...,a,+1 be n + 1 distinct numbers in (a, b). Prove that there exists ¢ in
(a, b) such that

n+l (n)
Zf(a,) I1 (a,—a,r‘—f (C).

1<i<n+1
i#]

1902. Proposed by H. A. ShahAli, Tehran, Iran.

Letag, ay, . . ., a, be positive real numbers. Prove that there are at least (n!)? different
permutations o of {0, 1, ..., 2n} such that

s + aeyX + -+ a,,(g,,)xzn >0
forall x € R.
1903. Proposed by Mihdly Bencze, Brasov, Romania.
Let x, y, a; = a4, a; = as, and a; be positive real numbers. Prove that

3

8(aj + a3 +a3) = Z [(ak + ar1)* (ax + ak+2)y]
k=1

3
x+y

> 3(a; + ax)(ax + a3)(az + ay).
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1904. Proposed by Oskar Maria Baksalary, Adam Mickiewicz University, Poznan,
Poland, and Gotz Trenkler, Dortmund University of Technology, Dortmund, Germany.

Let A be an n x n complex matrix of rank r, 0 < r < n, and let s be the sum of the
elements of the antidiagonal of A; thatis, if A = (a;;), thens =ay, +ayp_1 +---+
a,.1. Prove that if A is idempotent and Hermitian (i.e., an orthogonal projector), then

|s| < 4/nr.

1905. Proposed by Luis Gonzales, Maracaibo, Venezuela, and Cosmin Pohoata,
Princeton University, Princeton, NJ.

Let £ be an arbitrary line in the plane of a given triangle ABC. The three lines obtained
as the reflections of ¢ with respect to the sidelines of AABC bound a triangle, namely
AXYZ.

(a) Prove that the incenter of AXYZ lies on the circumcircle of AABC.

(b) If U and V are the incenter and the circumcenter of triangle XYZ, respectively,
prove that the (second) intersection of the line UV with the circumcircle of AABC
is a fixed point E, independent of the position of £. Moreover, prove that E is
the Euler reflection point of AABC (i.e., E is the intersection of the reflections
of the Euler Line of AABC with respect to its sidelines).

Quickies

Answers to the Quickies are on page 301.
Q1023. Proposed by Dale Geer, Oshkosh, WL

Let x and y be positive real numbers such that | < x < y and x¥ = y*. For example,
(x,y) =(2,4)or (x,y) = (2.25,3.375). Prove that x < e < y.

Q1024. Proposed by Mowaffaq Hajja and Ahmad Hamdan, Mathematics Depart-
ment, Yarmouk University, Irbid, Jordan

A subring of a ring with multiplicative identity e can have a multiplicative identity
different from e. For every positive integer n, find the number of subrings of Z/nZ
(counting Z/nZ and the zero ring) that have a multiplicative identity.

Solutions
Factoring a homogeneous polynomial October 2011

1876. Proposed by Roman Wituta, Edyta Hetmaniok, and Damian Stota, Institute of
Mathematics, Silesian University of Technology, Gliwice, Poland.

Prove that the following equality holds for x, y € C and n a positive integer.

kr
X2 — X"yt 4y = 1_[ (x2 — 2cos <§> xy + y2> .

1<k<3n
ged(k,6)=1

Solution by Northwestern University Math Problem Solving Group, Department of
Mathematics, Evanston, IL.

There is exactly one k verifying gcd(k, 6) = 1 in {3m, 3m + 1, 3m + 2}, hence we
have that the product on the right-hand side has exactly n factors, and both sides are
homogeneous polynomials in x, y of degree 2n.
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If any of x or y is zero then the equality becomes trivial, so we may assume that
x,y # 0. Dividing by y*" and letting z = x/y we can rewrite the equality like this:

km
2n __ _n 1: 2_2 1 .
Z 7+ | | Z CcoSs _3n Z+

1<k<3n
ged(k,6)=1

Finally we prove that those two (monic) polynomials in z are equal by checking
that they have the same roots, namely the 2n distinct complex numbers given by
7 = e /3 for 1 < k < 3n and ged(k, 6) = 1. Substituting z = **™/3" in the left-
hand side gives

+onkmi/3n ki f3n 4 | = ki3 (pEKi/3 4 pFhI/3 ]

A k
= ki3 <2 cos (i—n) — 1) ,
3
and since k = £1 (mod 6), then

ki [3n _ jEnkmif3n 4 | _ Ekwi/3 (2005 (:I:%) . 1) -0

e —e

In the right-hand side, the same substitution on the following factor gives

k . k '
2 _2cos KT 241 = T ) e KT eEkTifn 4
3n In

— eikm‘/3n (eikniﬂn —2c¢cos (l;_ﬂ) + e:FZkrri/3n>
n

, k k
= il (2cos (22 ) —2cos (2 ) ) = 0,
3n 3n

Also solved by Michel Bataille (France), Claude Bégin (Canada), Francesco Bonesi (Italy) and Lorenzo Luzzi
(Italy), Bruce S. Burdick, Robert Calcaterra, Stefan Chatadus (Poland), Hongwei Chen, Con Amore Problem
Group (Denmark), Paul Deiermann, Robert L. Doucette, Dmitry Fleischman, Michael Goldenberg and Mark
Kaplan, J. A. Grzesik, Eugene A. Herman, In Jae Hwang (Korea), John C. Kieffer, Tek Min Kim (Korea), Omran
Kouba (Syria), Elias Lampakis (Greece), LdszI6 Liptdk, Peter McPolin (Northern Ireland), Jeremy Moore and
John Zacharias, Angel Plaza (Spain), Joel Schlosberg, Nicholas C. Singer, John H. Smith, H. T. Tang, Traian
Viteam (Germany), Michael Vowe (Switzerland), Haohao Wang and Jerzy Wojdylo, and the proposers.

and this completes the proof.

Disconnecting a permutation matrix October 2011

1877. Proposed by Daniel Edelman, Mason—Rice Elementary School, Newton Centre,
MA, and Alan Edelman, MIT, Cambridge, MA.

For each n x n permutation matrix M, consider the graph G, where the vertices are
the zero entries and two vertices are adjacent if their corresponding entries in the ma-
trix are adjacent horizontally or vertically. We say that M disconnects its zeros, if Gy,
is disconnected. For example, M| has the bottom left zero disconnected, while M,
does not disconnect its zeros.

1 1
M, =
01 ( 1

My =
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Find a formula for the number of n x n permutation matrices that disconnect their
zeros. Also find an asymptotic formula as n — oo for the fraction of the n! permutation
matrices that disconnect their zeros.

Solution by Matteo Elia, Antonello Cirulli, and Cesare Gallozzi, Universita di Roma
“Tor Vergata”, Roma, Italy.

Let I, = [a;;] be the k x k matrix such that a;; = 1if i = j and a;; = 0 otherwise;
and let /| = [a;;] be the k x k matrix such thata;; = 1ifi =k+1— janda; =0
otherwise. It is easy to verify that a permutation matrix M disconnects its zeros if and
only if one and only one of the following conditions is satisfied:

1. M has a block I in the upper right corner or a block /; in the lower left corner with
k>2,j>2,andk+ j <n;

2. M has ablock [} in the upper left corner or a block 7} in the lower right corner with
k>2,j>2,andk + j <n.

Given one block I; or I; in one of the four corners, the rest of the permutation
matrix can be filled in (n — k)! ways. Given two blocks I and /; or I; and I}, the rest
of the permutation matrix can be filled in (n — k — j)! ways. Hence, by applying the
inclusion—exclusion principle, the desired number is given by the following formula

n—2 n—k n—2 n—k-2
d(n)_4Z(n— 1=23"% " (n—k —J)'+2—4sz—2z > it+2
k=2 j=2 k=2 i=0

n—2 n—4
=4) i1=2) il —2— (i +1)+2
i=l i=0
n—2 n—4 n—3
=4) il-21—2) ) il+2) il+2.
i=1 i=0 i=1

The values of d(n) forn = 2,...,10 are 2, 6, 12, 32, 120, 580, 3392, 23244, and
182776. Since Y ;_, i!/n! ~ 1 + 1/n, it follows that

d(n) 4 8 o 1
T +$+ nt )

Also solved by Ldszlo Liptdk, John Kieffer, Eugene A. Herman, Dmitry Fleischman, Robert Calcaterra, and
the proposers. There were 4 incorrect or incomplete submissions.

An A.M.-G.M. inequality of ratios October 2011

1878. Proposed by Pantelimon George Popescu, Politechnica University, Bucharest,
Romania and José Luis Diaz-Barrero, Polytechnical University of Catalonia, Barce-
lona, Spain.

