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Abstract: Concern about declining growth in crop yields has renewed debates about the ability 

of biotechnology to promote food security. While numerous experimental and farm-level studies 

have found that adoption of genetically engineered crops has been associated with yield gains, 

aggregate and cross-country comparisons often seem to show little effect, raising questions about 

the size and generalizability of the effect. This paper attempts to resolve this conundrum using a 

panel of United States county-level corn yields from 1980 to 2015 in conjunction with data on 

adoption of genetically engineered crops, weather, and soil characteristics. Our panel data 

contain just over 28,000 observations spanning roughly 800 counties. We show that changing 

weather patterns confound simple analyses of trend yield, and only after controlling for weather 

do we find that genetically engineered crops have increased yields above trend. There is marked 

heterogeneity in the effect of adoption of genetically engineered crops across location partially 

explained by differential soil characteristics which may be related to insect pressure. While 

adoption of genetically engineered crops has the potential to mitigate downside risks from weeds 

and insects, we find no effects of adoption on yield variability nor do we find that adoption of 

presently available genetically engineered crops has led to increased resilience to heat or water 

stress. On average, across all counties, we find adoption of GE corn was associated with a 17 

percent increase in corn yield. 
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Although agriculture has historically experienced one of the highest rates of productivity growth 

in the U.S. economy (Jorgenson, Gollop, Fraumeni, 1987), there is evidence that agricultural 

productivity growth is beginning to slow (Alston, Andersen, and Pardey, 2015; Alston, Beddow, 

and Pardey, 2009; Ray et al., 2012). The decline in productivity growth has coincided with 

concerns about food price spikes, social instability, increases in food insecurity, growing world 

population, drought, and climate change (Bellemare, 2015; Ray et al., 2013; Roberts and 

Schlenker, 2013; Schlenker and Roberts, 2009; Tack, Barkley, and Nalley, 2015). This 

confluence of problems has prompted interest in determining whether certain technologies can 

promote gains in crop yields, and none has been more controversial than biotechnology. 

 Many previous studies have investigated whether adoption of genetically engineered 

(GE) crops has increased yield (e.g., see reviews in Fernadez-Cornejo et al., 2014; Klümper and 

Qaim, 2014; National Academies of Sciences, Engineering, and Medicine (NASEM), 2016), and 

the consensus from the micro-level data and experimental studies is that adoption of GE crops, 

particularly insect resistant Bt varieties targeting the corn borer, have generally been associated 

with higher yield. However, ample skepticism remains, with high profile popular publications 

purporting that GE crops have failed to live up to their promise of yield increases (e.g., Foley, 

2014; Gurian-Sherman, 2009; Hakim, 2016). A variety of factors might explain the divergence in 

views about the yield effects of GE crops, but one of the main issues is that adoption of GE crops 

does not appear to have much effect on trend yields when investigating national-level yield data, 

(Duke, 2015) nor do yield trends appear much different in developed countries that have and 

have not adopted GE varieties (Heinemann et al., 2014). As the NASEM (2016) put it (p. 66), 

“the nation-wide data on maize, cotton, or soybean in the United States do not show a significant 

signature of genetic-engineering technology on the rate of yield increase.” This raises the 
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question of whether yield-increasing effects of GE crops observed in particular locations and 

experiments generalize more broadly, and if so, what are the mitigating environmental factors 

that lead to differential effects on crop yields?  

 In this paper, we show that simple analyses of national-level yield trends mask important 

geographic-, weather-, and soil-related factors that influence the estimated effect of GE crop 

adoption on yield. Coupling county-level data on corn yields from 1980 to 2015 and state-level 

adoption of GE traits with data on weather variation and soil characteristics, a number of 

important findings emerge. First, changes in weather and climatic conditions confound yield 

effects associated with GE adoption. Without controlling for weather variation, adoption of GE 

crops appears to have little impact on corn yields; however, once temperature and precipitation 

controls are added, GE adoption has significant effects on corn yields. Second, the adoption of 

GE corn has had differential effects on crop yields in different locations even among corn-belt 

states. However, we find that ad hoc political boundaries (i.e., states) do not provide a credible 

representation of differential GE effects. Rather, alternative measures based on soil 

characteristics provide a broad representation of differential effects and are consistent with the 

data. In particular, we find that the GE effect is much larger for soils with a larger water holding 

capacity, as well as non-sandy soils. Overall, we find that GE adoption has increased yields by 

approximately 18 bushels per acre on average, but this effect varies spatially across counties 

ranging from roughly 5 to 25 bushels per acre. Finally, we do not find evidence that adoption of 

GE corn led to lower yield variability nor do we find that current GE traits mitigate the effects of 

heat or water stress.  

 To be sure, there are other reasons beyond yield that led to the rapid adoption of GE 

crops in the US. GE corn was first grown commercially in the US in 1996. In just four years, a 
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quarter of the corn acres were planted with a GE trait and in less than ten years, adoption had 

spread to more than half the US corn acres. In 2016, 92 percent of US corn acres were planted 

with GE corn, with 81 percent of the total GE corn acreage being planted with “stacked” 

varieties that are both insect resistant and herbicide tolerant.  

