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Malaria is caused by protozoan parasites belonging to
the genus Plasmodium. Four species account for almost
all human infections (P falciparum, P vivax, P malariae,
and P ovale). P falciparum causes the majority of
infections in Africa and is responsible for most severe
disease and mortality. P vivax and P ovale form resting
stages in the liver (hypnozoites) that, once reactivated,
can cause a clinical relapse many months after the initial
event. Malaria can be transmitted by several species of
female anopheline mosquitoes that differ in behaviour.
This contributes to the varying epidemiological patterns
of the disease seen worldwide. Because P vivax can
develop in mosquitoes at a lower temperature than can
P falciparum, its geographical range is wider. Figure 1
summarises the malaria life cycle. We present updated
information about the challenges and opportunities for
improved treatment and control.

After World War II, strenuous efforts were made to
eradicate malaria.1 Although these efforts were
successful over large geographical areas, they did not
succeed in tropical Africa or in many parts of Asia. The
subsequent primary health-care initiative, which placed
the main responsibility for malaria control on peripheral
health-care workers, was equally unsuccessful. In the
past few years, malaria has once again attracted more
attention with the establishment of several new
initiatives such as the Roll Back Malaria Partnership,2

partly because of increasing recognition that the malaria
situation in sub-Saharan Africa has deteriorated during
the past decade, for several reasons (panel 1).3 The
importance of climatic warming is debated.4,5 War and
civil unrest has led to an upsurge of malaria in many
parts of Africa where health services have broken down.6

Malaria and HIV interact in several ways; malaria could
adversely affect HIV infection by increasing viral load,7

whereas HIV increases malaria fevers8,9 and interacts
adversely with malaria during pregnancy.10 However, the
main cause of the worsened malaria situation recorded
in recent years has been the spread of drug-resistant
parasites, which has led to rising malaria-associated
mortality, especially in east Africa, even though overall
child mortality has fallen (figure 2).11,12

The burden of malaria
To estimate accurately how many people die from
malaria per year is important now that international
organisations are setting specific targets for control
programmes, but this measurement is difficult to
achieve.13 Most deaths from malaria occur at home, so
that information for these events can only come from
use of the post-mortem questionnaire technique, an
imprecise method. Attempts have been made to improve
the reliability of this approach that take into account the
sensitivity and specificity of the technique12 and combine
epidemiological, geographic, and demographic data.14

Most estimates suggest that malaria directly causes
about 1 million deaths per year or 3000 deaths a day, and
that most of these deaths occur in African children
(figure 3).14 Results of effective intervention studies
suggest that the true number could be even higher
because of indirect effects of the disease on nutrition
and other infections. 

Accurate determination of the extent of morbidity
caused by malaria is also difficult. Strenuous efforts are
being made to measure the morbidity due to malaria by
collation of all published reports and unpublished
records by groups such as Malaria Risk Across Africa
(MARA) and the Child Health Epidemiology Reference
Group (CHERG).14–16 The consensus is that about
0·5 billion clinical attacks of malaria take place every
year, including 2–3 million severe attacks (figure 3). In
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Malaria is the most important parasitic infection in people, accounting for more than 1 million deaths a year. Malaria

has become a priority for the international health community and is now the focus of several new initiatives.

Prevention and treatment of malaria could be greatly improved with existing methods if increased financial and

labour resources were available. However, new approaches for prevention and treatment are needed. Several new

drugs are under development, which are likely to be used in combinations to slow the spread of resistance, but the

high cost of treatments would make sustainability difficult. Insecticide-treated bed-nets provide a simple but

effective means of preventing malaria, especially with the development of longlasting nets in which insecticide is

incorporated into the net fibres. One malaria vaccine, RTS,S/AS02, has shown promise in endemic areas and will

shortly enter further trials. Other vaccines are being studied in clinical trials, but it will probably be at least 10 years

before a malaria vaccine is ready for widespread use. 