Leto > —1 and B8 > 1 be real numbers. Let {b; : 1 < k < n} be a set of real numbers
in the interval (0, 1]. Prove that

Z bk — —
A+ ,3 by + ,3 G+8’
where A and G are the arithmetic and geometric mean, respectively, of the set {b; :
1 <k <n}.
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I. Solution by Robert L. Doucette, Department of Mathematics, Computer Science,
and Statistics, McNeese State University, Lake Charles, LA.

The function f(x) = (x — «)/(x 4+ B) has second derivative f”(x) = —2(ax + B)(x +
B)~3 and, since « + B > 0, f is concave on the interval (— B, 00). The function g(x) =
f(e¥) has second derivative g"(x) = (o + B)e* (B — e*)(e* + B)~* and so g is convex
on the interval (—oo, In ). Because b, € (—8, o0) and In b, € (—o0, In B), it follows
by Jensen’s Inequality that

1 <& 1< 1
f)= - ;ﬂbk) and - ;ganm > g (; ;mbk) :

Note that g(Inby) = f(by) and g(+ >_r_; Inby) = g(n([;_, b)) = f(G). Thus

B

G—u«

G+p

—a by __” _
g f(A)>—Zb+ﬁ 2 602 £(O) =

II. Solution by Michael Vowe, Therwil, Switzerland.

The first inequality is proved as in the first solution. For the second inequality we
use that 1/(b;, 4+ B) > 1/(1 4+ B) and that A > G by the Arithmetic Mean—Geometric
Mean Inequality. Therefore

" (bi—a G-—a a+p a+p .
= = b — G
;(bwrﬂ G+ﬁ> G+ﬁzbk+ﬁ_(G+ﬂ)(1+ﬁ)Z(k )
___«th
S (G+PAU+B

n(A—G)>0

which is equivalent to

_Zbk—a -«
by+B ~ G+ B’

Also solved by Michel Bataille (France), Matteo Elia (Italy), Dmitry Fleischman, Michael Goldenberg and
Mark Kaplan, Ahmad Habil (Syria, only left inequality), John C. Kieffer, Tek Min Kim (Korea), Omran Kouba
(Syria), Elias Lampakis (Greece), Paolo Perfetti (Italy), Greg Ronsse, Nicholas C. Singer, Traian Viteam (Ger-
many), and the proposers.

Using residues to integrate October 2011

1879. Proposed by Wong Fook Sung, Temasek Polytechnic, Singapore.

Let m and n be positive integers such that m < n and let a and b be positive real

numbers. Evaluate
0 x2(nfm)(x2 _ 1)2m
/ dx.
0 axZn + b(xz _ l)Zn

Solution by John Zacharias, Melbourne, FL.
The requested integral can be written as

/00 xz(n,m)(xz _ 1)2m e — /00 (x — l/x)Zm i
o ax +b(x2— 1) 0o a+blx—1/x)

_ [ = © (x— 1y
_/0a+b(x—1/x)2"dx+/1 a+b(x—1/x)2"dx’ (D)
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In the second integral we use the change of variable u = 1/x to get

foo (x —1/x)*" V(1w —w)(w?)
dx = du
. a+bx—1/x)" o a+b(l/u—u)>

Using this in Equation (1), the original integral becomes
/1 (x = 1/x)*" dx + /1 (x = 1/%)*"(x7%) dx
o a+bkx—1/x)% o a+blx—1/x)»

/' (I +x ) — 1/x)*"
— dx
a+bkx—1/x)2

Now the change of variable u = x — 1/x transforms this into

0 u2m 1 oo x2m
—  du=— | — 4
/0 atbu T 2 f_oo (a/b) + 22 "

00 2m
F(r) = / .

R R

For r > 0, define

We evaluate F(r) by the method of residues and contour integration. That is,

0o 4 2m Z2m n z2m
F(r) =/ —dx = lim dz=2mi ) Res| ———.z .
oo T X R—oo Jo. T+ 22" p r+4zn

where Cy is the upper half of the circle of radius R centered at the origin together
with the part of the real axis that is a diameter of Cg and {z;} are the roots of the
denominator of z2"/(r + z?") that lie in the upper half-plane. These roots are z; =
r'2mexp((2k — 1)mi/2n), k = 1,2, ..., n, and they are all simple poles. Therefore

n 2m
. rn
F(r) =2mi Res = 2mi —_—
( ) Z < +z 2n’ k> ; 2nzin—]
.on . on 2m—2n+1
Tl 2m+1-2n Tl 1/2n 2k —1 .
= — z = — r X Tl
n kzz; k n Z ( P < 2n

k=1
i w1 —Q2m—2n+1) . Z 2m—2n+1 \7*
=—r u exp|————mi exp| ————mi
n p 2n = P n
J'L'l}’z’gnﬂ ) 2m —2n +1 nrz'gr:rl 2m + 1
=———.jcs¢c| —— 7 ) = csc ).
nr 2n nr 2n

Therefore the original integral equals

rem " TG - D T (4) e (22t
2b 0 m

ax + b2 -2 T 2 b

Also solved by Michel Bataille (France), Hongwei Chen, Joonyong Choi (Korea),Paul Deiermann, Robert
L. Doucette, Michael Goldenberg and Mark Kaplan, Eugene A. Herman, John C. Kieffer, Omran Kouba (Syria),
Elias Lampakis (Greece), Kee-Wai Lau (China), Bob Mallison, Matthew McMullen, Samih Obaid, Paolo Perfetti
(Italy), Nicholas C. Singer, Traian Viteam (Germany), Michael Vowe (Switzerland), and the proposer.
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From exponential to geometric distributions October 2011

1880. Proposed by Richard Stephens, Department of Mathematics, Columbus State
University, Columbus, GA.

Let X be a positive continuous random variable and for any o > 0, let Y, be the
random variable defined by Y, = nforn =1,2,3,...ifandonlyif (n — Do < X <
no. Prove that X has an exponential distribution if and only if Y, has a geometric
distribution for every o > O.

Solution by Robert Calcaterra, University of Wisconsin—Platteville, Platteville, WI.
Suppose X has an exponential distribution with mean p, « > 0, and p = 1 — e™%/4,
Then

P(Y,=n)P((n—Da <X < na) =—e "M 4 e =D/ = p(1 — p)»~!

and so Y, has a geometric distribution.

Next, suppose the probability function of Y, is p, (1 — p,)"~! for some p, € (0, 1).
Let F be the cumulative distribution function of X, x > 0, m and n positive integers,
and ¢ = n/m. Then

F(x) = P(X <n(x/n)) = P(Ye/n < n)

= 2:]7)r/}1(1 - px/n)k71 =1- (l - px/n)n-
k=1
Hence, 1 — F(q) = (1 — p1yw)" = (1 = piym)™? = (1 — F(1))4. But the rational
numbers are dense in the real numbers and thus 1 — F(x) = (1 — F(1))" for all pos-
itive real numbers x. Therefore, F' is the cumulative distribution function of an expo-
nential random variable and the proof is complete.

Also solved by Francesco Bonesi, Matteo Elia, and Alessio Podda (Italy); Bruce S. Burdick; Dmitry Fleish-
man; John C. Kieffer; Omran Kouba (Syria); Greg Ronsse; Carl M. Russell; Joel Schlosberg; and the proposer.
There was one incomplete solution.

Answers

A1023. Since x and y are positive, x¥ = y* if and only if x Iny = y Inx. It follows
that Inx /x = Iny/y, and that equation further implies that
Iny—Inx Inx Iny

y—x X y
Let f(¢) = Int. By the Mean Value Theorem, the expression on the left is equal to
f'(z) = 1/z, for some z such that x < z < y. Thus z = x/Inx = y/In y and because
0<x<z<y,itfollowsthatx/Inx > xand y/Iny < y. Thuslnx < 1 <Iny and
SoOxX <e<y.

A1024. The subrings of Z/nZ are precisely d(Z/nZ), where d divides n. Suppose
that n = dm.

If d(Z/nZ) has a (multiplicative) identity ud, then (ud)d = d (mod n) and hence
ud =1 (mod m). Therefore gcd(d, m) = 1. Conversely, if gcd(d, m) = 1, then there
exists u# such that ud = 1 (mod m). Then for every a € Z/nZ, (ud)(ad) = ad
(mod n), and thus ud is an identity of d(Z/nZ).

Therefore d(Z/nZ) has an identity if and only if gcd(d, n/d) = 1. The number of
such divisors d (including 1 and n) is clearly the number of subsets of the set of prime
divisors of n, i.e., 2, where ¢ is the number of prime divisors of n.
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PAUL ). CAMPBELL, Editor
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Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles, books, and other materials are
selected for this section to call attention to interesting mathematical exposition that occurs out-
side the mainstream of mathematics literature. Readers are invited to suggest items for review
to the editors.