Revealed preferences of US farmers indicate producer benefits over and above the 

substantially higher price of GE corn relative to conventional (Shi, Chavas, and Stiegert, 2010). 

The non-yield benefits have come in the form of labor savings, reduced insecticide use, and 

improved weed and pest control which has facilitated the ability to adopt low- and no-till 

production methods, alter crop rotations, and utilize higher planting densities (Chavas et al., 

2014 Fernadez-Cornejo et al., 2014; Klümper and Qaim, 2014; Perry, Moschini, and Hennessy, 

2016; Perry et al., 2016). Nonetheless, discussion of yield impacts of GE crops remains at the 

forefront of public discussions about whether and to what extent biotechnology can contribute to 

food security and help mitigate the effects of climate change. In response to the finding that GE 

adoption does not appear to alter national-level yield trends, the NAESM (2016) recommended 

research (p. 66), “should be conducted that isolates effects of the diverse environmental and 

genetic factors that contribute to yield.” Our objective here is to help fill this gap in the literature. 

 The next section reviews some of the research on the yield effects of GE crops, and we 

delineate our contribution to the literature. The third and fourth sections discuss the data and 

methods, followed by the presentation of results. The last section concludes. 

 

Background 

GE crops currently on the market do no increase yield per se. However, they can reduce the gap 

between actual and potential yield by reducing the adverse effects of weeds and insects 



4 

 

(NAESM, 2016). It is also possible that crops with GE traits can reduce yields if introduced into 

less productive varieties not ideally suited to a particular growing region (Shi, Chavas, and 

Lauer, 2013).  

 Figure 1 shows the national trend in US corn yield and the adoption of GE corn from 

1980 to 2016. The figure suggests, in the words of Duke (2014, pg., 653), “yields have continued 

to increase at the same rate as before introduction [of GE crops].” Leibman et al. (2014) similarly 

investigated aggregate yields and found after adoption of GE corn a small (0.5 bushes/acre) trend 

increase; however, no tests of statistical significance were performed. These sorts of aggregate 

comparisons make no attempt to control for potentially confounding factors.  

 

Figure 1. Trend in National U.S. Corn Yield and Adoption of GE Corn from 1980 to 2016. Blue 

circles represent observed yields, solid black line is linear yield trend, and dashed red line is percent of 

corn acres planted with GE corn; data are from USDA National Agricultural Statistics Service. 
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These aggregate investigations can be contrasted with the large (and now somewhat 

dated) literature from agronomic experimental studies that attempt to hold constant many factors 

such as location and germplasm. Nolan and Santos (2012) summarize the results of more than 30 

such studies mainly published between 2000 and 2003. None of the reviewed studies report a 

negatively statistically significant effect associated with Bt GE corn, and nearly all reported 

positive yield effects associated with Bt GE trait, with yield gains as high as 19 percent. In their 

analysis, Nolan and Santos (2012) combined datasets from multiple experiments conducted by 

ten different state agricultural extension services from 1997 to 2009. They found, after 

controlling for weather, agronomic inputs, management, and soil characteristics that planting of 

Bt GE corn led to yield gains of around 14 bushels/acre, although when the only GE trait present 

was herbicide tolerance, yield was unaffected or slightly negative. Despite finding that yield was 

affected by location, weather, and soil characteristics, the authors did not investigate whether 

these factors interacted with the GE effect (i.e., whether GE yield gains were higher or lower in 

different locations, in different weather patterns, or in different soils).   

As shown by Shi, Chavas, and Lauer (2013), however, there is likely ample heterogeneity 

in the effects of GE adoption on mean yield and on yield variance. Using experiment data from 

agricultural experiment stations in Wisconsin from 1990 to 2010, Shi, Chavas, and Lauer (2013) 

found GE traits had variable effects on corn yields, depending on the type of GE trait introduced 

and how long the trait had been used in production, with mean yields significantly increasing 

relative to conventional non-GE corn for some traits (namely Bt targeted at the European corn 

borer) and not others (namely, herbicide-tolerant only GE corn and GE corn with Bt targeted 

only at corn rootworm). Additional analysis of the same data by Shi et al. (2013) suggests some 

of the yield gains attributable to GE hybrids were a result of improvements in non-GE 
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germplasm. However, regardless of the GE trait analyzed, the authors found a consistent effect 

on yield variance, with GE crops reducing the variance of corn yields. The authors conclude that 

GE crops have helped farmers reduce their risk exposure.  