Search strategy and selection criteria

In addition to the review of key papers, we undertook
searches of electronic databases. For PubMed, the search
items were “malaria” restricted to the past 5 years, “malaria
and trial”, “malaria and pathophysiology”, “malaria and
diagnosis”, “malaria and vectors”, and “malaria and vaccines”
without a time restriction. The Cochrane database of
systematic reviews was searched by use of the term “malaria”.
Articles were selected on the basis of their effect on malaria
treatment or control. When more than one paper illustrated a
specific point, the most representative paper was chosen. 
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malaria-endemic areas, malaria infection in pregnancy
is believed to account for up to a quarter of all cases of
severe maternal anaemia and for 10–20% of low
birthweight babies.17,18 In addition to its direct effect in
infants, the disease could account for an additional
5–10% of neonatal and infant deaths based on its effect
on birthweight.19 Although most deaths from malaria
arise in Africa, which justifies the focus of control efforts
in Africa, evidence suggests that the number of clinical
episodes of P falciparum malaria is higher than that
widely quoted, and that morbidity due to malaria in Asia
has been greatly underestimated,20 including that due to
P vivax infections.

The effect of malaria extends far beyond these direct
measures of mortality and morbidity. Malaria can
reduce attendance at school and productivity at work
and evidence suggests that the disease can impair
intellectual development.21 Cerebral malaria can result
in persisting developmental abnormalities.22 The
economic effect of malaria is immense;23 estimations
during the past 35 years indicate that the yearly gross
national product (GNP) has risen 2% less in countries
where malaria remains highly endemic than in
countries with an otherwise similar background where

malaria does not occur,24 and that the disease costs
Africa about US$12 billion every year. The burden of
malaria falls disproportionately on poor and vulnerable
individuals25 and its social consequences are poorly
understood.26

Geographical information systems are being used to
estimate the prevalence of malaria in areas that have no
survey data by matching geographic features (obtained
by satellite or ground-based systems) with those in areas
where the epidemiological pattern of malaria is
known.14,27 These information systems are also useful for
the prediction of epidemics. Study of changes in global
climatic patterns, such as El Niño activity, can provide
medium-term warning of increased risk.28 At the local
level, new data-collection systems are being developed to
allow early detection of local outbreaks, thus providing
an opportunity for the rapid implementation of control
measures.29,30 

The parasite 
Malaria research has been transformed by the use of
molecular genetic techniques.31 An example of the value
of this investigative approach in the epidemiology of
malaria has been the demonstration that a cluster of
cases in Kapit (Sarawak, Malaysia) were caused by
infection with the monkey parasite P knowlesi, and not
with the morphologically similar P malariae as had been
previously thought (figure 4).32
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Figure 1: Life cycle of the malaria parasite 
Adapted from Good MF. Vaccine-induced immunity to malaria parasites and the need for novel strategies. 
Trends Parasitol 2005; 21: 29–34.

Panel 1: Reasons for deterioration of malaria control 

� Climate instability: droughts and floods can increase
malaria transmission in different epidemiological
circumstances

� Global warming: global warming can increase transmission
in some highland areas, but is unlikely to lead to a wide
geographical spread of malaria

� Civil disturbances: civil unrest results in the collapse of
malaria treatment programmes and crowding of refugees,
some of whom might come from non-endemic areas, which
enhances malaria transmission and can lead to epidemics

� Travel: increasing travel within endemic areas as well as by
travellers from non-endemic to endemic areas puts many
non-immune individuals at risk

� HIV: HIV increases susceptibility to malaria, raises the
burden on the health services, and reduces the number of
clinical staff available to treat malaria

� Drug resistance: drug resistance is probably the major cause
of the deteriorating malaria situation in Africa

� Insecticide resistance: resistance to pyrethroids (used to
treat bed-nets) has emerged in Anopheles gambiae in west
Africa and in An funestus in southern Africa. Resistance in
An gambiae is not yet severe enough to stop treated bed-
nets from being effective, but resistance in An funestus is
more substantial and had needed a change to DDT for
household spraying in southern Africa 
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Several studies have focused on genetic markers that
characterise parasite virulence. The best studied of these
is the P falciparum erythrocyte–membrane-protein-1
family that are responsible for antigenic variation and
for cytoadherence of parasitised erythrocytes to endo-
thelial cells and to cells of the placental syncytiotro-
phoblast. Parasites that cause severe malaria in non-
immune patients tend to express a small subset of these
proteins that differ from those expressed by parasites
that cause uncomplicated infections.33 There is also
increasing evidence for the virulence of another subset
of these variant proteins that mediate sequestration of
P falciparum in the placenta.34 More virulence proteins
are probably yet to be identified.35