Kaplan, Daniel T., Statistical Modeling: A Fresh Approach, 2nd ed., Project Mosaic, 2011;
388 pp, $54.95 (P). ISBN 978-0-9839658-7-9.

I have taught introductory statistics and mathematical statistics many times. The standard syl-
labi are heavy on calculation and technique, just like those for calculus and for differential
equations. Students can “succeed” in any of those courses without becoming able to apply their
learning to a real-world situation. What tends to be missing in such courses is the learning
of modeling, the step from a real-world problem to a mathematical formulation. It is a hard
step, because it requires—besides a mathematical toolbox—some understanding of the context
of the particular problem, plus the interest and curiosity to try to solve it. This book teaches
the modeling step in statistics—in marvelous fashion!—without assuming any previous knowl-
edge of statistics. The last section of each chapter is devoted to “computational technique,”
but there are no traditional statistical formulas. Computations are accomplished in a carefully
chosen subset of R, through the front end RStudio (both are free for all platforms, hence have
the advantage of being accessible to students throughout their lives). Each chapter has a few
reading questions; exercises, software, and datasets are available at http://www.mosaci-
web.org/StatisticalModeling/ .

Adam, John A., X and the City: Modeling Aspects of Urban Life, Princeton University Press,
2012; xviii + 319 pp, $29.95. ISBN 978-0-691-15464-0.

The author of A Mathematical Nature Walk (2009) takes to the streets to model aspects of city
life: its size, chance encounters, estimation problems (how many squirrels in Central Park?,
etc.), average trip length, car-following, and more. Lots of math gets used (calculus and more)!
(The author has just received an Allendoerfer Award for a recent article in this MAGAZINE; see
page 319.)

Posamentier, Alfred S., and Ingmar Lehmann, The Secrets of Triangles: A Mathematical Jour-
ney, Prometheus Books, 2012; 321 pp, $26. ISBN 978-1-61614-587-3.

This is a book for those who love plane geometry, have a good appetite for proof, and can
interpret intricate diagrams. At a few points, trigonometry is used, as well as logarithms (in
connection with fractal dimension). There is more here than you ever knew about triangles!

Stewart, lan, In Pursuit of the Unknown: 17 Equations That Changed the World, Basic Books,
2012; x + 342 pp, $26.99. ISBN 978-0-465-029723-0.

The first equation in the book is the Pythagorean theorem, and the last is the Black-Scholes
equation (“the Midas formula”). In between, you will find 15 more of your favorites, with their
significance described and expounded in enlightening fashion by a author well known for his
“genius for explanation.” The book is for the general reader; virtually no other equations appear
except the ones celebrated.
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Mackenzie, Dana, The Universe in Zero Words: The Story of Mathematics as Told through
Equations, Princeton University Press, 2012; 224 pp, $27.95. ISBN 978-0-691-15282-0.

Compared to Stewart’s book reviewed above, this book includes more equations (24, starting
with 1 4+ 1 = 2), has a lavish layout with color illustrations (are some colorized?), is roughly the
same length, and costs about as much. But there is little overlap, because this book is devoted to
equations that had an effect on mathematics. Hence here Fermat’s Last Theorem occurs, as does
the Galois group of a polynomial, the prime number theorem, and the continuum hypothesis.

Haldane, Andrew G., and Robert M. May, Systemic risk in banking ecosystems, Nature 469 (30
January 2011) 351-355.

Stewart’s book reviewed above mentions this article, which compares the banking system to
biological ecosystems. Haldane and May assert that in both kinds of systems,“too much com-
plexity implies instability.” While biological systems have been subjected to survival of the
fittest, evolution of financial systems has often proceeded according to “survival of the fattest.”
For example, U.S. policy has been to save individual banks, without considering equilibrium
and risk of the system as a whole. “[A]ll banks doing the same thing—can minimize risk for
each individual bank, but maximize the probability of the entire system collapsing.” The authors
conclude with public policy recommendations.

Weinstein, Lawrence, Guesstimation 2.0: Solving Today’s Problems on the Back of a Napkin,
Princeton University Press, 2012; xv + 353 pp, $19.95 (P). ISBN 978-0-691-15080-2.

Paper or plastic? How much energy does it take to transport 1 ton of cargo across the U.S. by car,
truck bicycle, train, or plane? or to ship one year’s worth of a person’s groceries? How easy is
it to shear the head off a 5/16” lag screw, as the author did? This book, a successor to Guessti-
mation (2009) (by the same author with John A. Adam), is another book of problems about
estimation and approximation (‘“Fermi” problems). My favorite (I've always enjoyed physics):
“Given that radiation from proton decay does not kill us, what is the minimum possible proton
lifetime?” Fortunately, the author gives hints and answers.

Langkamp, Greg, and Joseph Hull, Quantitative Reasoning and the Environment: Mathemati-
cal Modeling in Context, Pearson Prentice-Hall, 2007; $93.33; xiv + 356 pp (P). ISBN 0-13-
148257-X.

In the recent college tradition of entrance requirements morphing into graduation requirements,
mathematics remediation has shape-shifted to a graduation requirement in QL/QR (quantitative
literacy/quantitative reasoning). Indeed, the MAA has a Special Interest Group on Quantitative
Literacy and has published several accounts about what it is, why it matters, and how to achieve
it. This book lives up to its title, in terms of both involvement with environmental issues and
fostering mathematical modeling. The first chapter, on measurements and units, has examples
featuring gasoline additives, oil spills, pH, and earthquakes; it begins with an account of Chi-
nese coal-fired power plants and the resulting mercury in the diet of the Inuit of Greenland.
Part 1 (“Essential Numeracy”) of the book treats units, scientific notation, ratios, percentages,
logarithms; Part 2 (“Function Modeling”) explores linear functions (including line of best fit)
and exponential and power functions (and fractals); Part 3 (“Difference Equation Modeling”)
introduces sequences, writing difference equations, solving recurrences, logistic difference
equations, and systems models; and Part 4 (“Elementary Statistics”) does the usual descrip-
tive statistics, normal distributions, and confidence intervals. All of this is done in the lively
context of an astonishing variety of environmental issues (ice cap melting, garbage disposal,
prairie dog survival, hurricane frequency, water use, manatee mortality, energy demand, mi-
croloans, airborne lead, measles) and concomitant modeling problems (equilibria, resource
harvesting, chaotic behavior, population dynamics, epidemics). I marvel at the magnificent
cornucopia of issues brought up, and I think students will be impressed that the mathematics
that they are learning can play a role. The exercises are rooted in real situations and use real
data; there are no pretend applications with made-up numbers. A supplementary Website at
www.enviromath.com contains data set files plus source material for chapter projects, includ-
ing maps, data, and TI calculator programs (and even field exercises). Of course, this would
make an outstanding textbook for a high school mathematics course, too.
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STEVEN R. DUNBAR

MAA American Mathematics Competitions
University of Nebraska-Lincoln

Lincoln, NE 68588-0658
sdunbar@maa.org

The MAA gave the 41st United States of America Mathematical Olympiad (USAMO)
and 3rd United States of America Junior Mathematical Olympiad (USAIMO) compe-
titions to 267 and 243 students respectively on April 24 and 25, 2012. The event was
conducted by the Committee on the American Mathematics Competitions. For the
third time, the USAJMO was offered for students in 10th grade and below, providing a
nicely balanced link between the computational character of the AIME problems and
proof-oriented problems of USAMO. Both Mathematical Olympiads contained three
problems for each of two days, with an allowed time of 4.5 hours each day. Problems
JMO1, JMO3 on Day 1, and problems JMO4, JMOS5 on Day 2 were different from the
USAMO problems, but JIMO2 and JIMO6 were the same as USAMO1 and USAMOS
respectively.

USAMO Problems
1. Find all integers n > 3 such that among any n positive real numbers a,, ay, . .., a,
with
max(ap, as, ...,a,) <n-min(a;, ds, ..., a,),

there exist three that are the side lengths of an acute triangle.

2. A circle is divided into 432 congruent arcs by 432 points. The points are colored in
four colors such that some 108 points are colored Red, some 108 points are colored
Green, some 108 points are colored Blue, and the remaining 108 points are colored
Yellow. Prove that one can choose three points of each color in such a way that the
four triangles formed by the chosen points of the same color are congruent.

3. Determine which integers n > 1 have the property that there exists an infinite se-
quence ay, az, as, . . . of nonzero integers such that the equality

ar +2ay + -+ +nay =0

holds for every positive integer k.
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4.

Find all functions f : ZT — Z* (where Z™* is the set of positive integers) such that
f(@m!) = f(n)! for all positive integers n and such that m — n divides f(m) — f(n)
for all distinct positive integers m, n.