As was the case in Nolan and Santos (2012), Shi, Chavas, and Lauer (2013) did not 

investigate whether the yield effects of GE traits were affected by location, management 

practices, soil type, etc. However, there are reasons to believe the potential yield effects of GE 

are not uniform across location or time. Currently available GE traits rely on Bt to provide 

protection against the European corn borer and/or corn rootworm and/or are tolerant to certain 

herbicides (primarily glyphosate). While there are fewer agronomic reasons to suggest herbicide 

tolerance would convey significant yield benefits, insect resistance can plausibly lower the gap 

between potential and realized yield. As discussed in Noland and Santos (2012), conventionally 

applied insecticides only provide 60 percent to 80 percent protection against corn borer and 

rootworm, whereas Bt provides 100 percent protection. As such, the effect of Bt GE corn relative 

to conventional corn depends on pest pressure. It has long been known that corn borer and corn 

rootworm pressures are affected by soil characteristics and by weather (e.g., Beck and Apple, 

1961; Huber, Neiswander, and Salter, 1928; Turpin and Peters, 1971; MacDonald and Ellis, 

1990), and prior research has hinted at the fact that yield effects of Bt corn might depend on soil 

characteristics via their effects on insect populations (Ma, Meloche, and We, 2009). These are 

some of the reasons why temporal investigations of national corn yields before and after GE 

adoption and cross-country investigations of the impacts of GE corn are likely to provide 

misleading results, and these potential weather/pest confounders also motivate our investigation 

into the interaction effects between soil, weather, and GE corn adoption.  
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In a paper most similar to the present inquiry, Xu et al. (2013) used aggregate, non-

experimental data and found that GE adoption led to a 19.4 bushel/acre increase in corn yields in 

the central corn belt (Illinois, Indiana, and Iowa). What explains the contrast between the 

apparent lack of impact of GE adoption in aggregate trend yields shown in figure 1 and the 

results from Xu et al. (2013)? There are a variety of possibilities. For example, Xu et al. (2013) 

look at county (rather than national) yields, and they control for confounding factors related to 

weather and fertilizer use. However, it is unclear from Xu et al. (2013) what the impacts are of 

ignoring these factors. Moreover, these authors only considered limited geographic heterogeneity 

(they only explored central corn belt to non-central corn belt) and they did not consider other 

factors like soil characteristics or how weather and soil characteristics may influence GE-

adoption effects on yield. In addition, the authors did not consider the effects of GE adoption on 

yield variability. 

Another confounding factor that exists when exploring national yield trends is the fact 

that the number of acres planted to corn has increased significantly over the same period of time 

that GE traits have been adopted. For example, in ten years from 1980 to 1989 prior to adoption 

of GE corn, 75.7 million acres of corn were planted on average each year in the US By contrast, 

in the most recent ten year period from 2007 to 2016, during a period of near full adoption of GE 

trains, on average 91.2 million acres of corn were planted each year in the US, a 20.5 percent 

increase. Some of the acreage expansion is a result of GE adoption as GE traits have increased 

the viability of continuous corn (planting corn after corn rather than rotating with soybeans) 

(Chavas et al., 2014), a practice which has historically been associated with significant yield drag 

(Gentry et al., 2013). Ethanol policies, among other factors, also led to dramatic increase in corn 

prices over the period of GE corn adoption, which both increased the prevalence of continuous 
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corn (Hendricks et al., 2014) and led to expansion of corn onto acres which would previously 

have been considered marginal lands. Combined, these factors suggest national corn yields 

would have likely been much higher in recent years had it not been for the expansion of corn 

acreage. 

 

Data 

We utilize a large panel of roughly 28,000 yield observations spanning 819 counties from 1980-

2015. We chose 1980 as the starting point for the time series as this gives us a roughly equal 

number of years pre- and post-GE adoption, which started in 1996. Roughly 13,000 (45 percent) 

of the yield observations correspond to the pre-GE period. These data were collected via USDA 

National Agricultural Statistics Service (NASS) Quick Stats and correspond to total production 

divided by harvested acres in each county. As in Xu et al (2013), we omit any county where (i) 

more than 10 percent of harvested cropland is irrigated or (ii) yield data was reported for less 

than two-thirds of the pre-GE years or two-thirds of the post-GE years. Figure S1 shows that 

there exists extensive cross-section and temporal variation of yields. Note that all tables and 

figures with a leading “S” are contained in the accompanying supplementary material.  

 The limiting factor for the cross-sectional (spatial) representation of the data is the 

availability of GE adoption data. We utilize the same NASS data as Xu et al (2013), which 

reports GE adoption at the state-year level for 13 states: Illinois, Indiana, Iowa, Kansas, 

Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, Texas, and 

Wisconsin. These data were first recorded in 2000, for all but North Dakota and Texas which 

started recording in 2005, several years after adoption had already started to occur in some areas. 

We interpolate missing data using predictions from a generalized linear model with a binomial 
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family and a logit link function. A pooled model with state fixed effects provides similar 

predictions as separate models for each state. We use the latter here. Figure S2 provides the 

observed adoption data in addition to the predictions from both models used to interpolate 

missing values. Table S1 provides summary statistics for both the observed and observed-plus-

interpolated GE adoption rate variables. Figure S3 provides a spatial map of the in-sample 

counties studied in the analysis.  