Valuable information on the selection, transmission,
and clearance of drug-resistant parasites has been
obtained by the identification of molecular markers of
drug resistance.36,37 Resistance to the antifolate drug
combination sulfadoxine-pyrimethamine is linked to
three or four mutations in the dihydrofolate reductase
(dhfr) gene and to one or two mutations in the
dihydropteroate synthase (dhps) gene. Surprisingly,
these mutations have arisen infrequently and their
current widespread distribution is due to gene flow.38

Resistance of P falciparum to chloroquine is largely due
to mutations affecting the pfcrt and pfmdr1 genes that
have also arisen only infrequently but are now widely
distributed.39 Both chloroquine and sulfadoxine-
pyrimethamine have long half-lives; therefore, drug-
resistant parasites are at a selective advantage in
communities where these drugs are widely used.40,41

However, in the absence of drug use, resistant parasites

seem not to be as well transmitted as wild-type parasites.
Complete discontinuation of the use of these drugs
(although not easy to achieve) might allow them to
become useful again, especially if used in a
combination.42

Vaccination with polymorphic proteins could lead to
the selection of parasite populations that evade the
immune response induced by the vaccine; this event can
now be monitored by use of molecular techniques.43

Selection of parasite subpopulations was not reported in
a trial44 of the pre-erythrocytic vaccine RTS,S/AS02
(discussed in detail later), but was recorded in a small
trial45 of the blood-stage vaccine MSP (merozoite surface
protein)-2 in Papua New Guinea. 

Pathogenesis and clinical features of malaria
Although the clinical features of malaria have been well-
described, severe malaria (predominantly due to
P falciparum) is now known to be much more complicated
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Figure 2: Malaria mortality in Africa
Adapted from reference 12, with permission from Elsevier.
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Figure 3: Number of malaria episodes and complications occurring every year in children younger than 5 years
in sub-Saharan Africa and in African pregnant women
Numbers are in millions. Severe attacks in children include about 1 million cases of cerebral malaria and 4 million
cases of severe anaemia. Of children with clinical attacks, several thousand have neurological damage and up to
250 000 will have developmental problems. In pregnant women, low birthweight associated with anaemia is
thought to contribute to 100 000 infant deaths every year.

Figure 4: Blood film from a patient with malaria in Kapit, Sarawak
Trophozoites and schizonts of P knowlesi, morphologically similar to those of
P malariae, are shown.32
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than originally thought. The clinical pattern of severe
malaria differs between non-immune adults and semi-
immune African children in several ways, with organ
failure being more common in adults than children. The
two most frequent presentations of severe malaria in
African children are severe anaemia and cerebral malaria,
but respiratory distress is the most dangerous, especially
in combination with other syndromes.46

Cerebral malaria is the best-known form of severe
malaria. Carefully undertaken post-mortem and electro-
physiological studies in children have shown that this
disease is a heterogeneous syndrome in which
sequestration probably has a major role in some cases but
little in others.47,48 Metabolic derangement including
hypoglycaemia and subclinical convulsions are important
in many cases. Sequestration is probably more
consistently the cause in adults than in children.49 

Severe malarial anaemia (figure 5) also consists of a
group of conditions with different causes, including direct
destruction of parasitised red blood cells, indirect
destruction of non-parasitised red blood cells by immune
mechanisms, and bone-marrow suppression associated
with imbalances in cytokine concentrations.50

Pro-inflammatory cytokines such as tumour necrosis
factor (TNF), nitric oxide, and various metabolic products,
are associated with a poor prognosis in severe malaria, but
whether this association is always causal is unclear.51,52

Acidosis is a good marker of disease severity. Initially, this
event was thought to be due mainly to lactic acidosis but
(in adults at least) lactic acidaemia now seems to be only
one of several metabolic causes.53 In children, increasing
evidence has shown that tissue hypoperfusion has a
central role in disease severity; the relative importance of
hypovolaemia and anaemia are uncertain.54,55 Research in
this area is important, since fluid and (to a lesser extent)
blood replacement are the two adjunctive therapies that
are available even in poorly resourced hospitals. An
extensive search for other adjunctive therapies based on
current understanding of the pathophysiology of severe
malaria has not yet yielded any product of established
benefit, but further study is ongoing.