Let P be a point in the plane of AABC, and y a line passing through P. Let A’,
B’, C’ be the points where the reflections of lines PA, PB, PC with respect to y
intersect lines BC, AC, AB, respectively. Prove that A’, B/, C’ are collinear.

For integer n > 2, let xy, x5, .. ., X, be real numbers satisfying
x1+x+--+x,=0, and x12+x§+'-~—|-xrzl:1.
For each subset A C {1, 2, ..., n}, define
Si = Zx,-.
icA
(If A is the empty set, then S4, = 0.)

Prove that for any positive number A, the number of sets A satisfying S4 > A is
at most 2"~ /A2. For what choices of x|, x5, ..., x,, A does equality hold?

Solutions

1.

2.

An integer n has this property if and only if n > 13.

For any n, suppose that ay, a,, . . ., a, satisfy max(ay, as, ..., a,) < n - min(ay,
a, ..., a,), and that we cannot find three that are the side lengths of an acute
triangle. We may assume that a; < a, < ... < a,. Then a7, > a7 + a7, for all
i <n—2.Let {F,} be the Fibonacci sequence, with F; = F;, =1 and F, | =
F, + F,_,. These numbers satisfy F,, < n> forn < 12 and F, > n” forn > 13 (the
last inequality being proved by induction). The inequality a? o > a? +a? 1 and the
factthata; < a, < --- < a, imply that al.2 > F; -al2 foralli < n.Hence, ifn > 13,
we obtain a?> > n? - a}, contradicting the hypothesis. This shows that any n > 13
has the required property.

Ifn <12, take aq; = /F;for1 <i <n.Thenl =a, <--- <a, =+/F, <n,
so max(ai, as, ..., a,) <n-min(a;, a, ..., a,), but no three a;’s can be the side
lengths of an acute triangle. Therefore no integer n < 12 has the property.

This problem and solution were suggested by Titu Andreescu.

We will use R, G, B, Y to denote the sets of Red, Green, Blue, Yellow points, re-
spectively, and r, g, b, y to denote generic Red, Green, Blue, Yellow points, respec-
tively. For any integer n with 0 < n < 431, we let 7, denote the counterclockwise
rotation of n steps—that is, (360n/432) degrees around the center of the circle.
Finally, for any set S, we let | S| denote the number of elements in S.

First, we claim that there is some index i such that |7;(R) N G| > 28. Indeed, for
every pair (r, g) consisting of one red point and one green point, there is a nonzero
n for which g = 7,,(r). There are 108> such pairs, and only 431 rotations 7, with
n # 0, so by the pigeonhole principle at least one of these rotations must satisfy
g = T,(r) for at least [108%/431] = 28 of the pairs (r, g). Call that rotation 7;.
Let RG denote the set of green points that appear in these pairs—that is, RG =
T:(R) N G, and let rg denote a generic (green) point in RG.

Second, we claim that there is some index j such that |'7;(RG) N B| > 8. Again,
for every pair (rg, b) consisting of one green point in RG and one blue point, there
is anonzero n for which b = 7,,(rg). There are at least 28 - 108 such pairs, and only
431 rotations T, with n # 0, so at least one of these rotations must play that role
for at least [28 - 108/4317] = 8 of the pairs. Call that rotation 7;. Let RGB denote
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the set of green points that appear in these pairs—that is, RGB = 7;(RG) N B, and
let rgb denote a generic (blue) point in RGB.

Third, we claim that there is some index k such that |7, (RGB) N Y| > 3. Again,
for every pair (rgb, y) consisting of one blue point in RGB and one yellow point,
there is a nonzero n for which y = 7,(rgb). There are at least 8 - 108 such pairs,
and only 431 rotations 7, with n # 0, so at least one of these rotations must play
that role for at least [8 - 108/4317 = 3 of the pairs. Call that rotation 7.

Finally, let y;, y», y3 be three points in 7;(RGB) N Y. Then

1, y2, y3),

(b1, by, b3) =T 1, ¥2, ¥3)s

(g1, 82, 83) = T; (b1, by, b3), and
-

(ri,ra,13) =T, (g1, 82, 83)

are twelve points that we are looking for.
This problem and solution were suggested by Gregory Galperin.

3. We will prove that the requested sequences exist for all # > 3. Bertrand’s Postulate
states that for every integer n > 1, there is a prime p such that n < p < 2n. It
implies the following lemma.

LEMMA 1. For every positive integer n > 5 there exist primes p and q such that
p<q<np<n<p’andqg <n <2q.

Proof. We treat the cases with n < 13 directly. When 5 < n < 8 we may choose
p=3andqg =5, and when 9 < n < 13 we may choose p =5and g = 7.

For larger n we apply Bertrand’s postulate to [n/2] to find a prime ¢ satisfying
[n/2] < g <2|n/2], and apply the postulate again to |n/4] to find a prime p
satisfying |n/4] < p < 2|n/4]. These ranges never overlap, so p < ¢, and the
prime g always satisfies ¢ < n < 2q. When n > 14 (or even when n > 12) the
prime p satisfies p < n < p?, and this completes the proof of Lemma 1. ]

A function f : Zt — Z* is a totally multiplicative function if f(mn) =
f(m)f(n) for all m,n € Z*. (Here, Z* and Z* denote the sets of positive in-
tegers and non-zero integers respectively.) In this case f(1) = 1 and f is uniquely
determined by its values at the primes.

LEMMA 2. For every integer n > 3 there exists a totally multiplicative function
f : Zt — Z*, such that:

J+2f2)+---+nf(n) =0. e))

Proof. If n = 3, define f(n) = (—1)%, where 3* is the largest power of 3 that
divides n. For example, f(3) = f(6) = —1 and f(9) = +1. Now

S +2f)+3fB)=1+2(1)+3(-1) =0
as required.
If n = 4, define f(n) = 2%(—7)#, where 2¢ is the largest power of 2 that divides
n and 37 is the largest power of 3 that divides n. Now

fFO+2fQ)+3fB)+4f@) =1+22)4+3(-7)+44)=0

as required.
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For larger n, we apply Lemma 1 to find primes p and ¢ such that p < g < n,
p<n<p*andq <n < 2q. Write (1) as

W=7 mf(m)

m<n

=| D> mfom) | +1pf(p)+2pf@p)--tpftp)l+af(@) (2

m<n,
ptm.qtm

with ¢ < p. Define f(m) = 1 for all m not divisible by p or g. Then (2) reduces to

tt+1)
w=| X mfon) | +—=——pf(P)+af@).
phmgim
Since gcd(@ P, q) = 1, Bezout’s theorem guarantees that we can choose f(p)
and f(q) in such a way that W = 0, thus proving Lemma 2. ]

Now for all n > 3, let a, = f(n). Then a, # 0 for all n, and for any positive
integer k

ap + 2ax + - +nay, = fk) +2f2k) + -+ nf(nk)
=fBfMD+2fQ+---+nfm)]=0

as desired.

If n = 2, the condition a; + 2ay, = 0 implies that a; = —2a, = 4a, = --- in-
dicating that a, is divisible by arbitrary large powers of 2. Therefore, no such se-
quence is possible when n = 2.

This problem was suggested by Gabriel Carroll. The solution was suggested by
student Xiaoyu He.

4. There are three solutions: the identity function and the constant functions 1 and 2.
Let us prove that these are the only ones. Consider such a function f and suppose,
first, that there exists a > 2 such that f(a) = a. Then a!, (a!)!, ... are all fixed
points of f. So there is an increasing sequence (ay)x>o of fixed points. If n is any
positive integer, a; — n divides a; — f(n) = f(ax) — f(n) for all &, and so it also
divides f(n) — n for all k. Thus f(n) = n and since this holds for any n, f must
be the identity function.

Now suppose that f has no fixed points greater than 2. From the hypothesis that
f)! = f(1!) we know that f(1) must be 1 or 2. Let p > 3 be a prime and ob-
serve that (p — 2)! = 1 (mod p) (by Wilson’s theorem), thus f(p —2)! — f(1) =
flp—2)) — f(1) is a multiple of p. As p > 3, the fact that p divides f(p —
2)! — f(1) implies that f(p —2) < p. Since (p — 1)! — f(1) is not a multiple of
p (again by Wilson), we deduce that actually f(p —2) < p — 2. On the other hand,
p —3divides f(p —2) — f(1) < f(p —2) — 1. Thus either f(p —2) = f(1) or
f(p—2)=p—2. As p—2 > 2, the last case is excluded and so f(p —2) =
f(1). This holds for all primes p > 3. Taking n any positive integer, we deduce
that p — 2 — n divides f (1) — f(n) for all large primes p. Thus f(n) = f(1) and
f 1is constant. We have seen that the constant mustbe f = 1 or f = 2.