 While our analysis focuses on identifying the effects of GE adoption on corn yields, it is 

likely that one must control for several sources of confounding factors in practice. For example, 

if the period of adoption post 1996 coincided with an abnormal run of good or bad weather 

conditions, then failure to control for weather could bias the estimate of the GE effect. Recent 

evidence suggests that this can be an important consideration for crop yield analyses (Tack, 

Barkley, and Nalley, 2015). We use the same weather data as in Schlenker and Roberts (2009) 

updated to 2015 to control for the influence of weather on corn yields. Daily outcomes on 

minimum and maximum temperatures at the county level are interpolated within each day using 

a sinusoidal approximation, and are then used to construct three degree-day variables: between 0 

and 10°C, 10 and 29°C, and above 29°C. Along with cumulative precipitation, these variables 

are aggregated across March-August. Figure S4 shows that there is extensive variation both 

cross-sectionally and over time for these variables.  

 Soil characteristic data are from the gSSURGO (Gridded Soil Survey Geographic) 

database created by NRCS (Natural Resources Conservation Service) and were also used in 

Hendricks (2016). Soils are aggregated to the county level using only the area in the county 

classified as cropland according to the National Land Cover Database. One measure of soil 

quality that we consider is water holding capacity (measured in mm), which is the total volume 
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of plant-available water that the soil can store within the root zone and is calculated as a 

weighted average across the county. Figure S7 provides a spatial map of the water holding 

capacity across counties, which has a wide range from near zero to just over 300 mm and a 

sample average value of 216 mm. Another measure we consider is a grouping of soil types based 

on the soil texture of the county. This is calculated as the dominant soil texture classification 

within the county, and includes nine different soil types: clay, clay-loam, loam, loamy-sand, 

sand, sandy-loam, silt-loam, silty-clay, and silty-clay-loam. Figure S8 provides a spatial map of 

these soil types by county.  

 

Empirical Model 

We assume that the effect of GE adoption on corn yields is identified using the regression model 

 * ( , )ist it ist isty A f     x γ   

where isty  are corn yields (bu/acre) in county i, state s, and year t. The variable *

itA  is the 

unobserved GE adoption rate at the county-year level and is measured as the fraction of acreage 

planted to GE varieties. The parameter of interest is  , which measures the effect of GE 

adoption on corn yields. We discuss the implications of only observing adoption rates at the 

state-year level in the next section. We also include a vector of control variables istx  that include 

county-level fixed effects, state-level trend variables, and weather variables that are measured at 

the county-year level. 

 Our identification comes from two different sources of variation. First, the effect is 

identified from differences in yield over time as GE adoption has increased, controlling for state-

specific yield trends and weather. Second, the effect is identified from differences in yields from 

the county-specific average - adjusted for the state-specific trend - between counties that had 
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different levels of GE adoption. Alternatively, we could include year fixed effects and our source 

of identification would be the change in yields between counties with different changes in 

adoption rates of GEs. We do not include year fixed effects because it precludes the use of pre-

adoption data as a counterfactual for post-adoption data and thus exploits a very narrow source 

of variation in GE adoption.  

 

State-Level Adoption Rates  

One of the main concerns in identifying  is that data on GE adoption is only available at the 

state level, thus the variable that we actually observe is stA . This can be cast as a measurement 

error problem where the true unobserved measure *

itA  is related to our observed measure stA  by 

 *

it st iA A v    

where iv  denotes the county-specific measurement error relative to the state-level aggregate. 

This formulation is quite general as it allows for county-specific adoption rates to either lead or 

lag the state level aggregate and only requires that a specific county is always one or the other; 

i.e. a county cannot be an initial leader of GE adoption and then lag behind later in the sample. 

Note that measurement error is only a concern during the period of adoption when (0,1)stA   

since *

itA  and stA  are necessarily both equal to zero prior to adoption and both equal to one at full 

adoption. This implies a slight modification of the measurement error expression to     

 *

it st i stA A v d    

where std  is a dummy variable equal to one when (0,1)stA  , and zero otherwise.  

Substituting this expression into the regression model and rearranging gives 



12 

 

 
( , )ist st ist ist

ist i st ist

y A f u

u v d

 



   

 

x γ
  

where we have abused notation slightly by replacing iv  with just iv  in the second equation. 

The error term istu  is a composite random variable. Note that this source of measurement error is 

non-classical in the sense that it does not induce bias in our estimate of δ as long as the iv  are 

independent from the regressors stA  and istx . However, the measurement error does induce serial 

correlation of the error terms on a subsample of the data. Defining the set of years in each state 

for which adoption is between zero and one as { : (0,1)}A

s stt t A  , the serial correlation between 

any two arbitrary years t  and t  is given by 
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Thus, the in-sample measurement error induces serial correlation in the errors only when both 

periods are in the adoption phase of the data.  