Diagnosis of malaria 
In tropical Africa, many patients treated for mild or severe
malaria do not actually have the disease,56,57 especially in
adults diagnosed as having cerebral malaria.58 Conversely
many cases of malaria are not diagnosed. Overdiagnosis
and consequent overprescription of antimalarial drugs for
the treatment of uncomplicated malaria was not a major
problem when chloroquine was used as first-line
treatment, since the drug was safe and cheap. However,
over-diagnosis has become a major issue now that drug
combinations, which are expensive and in relatively short
supply, are the preferred form of first-line treatment. The
issue of most concern for patients with severe febrile
illness is that treatable alternative diagnoses are being
missed. Good evidence now indicates that in Kenya,

mortality due to bacterial disease is underestimated in
febrile children.59,60 In adults living in areas where HIV
prevalence is high, much of the severe illness treated as
malaria is probably HIV-related, although this assumption
is not yet proven.61 Algorithms that attempt to differentiate
malaria from other causes of febrile illness in young
children using clinical features alone have not proved
sensitive or specific enough to guide treatment62 and,
where malaria is endemic but parasitological diagnosis
cannot be undertaken, children with fever should be given
antimalaria treatment according to Integrated Manage-
ment of Childhood Illness (IMCI) guidelines, even if
another diagnosis such as pneumonia is regarded as
likely. 

Accurate microscopy can be helpful in diagnosis, but
maintenance of the microscopes and the quality of
microscopy in peripheral clinics is difficult.63 Alternatively,
several rapid diagnostic tests based on antigen-capture
techniques have been developed that have high sensitivity
and specificity for falciparum malaria and that could
contribute greatly to improving malaria diagnosis in some
situations.64,65 However, these tests have limitations. In
highly malaria-endemic areas, many healthy individuals
have parasitaemia; thus, although a negative test rules out
malaria, a positive test does not prove that malaria is the
cause of illness. Another limitation of rapid diagnostic
tests is their cost. The introduction of artemisinin-based
combination therapy (ACT) probably will make rapid
diagnostic tests more cost-effective, but only if their use
leads to a substantial reduction in overprescription of
antimalarial drugs. 

Until recently, first-line treatment for falciparum and
vivax malaria was the same (ie, chloroquine) in poorly
resourced parts of Asia, such as Afghanistan, where both
infections are found and where diagnostic services are
scarce. Because P falciparum but not P vivax has become
highly resistant to chloroquine in many of these areas,
treatment for both infections is diverging and species
diagnosis has now become increasingly important.
Unfortunately, most rapid diagnostic tests do not detect
vivax infections, and those that do are expensive. 
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Figure 5: Gambian child with severe malaria anaemia
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Treatment of malaria
Although chloroquine is still the first-line treatment for
uncomplicated falciparum malaria in some countries, it
now fails almost everywhere. Resistance to sulfadoxine-
pyrimethamine has occurred in most countries where
the drug has been introduced to replace chloroquine,66

although not in all.67 Some form of combination
treatment is now clearly needed for the first-line
treatment of falciparum malaria in Africa and Asia,68 and
in some countries a switch to combination treatment is
well overdue. Combination therapy with drugs with
different modes of action is now the preferred approach
to malaria treatment to inhibit the emergence and
spread of parasites resistant to one component of the
combination. What combination of drugs should be
used and how can such treatment be afforded?
Combinations of drugs with similar half-lives are
desirable so that parasites are not exposed to one
component of the combination alone for long periods.

The most widely promoted combinations are ACTs
(table). A coformulated ACT, artemether-lumefantrine,
is already available with good efficacy data from Asia69

and promising effectiveness data from east Africa,70,71

although few published data support its use in some of
the areas where its use is being considered.72 A
combination of artesunate and amodiaquine works well
in areas where resistance to amodiaquine is modest.73 In
Africa, the addition of artemisinin to a drug that has
failed locally only leads to a failed combination.71,74

However, in southeast Asia, mefloquine resistance
might have been reversed by combination with
artemisinin.75 Not all effective combinations have to
contain artemisinin. The combination of amodiaquine
and sulfadoxine-pyrimethamine is still efficacious in
some areas of Africa where only moderate resistance to
these drugs exists,76 but will remain so only if the
component drugs are not used widely for monotherapy.