This problem and solution were suggested by Titu Andreescu and Gabriel
Dospinescu.
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5. Itis easy to see (say by the Law of Sines) that

AC'  APsin ZAPC'  BA" _ BPsin/BPA' CB' _ CPsin ZCPB
BC'  BPsin/BPC'° CA’  CPsin/CPA”" AB =~ APsin ZAPB'’

The construction of A’, B’, C’ by reflections implies that
sin ZAPC'=sin ZCPA’, sin /BPC' =sin ZCPB', sin /BPC'=sin Z/CPB'.

Hence,

and the proof is complete by Menelaus’ theorem.
This problem was suggested by Titu Andreescu and Cosmin Pohoata. The solu-
tion was suggested by Li Zhou, Polk State College, Winter Haven FL.

6. This problem is a form of Chebyshev’s inequality for random variables. For each
set A C{l,2,...,n}, define

Ap=285,=) xi— Y. xizieunxi,
A i=1

icA iefl,2,...n}\

where €4(i) = 1ifi € A and —1 otherwise. Squaring, we have

Ai=D"xl+ Y ealiea(ixix;. 3)
i=1 i.je(l,...n}
i#]

Now sum the A?%’s over all 2" possible choices of A. For each pairi # j, there
are 2" 2 sets A with i, j € A, and another 2”2 sets with i, j ¢ A; each of these sets
contributes a term of +x;x; to the sum in (3). There are also 2"2sets Awithi € A,
j ¢ A, and 2"% sets with i ¢ A, j € A. Each of these sets contributes a term of
—x;x; to (3). Hence, x;x; appears 2"~ times with a + sign and 2"~' times with a
— sign. Therefore all of these terms cancel, and we find

Yo A =20 =2 4)
AC(1,2,...,n}

Now let A > 0. From (4), there cannot be more than 2"~2/A* terms A% with
value greater than or equal to 4. Hence, there can be at most 2”2 /A2 sets A such
that |S4| > A. (Recall that A, = 25,). Moreover, these sets can be arranged into
complementary pairs because S4 = —S|1,__.;\a. In each of these pairs, exactly one
of the two members is positive. Therefore there are at most 2”3 /A% sets A with
Sa > Al

For equality to hold, it must be the case that all positive values of A% are equal
to 4A2; otherwise we would again have a contradiction because the sum of all Ai
would exceed 2". In particular, all positive values of A% must be the same. Thus all
positive values of x, must be the same. This will be the case only if at most one of
the x; is positive and at most one of the x; is negative. Because we must have at least
one of each, there must be exactly one positive term and one negative term. Thus
it must be the case that one x; = ﬁ/ 2 for some k, one is x; = —V2 /2 for some
j # k, and all other x; = 0. Then the assumption that every positive A% = 4A2

yields A = v/2/2.
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Conversely, with the x; and A as described, we have exactly 2"~ = 2"3 /)2 sets
A such that x4, > A (namely, those sets A that contain the «/5/ 2 term and do not
contain the —+/2/2 term.) So these are exactly the cases in which equality holds.
This problem and solution were suggested by Gabriel Carroll.

USAJMO Problems

1.

Given a triangle ABC, let P and Q be points on segments AB and AC, respectively,
such that AP = AQ. Let S and R be distinct points on segment BC such that S lies
between B and R, ZBPS = /PRS, and ZCQR = ZQSR. Prove that P, Q, R, S are
concyclic (in other words, these four points lie on a circle).

Same as USAMO 1.
Let a, b, ¢ be positive real numbers. Prove that

a’ + 3b° +b3—|—3c3 +c3+3a3
S5a +b 5b+c S5c+a

2
> g(a2 + b+ ).

Let o be an irrational number with 0 < o < 1, and draw a circle in the plane whose
circumference has length 1. Given any integer n > 3, define a sequence of points
Py, P,, ..., P, as follows. First select any point P; on the circle, and for2 < k <n
define Py as the point on the circle for which the length of arc P;_; P, is o, when
traveling counter-clockwise around the circle from P,_; to P,. Suppose that P,
and P, are the nearest adjacent points on either side of P,. Prove thata + b < n.

For distinct positive integers a, b < 2012, define f(a, b) to be the number of in-
tegers k with 1 < k < 2012 such that the remainder when ak divided by 2012 is
greater than that of bk divided by 2012. Let S be the minimum value of f(a, b),
where a and b range over all pairs of distinct positive integers less than 2012. De-
termine S.

Same as USAMO 5.

Solutions

1.

We use the following lemma.

LEMMA. Given a triangle ABC, X,Y, Z are points on BC, CA, AB respec-
tively. Then three perpendicular lines of BC, CA, AB which go through X,Y, Z
respectively are concurrent if and only if AY? + BZ? + CX? = AZ? + BX* + CY2

Proof. If the lines are concurrent, let P be the point on the three lines. From
BX* — CX?* = (PB?> — PX?) — (PC? — PX? = PB? — PC? and so on, we ob-
tain the desired result. Conversely, if AY? + BZ% 4+ CX? = AZ%* + BX? + CY?
holds, let Q be the intersection the lines perpendicular to BC and CA which go
through X and Y respectively. Then as we have seen BX> — CX? = QB? — QC?
and CY? — AY? = QC? — QA? holds. Summing these equations, we have AZ? —
BZ? = QA? — QB?. This implies that QZ and AB are perpendicular, as desired. B

Let M be the midpoint of SR. We show that AP> + BM? 4+ CQ? = AQ? +
BP? + CM?. Since AP = AQ, CQ? = CR - CS, BP?> = BS - BR, and BM? —
CM? = (BM + CM)(BM — CM) = BC(BS — RC), we have (AP> + BM? + CQ?)
— (AQ*+ BP*+ CM?) =BC(BS —RC) —BS-BR+ CR-CS=BS-CR—CR-
BC = 0. Thus there exists a point O such that OP 1 BC, OQ 1 AC, OM 1 BC.
Then O is the center of a circumcircle of PRS, since the circle is tangent to AB at P.
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Similarly, O is the center of a circumcircle of QRS, which implies that P, Q, R, S
are on a circle.
This problem and solution were suggested by Sungyoon Kim and Inseok Seo.
3. We start by noting that (@ + b* + ¢*) > (ab + bc + ca), with equality only when
a = b = c. This follows from the identity

(a2+b2+c2)—(ab+bc+ca)=%[(a—b)2+(b—c)2+(c—a)2].

Now in the Cauchy-Schwarz inequality, (u] + u3 + u3)(v] + v3 +v3) > (ujv; +
UV, + u3v3)?, we can substitute u; = x;/ J/yi and v; = ,/y; to obtain the equivalent
form

2 2 2 2
X X X X1+ X+ Xx
_1+_2+_3>(1 2 3)_

yio oy ¥z yitytys
In the following calculation we apply the last result with the substitutions x; = a>
and y, = (5a® + ab), etc.

a’ b’ 3 a* b* ct

Satb Shtc Seta

542+ ab + 50 + be + 5¢2 4+ ca
N (@ + B* + )
T 5(a? 4 b* + ?) + (ab + bc + ca)
- (@® + b* 4 ¢*)?
T 5@+ b+ )+ (@ + D+ )

1
= —(@*+b*+ ).
6
An almost identical calculation shows that

303 N 33 N 3a3
Sa+b 5S5b+c¢c 5S5c+a

=

and combining these results gives the inequality in the problem.

Equality holds only if (a* + b* + ¢?) = (ab + bc + ca), which requires that
a=b=c.

This problem and solution were suggested by Titu Andreescu.

4. Observe that since « is irrational no two of the points will coincide. It will be useful
to define the auxiliary point Py such that the length of arc Py P, is «, when traveling
counter-clockwise around the circle from P, to P;. We begin by noting that for any
n > 3, if a + b = n then P, lies on the arc from P, to P, containing P,. For if we
travel back (clockwise) around the circle through a distance of ba from P, then we
reach P,. The same translation must map P, to P, and since P, is situated between
P, and P,, we deduce that P, must be also.

The claim is clearly true for n = 3. Now suppose to the contrary that for some
value of n we have a + b > n and consider the minimal such counterexample. If in
facta + b > n + 1, then we may translate the three points P,, P, and P, clockwise
around the circle through a distance « to find points P,_; and P,_; adjacentto P,_;
on either side. But then we would have (a — 1) 4+ (b — 1) > (n — 1) for this trio of
points, which contradicts our assumption that n was the minimal counterexample.
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Therefore we must have a + b = n 4+ 1. Again we translate points P,, P, and
P, clockwise around the circle through a distance « to obtain points P,_; and P,_;
adjacent to P,_; on either side with (¢ — 1) + (b — 1) = (n — 1). By our earlier
observation this implies that P, lies on the arc from P, | to P,_; containing P,_;.
But now translating forward again, we conclude that P, lies on the arc from P, to
P, containing P,, contradicting the fact that P, and P, were the nearest adjacent
points to P, on either side. This completes the proof.