 We use the two-way clustering approach of Cameron, Gelbach, and Miller (2012) to 

account for multiple sources of correlation in the errors. The first dimension of clustering is 

accomplished by using a county-by-adoption-phase grouping scheme such that each county is 

split into two groups, one when 0std   and another when 1.std   This clustering accounts for 

potential serial correlation resulting from the measurement error of the state-level adoption 

variable. The second dimension of clustering is by year in order to account for the presence of 

spatial correlation in the errors ( ist ) driven by the spatial similarity of residual weather shocks 

not accounted for in the model across counties within each year. We interpret this approach as 
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being robust to heteroscedasticity, spatial correlation of the error terms across counties, and 

serial correlation of the errors within each county both within and outside of the adoption period. 

 

Importance of Controlling for Weather 

It is worth noting that the need to control for weather is important if the exposure differs between 

the pre- and post-GE subsamples in the data (or if weather was relatively good or bad in counties 

that adopted more rapidly). In theory, if one were to observe a large enough frequency of 

weather outcomes in both periods such that average weather exposures were similar, then one 

would not need to control for its influence. In practice, weather may bias coefficients in samples 

where the number of time periods is not large. We investigate this possibility by comparing 

precipitation and extreme heat exposure (degree days above 29°C) in both periods, i.e. pre and 

post 1996. For each county, we calculate the percentage difference in the average precipitation 

and extreme heat variables across periods and report these values in Figures S5 and S6. 

Precipitation was roughly 4 percent higher in the post-GE period on average across counties. 

However, this masks a large amount of heterogeneity as county-level differences ranged from -

15 to 21 percent. Similarly, the occurrence of extreme heat exhibited a large amount of 

heterogeneity as differences as large as -63 and 22 percent spanned an average value of -20 

percent. This suggests that controlling for weather is important, and must be done at a local level. 

It would not likely be properly accounted for using spatially aggregated measures of weather 

shocks at the regional or national level, nor using crude measures such as year fixed effects. 
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Heterogeneous Yield Response 

We also consider models of the form  

 ( , )ist g st ist isty A f u    x γ   

where we are now allowing the parameter of interest   to vary across different subsections of 

the data represented by groupings g. We interact the GE adoption variable with the weather 

variables that are a subset of the variables in istx  to investigate whether GE varieties are more or 

less susceptible to certain weather outcomes. We also consider several models of cross-sectional 

heterogeneity, each based on a different assignment of the county to a group. The first utilizes a 

grouping based on the state each county is in, while the other two assign each county to a group 

based on measures of soil quality. The first measure of soil quality defines groups based on the 

percentiles of the observed water holding capacity variable: 0-10
th

, 10
th

-25
th

, 25
th

-50
th

, 50
th

-75
th

, 

75
th

-90
th

, and 90
th

-100
th

. The second defines groups based on the dominant soil texture in each 

county.  

 

Results 

We report estimates for three classes of models in this section. The first section provides 

estimates for a class of models that assume a homogeneous GE effect across counties. The 

second class of models maintains this homogeneity assumption but reports estimates for models 

of the higher order moments of the corn yield distribution. The final class of models relaxes the 

homogeneity assumption and allows the GE effect to vary across weather outcomes and county 

groupings. All models are estimated using OLS with standard errors clustered using the two-way 

approach discussed above.  
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Homogeneous GE Effect  

Table 1 reports parameter estimates for five models that sequentially include additional control 

variables. In the absence of any controls, the estimated GE effect is 43 bushels per acre. 

However, it is clear that this estimate is confounded by the absence of a trend variable which, 

when included, changes the estimate to -8 bushels per acre. This sensitivity is expected as the 

increase in GE adoption has coincided with many other production innovations that have 

increased productivity over time. Failure to account for this source of variation in the data 

confounds the estimate. The next model adds county fixed effects to the model, and the estimate 

becomes positive but is not statistically significantly different from zero at conventional levels. 

In addition, the estimate of the time trend parameter is also sensitive to the inclusion of these 

fixed effects as it decreases from 2 to 1.5 bushels per acre per year. It is clear that controlling for 

county-specific time-invariant yield drivers such as soil quality is an important consideration for 

estimating productivity gains. The next model includes the precipitation and weather variables, 

and again we see a sensitivity of the estimates as the GE effect increases and becomes 

statistically significant at the 1 percent level and the trend reduces to 1 bushel per acre per year.  
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Table 1. Regression results: impacts of GE adoption on corn yield (bushels per acre) 

  Model 1 Model 2 Model 3 Model 4 Model 5 

Variables 
     

GE adoption rate 43.36*** -7.648 6.547 18.15*** 18.26*** 

 
[7.116] [11.17] [12.15] [6.546] [6.748] 

Time trend 
 

2.000*** 1.506*** 1.008*** 0.943*** 

  
[0.393] [0.413] [0.206] [0.208] 

Precipitation (mm) 
   

1.652*** 1.596*** 

    
[0.363] [0.363] 

Precipitation squared (mm
2
) 

   

-

0.0146*** 

-

0.0142*** 

    
[0.00328] [0.00327] 

Degree Days 0-10°C 
   

0.0216 0.0181 

    
[0.0262] [0.0263] 

Degree Days 10-29°C 
   

0.0159 0.0176 

    
[0.0155] [0.0143] 