Although the current choice of ACTs is restricted, the
future is encouraging, with several new drugs at various
stages of development.77 Two have considerable promise.

First, the fixed-dose combination dihydroartemisinin-
piperaquine is already being used in much of southeast
Asia and has proved very efficacious.78 The second
treatment, which is being designed for the African
market where drugs must be cheap as well as effective, is
a combination of artesunate and chlorproguanil-
dapsone. The combination is cheap, well-tolerated, and
works well even in areas where sulfadoxine-
pyrimethamine has failed.79,80 Questions about the safety
of artemisinin in pregnancy81 and of chlorproguanil-
dapsone in those with glucose-6-dehydrogenase
deficiency are being addressed. Other new drugs,
including those that are modifications of existing
antimalarial classes and others with a novel mode of
action, are entering clinical trials and the prospects for
effective new treatments are much more encouraging
than they were a few years ago.77

The major obstacle to large-scale use of ACTs is their
cost; they are up to ten times more expensive than
current monotherapy, which is unrealistic in many
settings unless subsidies are introduced.82 A decision to
encourage most African countries to change to ACTs
simultaneously, irrespective of their immediate need,
has contributed to a short-term quadrupling in the cost

See Articles pages 1467 and
1474
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Non-artemisinin combinations
Quinine and sulfadoxine-pyrimethamine Used effectively in Europe and parts of Asia. Long treatment course, cost and side-effects make combination 

inappropriate for the African market
Quinine and doxycycline Similar to quinine and  sulfadoxine-pyrimethamine, mainly used where sulfadoxine-pyrimethamine resistance is a 

problem (eg, historically in Thailand)
Sulfadoxine-pyrimethamine and chloroquine Current policy used in some African countries, but is ineffective where resistance to both drugs is high
Sulfadoxine-pyrimethamine and amodiaquine Substantially more effective than sulfadoxine-pyrimethamine  and chloroquine in areas where amodiaquine 

resistance is low
Artemisinin-based combination treatments (ACTs)
Artemether-lumefantrine Currently the only internationally licenced coformulated ACT. Available in Asia and Africa
Artesunate and amodiaquine Currently copackaged. Adopted as policy by some African counties. Effective where amodiaquine resistance is low
Dihydroartemisinin-piperaquine Coformulated drug that has been used widely in Asia and is presently being assessed in a new formulation for 

licensing
Artesunate and mefloquine Mainstay of antimalarial drug policy in much of southeast Asia. Regarded as too expensive for the African market
Artesunate and sulfadoxine-pyrimethamine Treatment used in some Asian countries (eg, Afghanistan). Ineffective where sulfadoxine-pyrimethamine has failed
Dihydroartemisinin-napthoquine-trimethoprim New formulation used in China and Vietnam. Early reports are encouraging

Table: Examples of currently used combinations of antimalarial drugs 

Figure 6: Artemisinin suppositories for early management of severe malaria in a village in northern Ghana
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of artemisinins and a global shortage of raw materials.
High costs of ACTs have encouraged the production of
counterfeits.83 Synthetic versions of artemisinins (that
are being developed) could reduce costs,84 but in the
medium-term at least, improvement of the supply of
Artemisia and substantial subsidies for ACTs are the
only realistic options85 if ACTs are to be used widely in
the many parts of Asia and Africa where the treatment is
needed most. 

Many deaths from malaria occur in the community
before any contact is made with the formal health sector.
Several developments have the potential to improve this
situation. These advances include home-based manage-
ment that provides effective treatment as close to home
as possible,86 training of shopkeepers who sell drugs,87

packaging of drugs,88 and development of artemisinin
suppositories, which can be given to the community for
initial treatment of severe malaria before transfer to a
treatment centre (figure 6).89 Achievement of a good
balance between the provision of presumptive treatment
close to home (to ensure rapid treatment) and the
reduction in overprescription of increasingly costly
antimalarial drugs is a major challenge. 

