
Twinkling Lights 1

University of Hull
Department of Computer Science

C4DI
Using Coloured Leds

Vsn. 1.0 Rob Miles 2014

LED Light Limitations
We’ve seen led (light emitting diode) lights in action ever since we wrote our first program. The

Arduino output signals have enough power to light a single led. We can turn the led on or off, or

we can use pulse width modulation (turning the power on and off very quickly) to simulate varying

voltages and display different brightness levels.

However, this form of display is somewhat limited. We need a pin on the Arduino for every led

that we want to control. What’s worse, if we want to have different brightness levels on these leds

the program in the Arduino has to work quite hard to turn the signals on and off and make the

different analogue voltages.

What we really want is an led that is clever enough to be able to control its own brightness. The

Arduino would just tell it how bright the led was to be and then the led would shine at that level.

To make things even nicer we could perhaps ask for three leds (one red, one green and one blue) in

the package so that we could set any colour we like into the led. And, just to round this off it would

be nice to have a way we could put the lights into chains so that a single Arduino could control a

very large number of them from a single pin. Turns out that this has been done for us, in the form

of the Neopixel or WS2812 Integrated Light Source device.

The NeoPixel LED

A single NeoPixel device is absolutely tiny, as you can see.

They can be used in a daisy chain arrangement, with the

output of one linked to the input of the next. A single Arduino

pin can be used to control a very large number of lights in this

way. Software in the Arduino waggles the data line up and

down to signal the amount of red, green and blue the led is to

display. When one led has acquired its settings it then passes

the signal onto the next one in the chain, and so on.

You can buy NeoPixels in a variety of configurations

including panels of 64 leds, or as strips or rings. They are a

great way to add a bit of impressive lighting effects to your

projects. And they are very bright.

Each NeoPixel will consume around 60 milliamps if you fully light the red, green and blue

elements. I’ve found that you can run rings of up to 16 or so on an Arduino connected to the usual

computer USB power supply, but if you want more lights you will have to find an extra power

supply.

Twinkling Lights 2

Connecting NeoPixels to an Arduino

We are going to use a tiny strip of NeoPixels with three lights on it. If you like you can go

shopping and buy a much larger one.

You can connect the strip to the Arduino in the manner shown above. The strip needs power and

ground connections (you can use the ones on the Arduino for up to 16 or so leds) and the data

connection can be any of the digital pins on the Arduino. We can configure this in software.

Connect the strip of lights to your Arduino.

Installing the NeoPixel Library
We are going to use some software provided by AdaFruit, one of the companies that sell

NeoPixels. We need to load this library into our Arduino installation before we can use it.

1. Go to the library page https://github.com/adafruit/Adafruit_NeoPixel

2. Press the Download Zip button to download the

archive containing the libraries. Save the file in a sensible location.

3. You should have a file called Adafruit_NeoPixel-master.zip. Double

click it to open it.

4. Inside the zip archive you will find a folder called Adafruit_NeoPixel-
master. You need to copy this into the libraries folder in your Arduino

installation. You should find an Arduino folder in your documents folder.

This should contain a libraries folder, which is where we want to put the

NeoPixel library.

5. Drag the Adafruit_NeoPixel-master library from the zip archive into

the libraries folder. Then rename the folder to Adafruit_NeoPixel. When

https://github.com/adafruit/Adafruit_NeoPixel

Twinkling Lights 3

you have finished it should look a bit like this:

Now we can use the NeoPixel libraries in our Arduino programs. You only have to copy the

library files once. They can be used in any program that you create.

Turning on Lights
Now we can use the library to make our lights work.

#include <Adafruit_NeoPixel.h>

#define PIN 8

Adafruit_NeoPixel strip = Adafruit_NeoPixel(3, PIN, NEO_GRB + NEO_KHZ800);

void setup()

{

 strip.begin();

 strip.setPixelColor(0, 255, 0, 0);

 strip.setPixelColor(1, 0, 255, 0);

 strip.setPixelColor(2, 0, 0, 255);

 strip.show();

}

void loop()

{

}

This is a simple program that sets the colour of each led. The strip variable is created and told

the number of leds in the strip (in our case 3) and the Arduino pin that the strip is connected to (in

our case pin 8). We can then use the setPixelColor method to set a colour for each led on the

strip. The setPixelColor method (note the American spelling) is given the number of the led to

write to, followed by the amount of red, green and blue to be displayed. The maximum value is

255 (as bright as possible). If you set a value 0 this colour is not displayed.

Note that the display will not actually change until you call the show method.

1. Load the program into your Arduino and run it. The first led should be red,

followed by green and blue.

2. Change the program to make all the leds turn blue.

3. Try and make a traffic light display, red at the top, yellow in the middle and

green at the bottom. You might need to do some research to find out how to

make the yellow colour.

Twinkling Lights 4

Using Randomness to Make the Lights Twinkle
If we want to make something a bit more interesting we can set the lights to random colours. The

loop method in the previous sketch does nothing, so the display doesn’t change.

void loop()

{

 byte red = random(0,256);

 byte green = random(0,256);

 byte blue = random(0,256);

 strip.setPixelColor(0,red,green,blue);

 strip.show();

}

This loop method picks random values for red, green and blue and then sets the colour of the first

led to the random colour. Because the loop method is repeatedly called when the Arduino program

is running this should result in a flickering display.

1. Add the loop method above to your program and note what happens.

2. Is this any good?

3. Why not?

The twinkling doesn’t work very well because it is happening so quickly that we can’t see the

individual colours. We need a way of slowing things down so that we can see the lights. The delay

method can be used to make the program pause for a particular number of milliseconds

(thousandths of a second).

delay(300);

1. Add the call of delay to the loop method and run the program again. You

should now have a single twinkling star.

2. Improve the program so that the program picks a different random colour for

each of the lights.

Proper Twinkling Stars
Real twinkling stars don’t all twinkle at the same time. Otherwise we would call them “flashing”

stars. If we want to make something twinkle we have to add a bit more code.

void randomiseLed(byte ledNumber)

{

 byte red = random(0,256);

 byte green = random(0,256);

 byte blue = random(0,256);

 strip.setPixelColor(ledNumber,red,green,blue);

 strip.show();

}

I’ve started by adding a method called randomiseLed. This picks a random colour and then sets a

particular led to that colour. The number of the led to be set is passed as a parameter and is used in

the call of setPixelColor to determine which led is to be changed.

Once we have this method in place we can use it to control any of the leds:

Twinkling Lights 5

void loop()

{

 int control = random(0,500);

 if(control == 0) randomiseLed(0);

 if(control == 1) randomiseLed(1);

 if(control == 2) randomiseLed(2);

 delay(1);

}

This loop method picks a random number and then sets the colour of one of the leds if the value

matches one of them. The method also contains a delay statement that will cause it to wait 1

millisecond each time it runs.

The random number being generated is in the range 0 to 499. Each value has a 1 in 500 chance of

being generated. If the loop method is running 1,000 times a second (which it is because of the

delay) we should see the lights change once every half second.

1. Add the randomiseLed method and change the loop method to the one

above.

2. Run the program and see if you like the flickering effect. How would you

make the lights change more rapidly?

At this point you are on your own, and I invite you to experiment with different colour

combinations.

Rob Miles 2014