Degree Days above 29°C 
   

-0.590*** -0.591*** 

    
[0.0868] [0.0808] 

County fixed effects N N Y Y Y 

State-specific trends N N N N Y 

R-squared 0.171 0.234 0.649 0.781 0.792 

Out of Sample RMSE (% Reduction) -- 3.89 32.8 46.9 48.8 

Observations 28,628 28,628 28,628 28,628 28,628 

Counties 819 819 819 819 819 

Years 36 36 36 36 36 

Notes: The reported coefficient estimate for the time trend variable under model 5 is the simple average of the 

state-specific estimates. The out-of-sample prediction comparison reports the percentage reduction in the root-

mean-squared prediction error (RMSE) for each model compared to the baseline model 1 that does not include 

any control variables. Each model is estimated 1,000 times, where each iteration randomly selects 80 percent of 

the sample observations. Relative performance is measured according to the accuracy of each model’s prediction 

for the omitted 20 percent of the data. Two-way clustered standard errors by year and county-adoption are 

reported in square brackets. *, **, and *** denote statistical significance at the 10, 5, and 1 percent levels.  

 

The final model allows the time trend parameters to vary across states and we find that 

the GE estimate has stabilized across this additional generalization. Both the in-sample fit and 

the out-of-sample prediction accuracy of the models steadily increases as we include additional 

control variables in the model. In addition, we perform an omitted variable bias test following 

the approach of Hendricks, Jansen, and Smith (2015) for the full set of control variables and 

reject equality of the GE estimate between models 1 and 5 (p-value 0.0007). Further supporting 
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this finding that control variables matter, we reject the null of equality for the state-specific trend 

estimates (p-value 0.000) and reject the null that the weather variable estimates are jointly zero 

(p-value 0.000). Thus, under an assumption of a homogenous GE effect, we find that the 

introduction of GE corn has increased yields by approximately 18 bushels per acre. This 

represents a roughly 17 percent increase in yields relative to the five-year average yield prior to 

the introduction of GE traits.   

 

Higher Order Moment Effects of GE 

We next consider whether GE adoption has influenced the higher order moments of the corn 

yield distribution using a moments-model approach (Antle 1983, 2010; Just and Pope, 1978). 

Specifically, we estimate both the variance and skewness of the yield distribution using the 

squared and cubed residuals from the preferred model from the previous section (Table 1, model 

5). These transformed residuals are then regressed on the same set of covariates as the preferred 

model. Under expectation of the dependent variable, these models provide linkages between the 

GE adoption and control variables on the variance and skewness of the yield distribution. 

 The parameter estimates for these models are reported in Table S2. We find no evidence 

that GE adoption has affected the variance or skewness of the yield distribution as the estimates 

are not statistically significant at standard levels. However, taken in conjunction with the results 

revealing increases in mean yields, our results suggest that GE adoption has led to a reduction in 

yield risk as it has increased yields without a proportionate increase in the standard deviation; 

that is, the coefficient of variation has decreased. Importantly, the estimate for the time trend 

variable implies an increase in yield variance over time, suggesting that it is an important control 

variable for studies to consider when estimating yield risk implications of GE. Although not 
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reported here, when the time trends are dropped from the model, the estimate of the GE effect on 

yield variance becomes positive and significant at the 10 percent level (p-value 0.096). 

 

Heterogeneous GE Effect  

Results for joint hypothesis tests for the heterogeneous models are reported in Table S3, where 

the p-values correspond to a null hypothesis of a homogenous GE effect. The first three models 

explore interactions between the weather variables and GE adoption. We find no evidence of 

these interactions for precipitation alone, temperature alone, nor precipitation and temperature 

combined. Thus we conclude that, while ignoring weather severely biases the estimated effect of 

GE corn adoption, the performance of GE varieties is not likely dependent on particular weather 

outcomes occurring.  

 The next set of heterogeneity models that we consider assign each county to a particular 

group. We first use state boundaries to define the grouping and estimate the heterogeneous 

effects by interacting dummy variables for each state with the GE adoption variable. We fail to 

reject the null of a homogeneous effect at standard significance levels (p-value = 0.1117), 

however Figure S9 provides a spatial map of these estimates and suggests that there are 

potentially large differences in effects across regions. A simple average of the estimates is 19.1 

and they range from 5.5 to 27.5 bushels per acre. 