Antimalarial drugs and the prevention of
malaria
Several million non-immune people travel to malaria-
endemic areas every year for business or pleasure, and
they need to be protected. The decision on the most
appropriate drug for particular travellers to take for
chemoprophylaxis needs a detailed knowledge of their
medical history and of the places they will visit.
Guidelines on chemoprophylaxis for travellers are
provided by several national and international
organisations.90,91 

Early studies in endemic areas showed that
chemoprophylaxis during pregnancy reduced the
incidence of severe maternal anaemia and improved
birthweight. In children, chemoprophylaxis lowered
mortality and morbidity from malaria substantially, but it
is difficult to sustain over long periods, could encourage
drug resistance, and could impede the development of
natural immunity.92 Thus, the discovery that sulfadoxine-
pyrimethamine given on two or three occasions during
pregnancy was more effective at preventing infection of
the placenta than chemoprophylaxis with chloroquine
was a breakthrough.93 Subsequent studies have shown
that this approach, now known as intermittent preventive
therapy in pregnancy (IPTp), protects against maternal
anaemia94 and low birthweight,95 especially in
primigravidae and secundigravidae, and its use in areas
of medium or high transmission is recommended by
WHO. Unfortunately, the efficacy of IPTp is reduced in
HIV-positive women.96 Whether IPTp with sulfadoxine-
pyrimethamine is effective through prevention of
infection or intermittent clearance of parasites from the
placenta is not known. This issue is important since

increasing resistance to sulfadoxine-pyrimethamine
makes the search more urgent for a safe and effective
alternative therapy. 

IPT has also been used to protect children. Two studies
undertaken in Tanzania97,98 showed that use of
sulfadoxine-pyrimethamine or amodiaquine at specific
times during the first year of life (IPTi) lowered the
incidence of malaria and severe anaemia without any
rebound in clinical malaria the following year.99 These
encouraging results have led to the creation of an IPTi
consortium addressing several important issues related
to the approach (panel 2).100

In areas where malaria is highly seasonal and affects
older children, a different approach to IPT is needed.
Preliminary results are encouraging from studies in
Senegal and Mali, in which antimalarial drugs were
given to children (younger than 5 years) at set times
during the short transmission season.101,102 IPT is also
being investigated as a means of protecting other groups
at risk, such as children with anaemia.103

Vitamin and mineral supplements have been used to
reduce the incidence of clinical attacks of malaria with
success for vitamin A,104 but with conflicting results for
zinc.105,106

Vector control 
The genome of Anopheles gambiae has now been
sequenced,107 providing opportunities for new, targeted
measures for control. For example, use of olfactory cues
by female mosquitoes to find their human hosts and
identification of odorant-binding proteins in the
antennae of mosquitoes that respond to components of
human sweat could lead to development of new types of
insect traps or repellents.108 A 20-year programme aims
to develop and release mosquitoes that are fully
refractory to Plasmodium. Although refractory strains
have been produced in laboratories, the challenge is to
find ways to drive resistance mechanisms into the wild
mosquito population, without the genetically altered

See Research Letters page 1481
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Panel 2: Key questions to be answered before IPTi can be
recommended for routine implementation 

� Is IPTi safe?
� Will the administration of drugs at the time of vaccination

impair the immune response to routine vaccines?
� Does IPTi require a longlasting drug and, if this is the case,

which drug could be used to replace sulfphadoxine-
pyrimethamine in areas where this drug is losing efficacy?

� What effect will IPTi have on the development of natural
immunity to malaria?

� Will implementation of IPTi encourage or discourage
parents from bringing their children for vaccination?

� Can IPTi be introduced into routine EPI (Expanded
Programme on Immunization [WHO]) clinics without
causing disruption? 
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mosquitoes being at a selective disadvantage and being
quickly eliminated.109 Alternative genetic modifications
that are lethal to female mosquitoes could be more
effective.110

Mosquito control has been at the centre of past efforts
to eradicate malaria, mainly through the use of the
insecticide DDT (dichloro-diphenyl-trichloroethane) for
indoor residual house-spraying. Notable successes were
achieved, but the programme was not sustainable.
Despite attempts to ban DDT completely, the compound
continues to be used for vector control although
arguments about issues such as the effect on preterm
births and the duration of lactation continue.111 In some
southern African countries (mainly those with unstable
patterns of malaria), indoor house-spraying with DDT,
carbamates, or pyrethroids, used alone or with ACTs has
substantially improved malaria control.112