This problem and solution were suggested by Sam Vandervelde.

5. For simplicity, we will define g(n) to be n (mod 2012). Note that g(ak) +
g(@a(2012 — k)) is either 0 or 2012; it is 0 exactly when 2012 divides ak. This
means that for 1 < k& < 1005, the number of elements i in {k, 2012 — k} such that
ai (mod 2012) > bi (mod 2012) is

0 if g(ak) =0or g(ak) = g(bk);
2 if g(bk) = 0 and g(ak) # 0O;
1 otherwise.

Let T ={1,2,...,1005}. Note that the condition g(ak) = g(bk) is equivalent to
g((a — b)k) = 0. We will try to choose a, b so as to maximize the number of num-
bers k in T such that the first of the three cases occurs. From the prime factorization
2012 = 2 - 2 - 503, the proper divisors of 2012 are 1, 2, 4, 503, and 1006. We shall
choose a and a — b to be multiples of some of these numbers. It is not hard to verify
that we can choose a to be a multiple of 1006 and a — b to be a multiple of 4. We
will take a = 1006 and b = 1002.

With this choice of a and b, the second of the three cases (i.e., g(bk) =0
and g(ak) # 0) never occurs, hence minimizing the number of elements i in
T — {1006} such that ai (mod 2012) > bi (mod 2012). Moreover, g(1006a) = 0,
meaning that g(1006a) > g(10065) does not hold. This means that our choice of
a and b minimizes f (a, b).

Note that g(1006k) = 0 occurs for 502 values in 7', and g(1006k) = g(1002k)
occurs for 1 value in 7. No value in T satisfies both condition. Hence S = 1005 —
502 — 1 =502.

This problem and solution were suggested by Warut Suksompong.

The top twelve students on the 2012 USAMO were (in alphabetical order):

Andre Arlsan 11 Hunter College High School New York, NY
Joshua Brakensiek 10  homeschool Chandler, AZ
Calvin Deng 11 North Carolina School Durham, NC
of Science and Mathematics
Xiaoyu He 12 Acton-Boxborough Acton, MA
Regional High School
Ravi Jagadeesan 10  Phillips Exeter Academy Exeter, NH
Mitchell Lee 12 homeschool Oakton, VA
Zhuo Qun (Alex) Song 9  Phillips Exeter Academy Exeter, NH
Thomas Swayze 11 Canyon Crest Academy San Diego, CA
Victor Wang 11  Ladue Horton Watkins High School  St. Louis, MO
David Yang 11  Phillips Exeter Academy Exeter, NH
Samuel Zbarsky 11 Montgomery Blair High School Silver Spring, MD
Alex Zhu 12 Academy for the Advancement Hackensack, NJ

of Science and Technology
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Ernest Chiu
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Courtney Guo
Steven Hao
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David Stoner
Ashwath Thirumalai
Jerry Wu

Isaac Xia
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9
10
9
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West Windsor Plainsboro High School
Canyon Crest Academy
International School of Beijing
Lynbrook High School
Monta Vista High School
Henry M Gunn High School
Unionville High School
Berkeley Math Circle,

University of California
Westview High School
South Aiken High School
Harker High School
Mission San Jose High School
Concord-Carlisle Regional High School
University of Colorado

Plainsboro, NJ

San Diego, CA
Beijing, China

San Jose, CA
Cupertino, CA
Palo Alto, CA
Kennett Square, PA
Berkeley, CA

Portland, OR
Aiken, SC
San Jose, CA
Fremont, CA
Concord, MA
Boulder, CO

53rd International Mathematical Olympiad

Problems (Day 1)

ZUMING FENG

Phillips Exeter Academy
Exeter, NH 03833
zfeng@exeter.edu

YI SUN

Massachusetts Institute of Technology

Cambridge, MA 02139
yisun@mit.edu

1. Given triangle ABC the point J is the centre of the excircle opposite the vertex A.
This excircle is tangent to the side BC at M, and to the lines AB and AC at K and L,
respectively. The lines LM and BJ meet at F', and the lines KM and CJ meet at G.
Let S be the point of intersection of the lines AF and BC, and let T be the point of
intersection of the lines AG and BC.

Prove that M is the midpoint of ST.

(The excircle of ABC opposite the vertex A is the circle tangent to the line seg-
ment BC, to the ray AB beyond B, and to the ray AC beyond C.)

2. Let n > 3 be an integer, and let a5, as, . .

aas - - -a, = 1. Prove that

(14+a)d+a3)’ - A +a)" >n".

., a, be positive real numbers such that
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3. The liar’s guessing game is a game played between two players A and B. The
rules of the game depend on two positive integers k£ and n which are known to both
players.

At the start of the game A chooses integers x and N with 1 < x < N. Player A
keeps x secret, and truthfully tells N to player B. Player B now tries to obtain
information about x by asking player A questions as follows: each question consists
of B specifying an arbitrary set S of positive integers (possibly one specified in
some previous question), and asking A whether x belongs to S. Player B may ask as
many such questions as he wishes. After each question, player A must immediately
answer it with yes or no, but is allowed to lie as many times as she wants; the only
restriction is that, among any k + 1 consecutive answers, at least one answer must
be truthful.

After B has asked as many questions as he wants, he must specify a set X of at
most n positive integers. If x belongs to X, then B wins; otherwise, he loses. Prove
that:

1. If n > 2%, then B can guarantee a win.

2. For all sufficiently large k, there exists an integer n > 1.99% such that B cannot
guarantee a win.

Problems (Day 2)

4. Find all functions f : Z — Z such that, for all integers a, b, c that satisfy a + b +
¢ = 0, the following equality holds:

f@?*+ f(b)* + f(©)* = 2f @ fb)+2f(B)f(c)+2f(c)f(a).

(Here Z denotes the set of integers.)

5. Let ABC be a triangle with ZBCA = 90°, and let D be the foot of the altitude from
C.Let X be a point in the interior of segment CD. Let K be the point on the segment
AX such that BK = BC. Similarly, let L be the point on the segment BX such that
AL = AC. Let M be the point of intersection of AL and BK.

Show that MK = ML.

6. Find all positive integers n for which there exist non-negative integers a,, as, . . ., a,
such that
1 1 1 1 n
271%—%—# +E_371+372+ +ﬁ:
Solutions

1. Notice that ZKAJ = % and that

A+B B A
/KGJ = ZMCJ — ZGMC = ZMCJ — ZKMB = T T3 =5
so /KAJ = ZKGJ, hence AKJG is cyclic. In particular, ZAGC = ZAKJ = 90°,
meaning that AG L GJ, so AG || ML. Now, CML is an isosceles triangle with alti-
tude CJ, so because AT || ML, ACT is isosceles with altitude LG. In the same way,
we can show that ABS is isosceles with altitude BF'.

Notice now that Z/SAT = A + ZSAB + ZCAT = A + % + %, where we have
used the fact that SAB and CAT are isosceles. On the other hand, we see that
/MGT = 90 + ZKGJ = 90 + ZKAJ = 90 + %, which implies that ZMGT =
ZSAT, hence SA || MG. Because G is the midpoint of AT, this implies that MG is
the midline of triangle AST, so M is the midpoint of ST.

This problem was proposed by Evangelos Psychas of Greece.
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2. By the AM-GM inequality, for every k with 2 < k < n, we have

Gaar= (s g Ly s e
M \k—1 T k=1 k—1 ") = -k

where equality holds if and only if a;, = ﬁ Multiplying these inequalities for each
k from 2 to n yields
33a; n'a,

22 (I’l _ l)n—l

=n"wmas---a, =n".

(I+a)(+a)’ (1 +a,)" > 2% -

Equality holds only if a; = k+] for each k, implying that a,as ---a, = ﬁ, an

impossibility for n > 3. Thus, the inequality is strict, as needed.
This problem was proposed by Angelo di Pasquale of Australia.

3. (1) Let T be the set of possible values of x given the answers to B’s questions. We
give a strategy for B to reduce |T| to at most 2%, upon which he can specify the set
T to guarantee a win.

Suppose |T| > 2k and let 1, 14, . . ., tyx be 2k + 1 distinct elements of 7. Let B
start by asking repeatedly about the set {f,x}. If A says no to the first k + 1 of these
questions, then t,« is excluded, reducing the size of T by 1.

If A says yes to any question, B stops asking about {z,«} and asks about the sets
Uy, Uy, ..., U, where

U; = {t; | j has a 0 in the ith digit in binary}.