 To further explore potential spatial heterogeneities, we assign each county to one of six 

groups based on the soil’s water holding capacity. The groups correspond to different percentiles 

of the empirical distribution of observed values (1: 0-10
th

 percentile, 2: 10-25
th

 percentile, 3: 25-

50
th

 percentile, 4: 50-75
th

 percentile, 5: 75-90
th

 percentile, and 6: 90-100
th

 percentile). We 

interact dummy variables for each group with the GE adoption variable, and we find evidence 
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that this pattern of spatial heterogeneity is supported by the data as a joint hypothesis test 

suggests rejecting the null of a homogeneous effect at standard significance levels (p-value = 

0.0000). The parameter estimates are reported in Table S4 and Figure 2 provides a spatial map of 

the impacts by county. The county-level estimates have an average value of 18.4 and they range 

from 12.5 to 25.1 bushels per acre. It is clear from the map that there exists substantial within-

state variation of the GE effect that the state-specific heterogeneity model is not capable of 

capturing. Figure S10 plots the range of county-level GE effects within each state along with the 

average value within that state, and shows that there exists a broad range of over 10 bushels per 

acre within most states. This insight is consistent with the state-specific model’s failure to reject 

the null of a homogeneous effect, as the spatial heterogeneities are not being driven by ad hoc 

political boundaries but rather the localized growing conditions. 
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Figure 2. Impacts of GE Corn Adoption (bushels per acre) by Counties’ Soil Water Holding 

Capacities. Each county is assigned to one of six groups based on the soil’s water holding capacity, and a 

separate GE impact is estimated for each group. Estimated impacts are then binned according to values in 

the figure legend.   

  

The final model that we consider further supports this insight and suggests that soil 

texture is also an important dimension for understanding heterogeneous GE effects. We assign 

each county to one of nine groups based on the dominant soil texture: clay, clay-loam, loam, 

loamy-sand, sand, sandy-loam, silt-loam, silty-clay, silty-clay-loam. We interact dummy 

variables for each group with the GE adoption variable and we find evidence that this pattern of 

spatial heterogeneity is supported by the data as a joint hypothesis test suggests rejecting the null 
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of a homogeneous effect at standard significance levels (p-value = 0.0001). The parameter 

estimates are reported in Table S4 and Figure 3 provides a spatial map of the impacts by county. 

The county-level estimates have an average value of 18.3 and they range from 3.9 to 24.0 

bushels per acre. We again find that there exists substantial within-state variation of the GE 

effect that the state-specific heterogeneity model is not capable of capturing as shown in Figure 

S10. 

  

Figure 3. Impacts of GE Corn Adoption (bushels per acre) by Counties’ Soil Types. Each county is 

assigned to one of nine groups based on the soil’s texture, and a separate GE impact is estimated for each 

group. Estimated impacts are then binned according to values in the figure legend.      
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Conclusion 

There is considerable interest, both within the academic community and among the broader 

public, in the effects of GE crop adoption. In particular, the effect of GE crop adoption on yield 

has been the subject of much debate, perhaps because of relationships between yield and 

environmental outcomes via land use and implications for food security. Numerous experiments 

have found that GE traits have tended to reduce the gap between actual and potential corn yields 

(Fernadez-Cornejo et al., 2014; Klümper and Qaim, 2014; and NASEM, 2016); however, 

experimental studies often generate significantly higher yields than farmers actually experience 

(Lobell et al., 2009). In fact, yield trends in the United States, where there has been near full 

adoption of GE corn, are similar to that in many European countries, where there has been very 

little CE corn adoption. Moreover, aggregate yield trends in the US appear, at first blush, 

relatively stable before and after adoption of GE corn. 

 This paper sought to identify whether, in fact, for corn “the nation-wide data . . . in the 

United States do not show a significant signature of genetic-engineering technology on the rate 

of yield increase,” as was indicated by NASEM (2016). Using corn yield panel data 

corresponding to roughly 28,000 U.S. county-years before and after adoption of GE corn, a 

simple model only including a time trend confirms NASEM’s assertion, as the effect of GE 

adoption appears, if anything, to have had a negative effect on yields. However, subsequent 

analysis reveals this simple model to be biased. After controlling for weather and soil 

characteristics, and assuming a homogeneous effect of adoption, we find that adoption of GE 

corn has led to an approximate 17 percent increase in corn yields. We also find significant 

heterogeneity in the yield-effect that is not related to state-boundaries but rather to soil 

characteristics. On average, adoption of GE corn has led to an 18.5 bushel per acre increase in 
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yield, but the effects range from 12.5 to 25.1 bushels per acre depending on soil characteristics. 

We conjecture that the variation across soil types may be related to differences in insect pressure.  

 While we found important soil-GE adoption interactions, there were no significant 

interactions related to weather. The findings suggest that the current GE traits have not led to 

more resilience to heat or water stresses. Moreover, while we find that the variance in corn yield 

has increased over time, adoption of GE corn has not lowered the variance. Nonetheless, if as our 

results show, adoption of GE corn increases yield without affecting variance, the coefficient of 

variation on yields has fallen as a result of GE corn adoption. This suggests GE corn is less risky 

as, for example, the actuarially fair price of insurance to indemnify a given yield falls as the 

coefficient of variation falls.  