Trials of insecticide-treated nets (ITNs) have
consistently shown reductions in overall child mortality
and in episodes of clinical malaria during a 1–2 year
period.113 In a major study in Kenya,114 there were
substantial health gains in both children and pregnant
women, and protection extended from homes with ITNs
to adjacent homes without nets.115 Encouragingly, use of
ITNs for 6–7 years has not shown a shift in child mortality
from younger to older children.116,117 Regular re-treatment
of nets with insecticide has proved difficult to sustain on a
large scale, especially if users are required to pay for it.
This problem should be overcome by the development of
longlasting insecticidal nets, in which insecticide is
incorporated into the net fibres. Different prototypes are
being produced, two of which have now been approved by
WHO and are undergoing large-scale production.118 In
emergency situations, insecticide-treated tarpaulins have
proved very effective (figure 7), and materials that have
long-acting insecticidal action are being developed for use
in this way. Repellents could provide useful protection
against malaria,119 especially in places where vector
mosquitos bite early in the evening. In such situations
they might add benefit to ITNs.

Inevitably, resistance to pyrethroids is emerging,120 but
progress is being made in the identification of alternative
insecticides that could be used to treat nets and other
materials.121 One approach to prevent insecticide
resistance is the use of mixtures or mosaics of
insecticides on nets. This method would be difficult to
sustain if repeated re-treatment of nets was needed, but
trials of this process would be worthwhile for longlasting
insecticidal nets. 

Despite the proven benefits and cost-effectiveness of
ITNs, achievement of widespread use has proved
difficult. In most sub-Saharan countries, only a small
percentage of individuals who should be protected by nets
actually use them.122 Full cost recovery for nets and
insecticides makes them unavailable to the most
vulnerable groups. Part cost recovery by use of vouchers
and often combined with social marketing123 solves the

problem to some extent. Free provision of ITNs,
sometimes linked to other initiatives such as vaccination
or attendance to antenatal clinics, has strong advocates124

and is gaining support, but this approach needs a major
and sustained commitment from international donors.125

Environmental management (including drainage of
breeding sites), improvements to house design, use of
larvivorous fish, and zooprophylaxis have proved effective
in some specific epidemiological situations but must be
based on detailed behavioural knowledge of the main
local vectors.

Malaria vaccines
Vaccine development against both falciparum and vivax
malaria is ongoing.126,127 The decision on which parasite
antigens are to undergo clinical development is difficult.
Criteria for development include evidence showing that
the antigen serves a function critical to the parasite, is
associated with naturally acquired immunity, or is
protective in animal models.128 

So far, most efforts have been directed at the
development of pre-erythrocytic stage vaccines designed
to prevent invasion of hepatocytes by sporozoites or to
destroy infected hepatocytes (figure 8). RTS,S/AS02A is
the most advanced pre-erythrocytic vaccine, and is a
hybrid molecule in which the circumsporozoite protein of
P falciparum is expressed with hepatitis-B surface antigen
(HBsAg) in yeast.129 The vaccine is given with AS02, a
complex three-component adjuvant. RTS,S/ AS02A has
provided substantial, short-lived protection in volunteers,
exposed experimentally to bites by infected mosquitoes,130

and substantial (71%) but only short-term protection in
naturally exposed, semi-immune adults from The
Gambia.131 Some protection was restored by one booster
dose of vaccine given the next year. In a subsequent trial
in Mozambican children,132 RTS,S/AS02A gave 30%
protection against the first clinical episode of malaria and
58% protection against severe malaria.

Comparison of different methods of immunisation with
pre-erythrocytic vaccines has shown that schedules that
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Figure 7: Insecticide-treated tarpaulins used for malaria prevention in a refugee camp in Sierra Leone (Tobanda)
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use different presentations of the same antigen for
different doses (prime-boost immunisation) are
especially effective in inducing T-cell responses.133,134

DNA, modified vaccinia and fowlpox vaccines encoding
identical DNA sequences of epitopes from pre-
erythrocytic antigens, and the entire sequence of the
thrombospondin-related adhesion protein (TRAP) have
undergone clinical trials. Several phase I studies have
generated data showing the safety and strong
immunogenicity of these vaccines.135 Results of a phase
IIb trial in semi-immune adult men in The Gambia were
disappointing,136 but additional trials based on this
strategy, including a phase IIb trial in Kenyan children,
are ongoing. 