Construct the binary number d = d_1dy_; - - - dy by d; = 0 if A said no to U; and
d; = 1 otherwise. If x were equal to #,, then A would have lied in her answers to
the previous k + 1 questions. So x # 7,. In this case also, B has reduced |T| by
one. He can repeat until || = 2* and then specify the set T to win.

(2) Let A be a real number with 1.99 < A < 2. Because A > 1.99, for sufficiently
large k, we have 1.99% + 2 < (2 — A)A**!. Choose n to be an integer so that 1.99% <
n < 1.99¥ 4+ 1, meaning that n 4+ 1 < (2 — A)AFH!,

Player A will choose N = n + 1 and an arbitrary x. Let m; () be the number of
consecutive answers, ending at the fth answer, which are inconsistent with x = i
fori =1,2,...,n+ 1, with m;(0) = 0. Define

n+1

L(t) =) _am®.
i=1

Player A will use the strategy of giving the answer which minimizes L (), irrespec-
tive of her choice of x. We will show that this is a valid strategy and that B can
guarantee that any number was not chosen by A.

We first show by induction that L(¢) < A**!. For the base case, we have L(0) =
n+1 < (2= 1A Suppose now that L(¢t) < A**!; if B asks about a set S, A
chooses between two possible values for L(t + 1):

Ll = |S|+ZA‘ml‘(l>+l, L2=(n+1—|S|)+Z)\.mi(t)+l.
igs ieS
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Recalling thatn + 1 < (2 — M)A and AL(1) < A**2, we have

n+1

Li+L, n—+1 1 ) n+1+AL(2)
— - )Lml(tH—l — )“k+l’
2 2 2; 2 =

so we see that L(¢ + 1) = min{L,, L,} < A**!, completing the induction.

It is therefore impossible for any m;(¢) to reach a value k + 1 or higher, so
m;(t) < k for all i and ¢. This means that A’s strategy never violates the rules.
Because A’s answers are independent of x, there is no number that B can guarantee
that A chose, so B cannot guarantee a win.

This problem was proposed by David Arthur and Jacob Tsimerman of Canada.

4. There are three classes of solutions, namely:

* for a fixed integer m, the function f(n) = mn?,

* for a fixed non-zero integer m, the function

0 ifniseven,

m ifnisodd, 2nd

o]

* for a fixed non-zero integer m, the function

0 ifn=0 (mod4),
f(n) =43 4m ifn =2 (mod 4),
m  if nis odd.

All of these functions satisfy the given identity. It remains to show they
are the only solutions. Setting a = b = ¢ = 0 in the identity yields 3 f(0)* =
6 f(0)2, hence f(0) = 0. Setting a = 0 and ¢ = —b in the identity yields f(b)> +
f(=b)> =2 (b) f(~b), hence (f(b) — f(~b))* = 0,50 f(b) = f(~b) for every
beZ.

Setting c = —a — b in the given and using the fact that f(—a — b) = f(a + b),
we obtain

f@*+ ) + fla+b)? =2f(@f(b)+2fb)f(a+b)+2f(a+Db)f(a)

Rearranging and factoring yields

(fla+b) = f@) = f(b)* =4f(@) f D). ey

Now, if f(a) = 0 for any a, then from (1) (or from the original identity) we
get f(a+b) = f(b) for every b € Z, so f has period a. If f(1) = O this means
that f is identically zero, and we have a solution in the first class. If f(2) = 1 the
periodicity means that f is in the second class. Otherwise we may assume that
f()=m #0and f(2) #0.

In this case applying (1) with a = b = 1 implies that f(2) = 4m, and then
applying (1) with @ = 2 and b = 1 implies that f(3) = m or f(3) = 9m. If
f(3) = m, then applying (1) with @ = 3 and b = 1 implies that f(4) € {0, 4m}.
On the other hand, applying (1) with a = b = 2 shows that f(4) € {0, 16m}. Be-
cause m is non-zero, this shows that f(4) = 0. Now the periodicity of f places it
the third class.

In the only remaining case, we have f(0) =0, f(1) = m, f(2) = 4m, and
£(3) = 9m. We claim by induction on n that f(n) = mn? for all positive integers
n. The base cases n = 0, 1,2, 3 hold by assumption. Suppose that f(£) = me?
for all £ < n and that n > 3. Now equation (1) with a = n and b = 1 implies
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that f(n + 1) € {(n + 1)*m, (n — 1)’>m}, while equation (1) with a =n — 1
and b = 2 implies that f(n + 1) € {(n + 1)*m, (n — 3)’>m}. Because n > 3,
(n —3)>m # (n — 1)>m, so we must have f(n + 1) = (n + 1)’>m, completing
the induction and placing f in the first class of solutions.

This problem was proposed by Liam Baker of South Africa.

5. Extend segment AX through X to a point E satisfying BE 1 AX. Extend segment
BX through X to a point F satisfying AF L BX. Let lines BE and AF meet at Y so
that Y is the orthocenter of triangle ABX.

It is easy to see that BDFY is cyclic, and so AD - AB = AF - AY by power of
a point. Consequently, using the fact that triangles ACD and ABC are similar, we
have AL> = AC*> = AD - AB = AF - AY. It follows that triangles AFL and ALY are
similar, implying that ZALY = ZAFL = 90° and YL*> = YF - YA. In exactly the
same way, we can show that ZBKY = 90° and YK* = YE - YB.

Because X is the orthocenter of triangle ABY, ABEF is cyclic, from which it fol-
lows that YF - YA = YE - YB by power of a point. Combining this with our previous
observations, we find that YL.> = YF - YA = YE - YB = YK?. Now, notice that YKM
and YLM are right triangles which share side YM and have YK = YL, so they are
congruent, implying that MK = ML.

This problem was proposed by Josef Tkadlec of the Czech Republic.

6. There exist such numbers ay, as, ..., a, ifand only if n = 1, 2 (mod 4).
We first show this is necessary. For a,, as, .. ., a, satisfying the conditions, let
M = max{a;,as, ...,a,} and let N = Y /_ i -3"% 5o that 3,1% + 3%2 4.+
= 3% which means that N = 3" is odd. Thus, we have

n
34n

1+2+...+n52i.3M‘“"=N51(m0d2),
i—1

which can happen only if n = 1, 2 (mod 4).

We now show that n = 1, 2 (mod 4) is sufficient. Call a sequence by, by, ..., b,
feasible if there exist nonnegative integers ay, d, . . ., a, such that
Lol oy Loy b ey
2a;  Qa 2an T 3a1 - 3a an
We wish to show the sequence 1, 2, ..., n, which we denote by «,, is feasible for

n=1,2 (mod 4). We first give a method of generating feasible sequences.

LEMMA. Let by, by, ..., b, be feasible. For non-negative integers u and v with
u + v = 3by, the sequence by, by, ..., by_1,u, v, by, ..., b, is feasible.

Proof. Letay,...,a, be exponents making by, ..., b, feasible, meaning that

1 1 1 1 1 _1
%—i_“.—'—zak% +27k+ 2ak+l+.'.+2ﬂn -
b, br—i by b1 by\
(E+".+3akl>+37k+(3ak+l+“.+3an =1

Observe that

1 1 d u v by
Dag+1 + Jar+l . Day an Jap+ + 3o+l 3a’
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so the previous relations show that

1 1 1 1 1 Y _,
2o U T 2 ) T oam T e T\ e Tt e )

b1 bk—l u v bk+1 bn -1
Tt )ttt e ) =

so the exponents ay, ..., ax_y,a; + 1,ar + 1, aryy, - . ., a, show feasibility. [ |

We induct on n to show that «, is feasible when n = 1,2 (mod 4). First,
for the base cases n = 1, 2, 5, 6, we may take the sequences of exponents to be
), (1,1, (2,2,2,3,3), and (2,2, 3, 3,3, 3), respectively. Now, suppose that
for some n > 9, «y is feasible for all k < n. If n =2 (mod 4), thenn — 1 =1
(mod 4), so «,_ is feasible by the inductive hypothesis. Applying the lemma

to a,_; with u = % and v = n, we see that «, is feasible. If » = 1 (mod 4),

then n — 7 = 2 (mod 4) with n —7 > 0 and ? > n — 7. By the inductive hy-
pothesis, «,_7 is feasible. Now, beginning with «,_7, we apply the lemma seven

times with (b, u,v) = ("—;5, %, n— 6), (%, %,n — 3), (%, %,n —4),
(=t =t n—1), (5 53, n), (52, %52, n = 2), and (%52, %52, n — 5) to obtain
that «, is feasible, completing the induction.

This problem was proposed by DuSan Djuki¢ of Serbia.

Results

The IMO was held in Mar del Plata, Argentina, on July 10-11, 2011. There were

548 competitors from 100 countries and regions. On each day contestants were given
four and a half hours for three problems.

On this challenging exam, a perfect score was achieved by only one student, Jeck

Lim (Singapore). The USA team won 5 gold medals and 1 silver medal, placing third
behind Korea and China. The students’ individual results were as follows.

Xiaoyu He, who finished 12th grade at Acton-Boxborough Regional High School in
Acton, MA, won a silver medal.

Ravi Jagadeesan, who finished 10th grade at Phillips Exeter Academy in Exeter, NH,
won a gold medal.

Mitchell Lee from Oakton, VA, who finished 12th grade (homeschooled), won a
gold medal.

Bobby Shen, who finished 11th grade at Dulles High School in Sugar Land, TX,
won a gold medal and placed third overall with a score of 39/42.

Thomas Swayze, who finished 11th grade at Canyon Crest Academy in San Diego,
CA, won a gold medal.

David Yang, who finished 11th grade at Phillips Exeter Academy in Exeter, NH,
won a gold medal.
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2012 Carl B. Allendoerfer Awards

The Carl B. Allendoerfer Awards, established in 1976, are made to authors of expos-
itory articles published in Mathematics Magazine. The Awards are named for Carl
B. Allendoerfer, a distinguished mathematician at the University of Washington and
President of the Mathematical Association of America, 1959-60.

P. Mark Kayll, “Integrals Don’t Have Anything to Do with Discrete Math, Do They?,”
Mathematics Magazine, 84:2 (2011), p. 108-119.

Mathematical work is often so highly specialized that mathematicians in one field
can find it difficult to understand research in other areas. These divisions are fre-
quently reflected in mathematics education where courses such as “Discrete Mathe-
matics” suggest the compartmentalization of discrete and continuous topics. However,
there are many examples of contemporary problems that combine disparate mathemat-
ical fields—such as algebra, geometry, topology, and combinatorics—or that connect
mathematics to seemingly unrelated disciplines, such as biology. It is in this context
that Mark Kayll enthusiastically reminds us that integrals do have something to do
with discrete mathematics.

The beauty of Kayll’s article lies in its exposition of some not-so-well known in-
tegral formulas for the number of perfect matchings in a graph. Deftly alternating
between discrete and continuous topics, the author expresses the number of perfect
matchings in a complete bipartite graph in terms of the gamma function. After this ini-
tial combination of the discrete and continuous, he expands his collection of improper
integrals with the introduction of rook polynomials and derangements. This develop-
ment of topics continues to a final full refutation of the author’s title, a proof that the
number of perfect matchings in a complete graph on n vertices is the nth moment of a
standard normal random variable.

Kayll’s well-written article provides us with engaging examples in which discrete
and continuous mathematics come together. It reminds us that elements such as the
gamma function are interesting in their own right, and it elegantly illustrates some of
the ways in which continuous mathematics can be used to study discrete concepts.
Enough details are included for the reader to follow the story, and comprehensive
references are provided for those who want to learn more. Readers will finish the
article with an increased appreciation of how surprising connections can exist between
the discrete and the continuous, and of how the teaching of these subjects as distinct
entities can be misleading to students.

Response from Mark Kayll. Thanks first to the citation author(s), whose kind words
suggest that my goals in writing the article were in some measure achieved. We’ve
all heard the phrase ‘it takes a village,” and my experiences with this paper bear
this out. The considered, constructive, and generous advice from both referees con-
tributed substantively to improving the manuscript. A few colleagues, particularly
Karel Stroethoff, also volunteered helpful and insightful input. Mathematics Maga-
zine editor Walter Stromquist masterfully guided me in further polishing the piece.
It was a privilege to work with these fine scholars—anonymous and otherwise—who
selflessly shared their wisdom.

Math. Mag. 85 (2012) 318-320. doi:10.4169/math.mag.85.4.318. (© Mathematical Association of America
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Finally, thank you to the MAA for valuing expository writing and to the selection
committee for finding the article worthy of merit. I feel both honored and delighted
to receive the Allendoerfer Award, especially since the paper began as an experiment.
(In a burst of eccentricity, I had even chosen a pseudonym, ‘Kal M. Karply’.) To see it
through to its final incarnation has been rewarding and humbling.

Biographical Note

Mark Kayll grew up in North Vancouver, British Columbia. After earning mathemat-
ics degrees from Simon Fraser University (B.Sc. 1987) and Rutgers University (Ph.D.
1994), he joined the faculty at the University of Montana in Missoula. He’s enjoyed
sabbaticals in Slovenia (University of Ljubljana, 2001-02) and Canada (Université de
Montréal, 2008—-09).

His publications fall in the discrete realm and have touched on combinatorics, graph
theory, number theory, and probability. Mark’s musical interests, such as playing the
banjo, have motivated him in recent years to develop a general education course on
mathematics and music for non-math majors.

He lives in Missoula with his wife, Jennifer (an excellent editor), and two beautiful
children, Samuel and Leah.

John A. Adam, “Blood Vessel Branching: Beyond the Standard Calculus Problem,”
Mathematics Magazine, 84:3 (2011), p. 196-207.

What optimality principles determine the structure of the arteries, veins, and capillar-
ies that comprise the human circulatory system? How reasonable are estimates that the
total length of all the blood vessels within the body is on the order of 50,000 miles?
This insightful and intellectually rich article offers an approach to these questions by
studying the flow, branching, and maintenance of this important biological tree. To
carry out his analysis, the author considers a sequence of increasingly sophisticated
models. The first of these models employs only standard calculus tools to determine
the optimal branching from a straight blood vessel to a nearby point. Later models use
techniques from the calculus of variations to optimize a configuration for a combina-
tion of flow and volume.

The author first lays the groundwork by discussing the underlying biological set-
ting, specifying his simplifying assumptions, and introducing some necessary equa-
tions from fluid dynamics. He then develops a sequence of models for blood vessel
branching based upon a series of ever more comprehensive “cost functionals.” The
most sophisticated of these models implies certain empirical laws for vascular branch-
ing proposed by Wilhelm Roux in 1878, and also yields estimates for the total length
of the vascular system.

This well-written article provides an excellent example of mathematical modeling
in a context that is accessible and of obvious importance. It clearly shows the inter-
action of appropriate mathematical techniques with relevant scientific principles and
illustrates the complexity of the modeling process. The reader is left with a deeper
understanding of the power of mathematics to shed light on natural phenomena.

Response from John A. Adam. I am delighted and honored to receive the Allendo-
erfer Award. After undergoing open-heart surgery in 1996, it is perhaps not surprising
that I started to develop an interest in the biophysics of the blood circulatory system!
However, it was not until more than a decade later that I returned to review my old
notes on the subject. In almost every calculus textbook these days there is an optimiza-
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tion problem about vascular branching, and as a result of devoting some class time to
this topic, my appetite was further whetted to see if more sophisticated (and accurate)
models of branching and bifurcation existed. Apart from a passing reference to empir-
ical ‘laws’ of branching (proposed by Roux in 1878), cited by D’ Arcy Thompson in
his 1942 book On Growth and Form (Dover edition 1992), I could find only a brief but
valuable summary by Rosen (1967). Consequently, I determined to try and reproduce
the stated results, and re-develop them in the more pedagogic context of ‘mathematical
modeling’.

I must point out that the paper in its final form owes much to the valiant ‘word-
smithing’ efforts of past Mathematics Magazine editor, Frank Farris, and current ed-
itor, Walter Stromquist. The paper was in pre-press status during the transition from
Frank’s editorship to that of Walter, so it was very thoroughly vetted by each one! I am
very grateful for their guidance and assistance.

Biographical Note

John Adam is Professor of Mathematics at Old Dominion University. He received his
Ph.D. in theoretical astrophysics from the University of London in 1975. He is author
of approximately 100 papers in several areas of applied mathematics and mathemati-
cal modeling. His first book, Mathematics in Nature: Modeling Patterns in the Natural
World, was published in 2003 by Princeton University Press (paperback in 2006). He
enjoys spending time with his family, especially his (thus far) five grandchildren, walk-
ing, nature photography, and is a frequent contributor to the Earth Science Picture of
the Day (EPOD: http://epod.usra.edu/).

In 2007 he was a recipient of the State Council of Higher Education of Virginia’s
Outstanding Faculty Award. He coauthored Guesstimation: Solving the World’s Prob-
lems on the Back of a Cocktail Napkin, published by Princeton University Press in
2008. More recently he has authored A Mathematical Nature Walk (2009, paperback
version in 2011) and X and the City: Modeling Aspects of Urban Life (2012), both
published by Princeton.
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