The aim of blood-stage vaccines is to eliminate or
reduce the number of blood-stage parasites. Efforts to
develop blood-stage vaccines have focused mainly on
antigens contributing to erythrocyte invasion (figure 8).137

A combination vaccine of three blood-stage antigens
reduced parasite density in a strain-specific manner but
had no pronounced effect on the overall number of
clinical malaria episodes.45 Vaccines based on the blood-
stage vaccines MSP-1 and AMA (apical merozoite
antigen)-1 are currently undergoing clinical trials.

Multicomponent vaccines will probably be needed to
cope with the problem of antigenic polymorphism. An
alternative is whole-organism vaccines—sporozoite or

blood stage. Surprisingly a combination of very low doses
of infection and drug treatment gave complete protection
against challenge in volunteers.138

Transmission-blocking vaccines are designed to
prevent mosquitoes that feed on vaccinated individuals
from becoming infected, reducing transmission and
providing indirect protection to the entire population.139

Transmission-blocking vaccines against P falciparum
and P vivax are well in advance and phase I trials are
taking place. 

Malarial vaccine research has progressed rapidly over
the past few years, helped by the availability of more
funds and by improved organisation mediated through
organisations such as the Malaria Vaccine Initiative.140

However, it is likely to be at least a decade before an
efficacious vaccine is available for widespread use in
malaria-endemic countries.

Conclusions
There is no clear, single path to improve malaria control.
Such an approach will probably come from a series of
incremental steps involving better and more widespread
use of the methods that have already been shown to be
effective, as well as the step-wise introduction of new
treatments and partly effective control measures shown
to be of benefit.

Establishment of an effective malaria control
programme—eg, one based on ACTs for treatment of
diagnosed cases or on ITNs and IPTp for prevention—
costs about $2–5 per person per year, a month’s wages
for many average-sized families. Thus, if wide coverage is
to be obtained with these simple interventions, subsidies
will be needed for poor and vulnerable individuals. For
the first time, the international health community could
be prepared to make this possible. The formation of the
Global Fund Against AIDS, Tuberculosis and Malaria
was an important first step in this direction and the
group has committed nearly $1 billion to malaria control
for the next 2 years.141 It is essential that the international
community continues to support this initiative.

Although much more can be done with existing
measures, new methods for malaria control are needed.
Development of new antimalarial drugs or malaria
vaccines is not an attractive financial option for large
pharmaceutical companies. Thus, the creation of public-
private partnerships such as the Medicines for Malaria
Venture77 and the Malaria Vaccine Initiative,140 in which
major pharmaceutical companies can participate, is an
important step forward. New drugs, vaccines, and vector
control measures will need evaluation, both alone and,
increasingly, in combination, which will need innovative
research designs. Such studies, carried out to full
international standards will have to be done in malaria-
endemic areas. Currently few centres in endemic areas
have the infrastructure or staff to take this  on. Increased
investment in more centres and scientists from malaria-
endemic countries is urgent. 
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Figure 8: Malaria vaccines under development
CSP=circumsporozoite protein. TRAP=thrombospondin-related adhesion protein. LSA=liver-stage antigen.
EXP=exported antigen. ME=multiple-epitope string based on T-cell and B-cell epitopes of pre-erythrocytic stage
antigens. MSP=merozoite surface protein. AMA=apical merozoite antigen. EBA=erythrocyte-binding antigen.
RESA=ring-infected erythrocyte surface antigen. GLURP=glutamine-rich protein. Pf EMP=P falciparum erythrocyte-
membrane protein. Pfs 230 and Pfs 48/45=antigens located on the surface of P falciparum gametocytes. 
Pfs 25/Pfs 28 and Pvs 25/Pvs 28=antigens located on the surface of ookinetes of P falciparum and P vivax,
respectively.
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Major efforts are being made to develop new
procedures for malaria treatment and control. However,
these approaches will only achieve their maximum
potential if a functioning health-care system can deliver
them.142 Improved treatment throughout the malaria-
endemic areas of Africa will need a major increase in
staff numbers, provision of appropriate training, and
provision of sufficient monetary and non-financial
incentives to retain key staff in post. 
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