 Our study has a number of limitations. As we discussed, the available adoption data only 

exists at the state level. We showed that this produces a type of measurement error problem that 

can lead to serially-correlated errors – an issue we address using the two-way clustering 

approach of Cameron, Gelbach, and Miller (2012). There are other issues that have likely 

affected national-level yields, such as the move toward more continuous corn and other factors 

that have led to the expansion of corn acres. We partially addressed this problem by limiting our 

analysis to only those counties that reported yield data for at least two-thirds of the years before 

and after GE adoption, but an altogether different sort of analysis that moves from our primal 

production function approach to a structural model that relates planting decisions to input and 

output prices would likely be required to fully address the issue. It would also be of interest to 

conduct the sort of analysis performed here using data, for example, from the European Union, 

where there has been little to no adoption of GE corn. Such an approach would permit a truer 

difference-in-difference estimate of the effect of GE corn adoption.  
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 A final important caveat to be noted is that the estimated effects of GE corn adoption 

depend critically on the available GE technologies. Genetic engineering is not a single “thing.” 

In the case of our data, GE-corn is one of four types: herbicide tolerant, Bt corn-borer tolerant, Bt 

root-worm tolerant, or stacked varieties that include combinations of the previous three types. 

Geneticists and plant scientists are continually working on new genetic modifications that could 

further reduce the gap between actual and potential yield or even increase potential yields. For 

example, Kromdijk et al. (2016) recently genetically engineered a tobacco plant to improve the 

efficiency of photosynthesis, which increased potential yields by about 20%. Other research has 

focused on genetic pathways to increasing Nitrogen utilization (McAllister et al., 2012). Whether 

these additional GE crop technologies can live up to the “hype” of increasing crop yields remains 

to be seen. However, if and when these biotechnologies arrive, it will be important to closely 

scrutinize whether they substantively affect real-world farm yields, just as this study has 

attempted to do with the first generations of GE corn.               

  



25 

 

References 

 

Antle, J. 1983. “Testing the stochastic structure of production: A flexible moment-based 

approach.” Journal of Business and Economic Statistics 1(3):192–201. 

Antle, J. 2010. “Asymmetry, partial moments, and production risk.” American Journal of 

Agricultural Economics 92:1294–1309. 

Alston, J.J., M.A. Andersen, and P.G. Pardey. 2015. “The rise and fall of U.S. farm productivity 

growth, 1910-2007.” Working Paper, Department of Applied Economics, University of 

Minnesota. Staff Paper P15-02. http://ageconsearch.umn.edu//handle/200927  

Alston, J.M., J.M. Beddow, and P.G. Pardey. 2009. “Agricultural research, productivity, and 

food prices in the long run.” Science 325(5945):1209-1210. 

Beck, S.D. and J.W. Apple. 1961. “Effects of temperature and photoperiod on voltinism of 

geographical populations of the European corn borer, Pyrausta nubilalis.” Journal of 

Economic Entomology 54(3):550-558. 

Bellemare, M.F. 2015. “Rising food prices, food price volatility, and social unrest.” American 

Journal of Agricultural Economics 97(1):1-21. 

Cameron, A.C., J.B. Gelbach, and D.L. Miller. 2012. “Robust inference with multiway 

clustering.” Journal of Business & Economic Statistics 29(2):238-249. 

Chavas, J.P., G. Shi, and J. Lauer. 2014. “The Effects of GM Technology on Maize Yield.” Crop 

Science 54(4):1331-1335. 

Duke, S.O. 2015. “Perspectives on transgenic, herbicide-resistant crops in the USA almost 20 

years after introduction.” Pest Management Science 71:652–657. 

Fernandez-Cornejo, J., S. Wechsler, M. Livingston, and L. Mitchell. 2014. “Genetically 

Engineered Crops in the United States.” U.S. Department of Agriculture, Economic 

Research Service. Economic Research Report Number 162, February. 

https://www.ers.usda.gov/webdocs/publications/err162/43668_err162.pdf  

Foley, J. “GEs, Silver Bullets and the Trap of Reductionist Thinking.” Ensia.com. February 25, 

2014. http://ensia.com/voices/GEs-silver-bullets-and-the-trap-of-reductionist-thinking/  

Gentry, L.F., M.L. Ruffo, and F.E. Below. 2013. “Identifying factors controlling the continuous 

corn yield penalty.” Agronomy Journal 105(2): 295-303. 

Gurian-Sherman, D. 2009. “Failure to Yield: Evaluating the Performance of Genetically 

Engineered Crops.” Union of Concerned Scientists. April. 

http://www.ucsusa.org/sites/default/files/legacy/assets/documents/food_and_agriculture/f

ailure-to-yield.pdf  

Hakim, D. 2016. “Doubts About the Promised Bounty of Genetically Modified Crops.” New 

York Times, October 29. http://www.nytimes.com/2016/10/30/business/GE-promise-falls-

short.html?_r=0 

Heinemann, J.A., M. Massaro, D.S. Coray, S.Z. Agapito-Tenfen, and J.D. Wen. 2014. 

“Sustainability and innovation in staple crop production in the US Midwest.” 

International Journal of Agricultural Sustainability. 12(1)71-88 

Hendricks, N.P. 2016. “The economic benefits from innovations to reduce heat and water stress 

in agriculture.” Working paper. Available at: https://nphendricks.com/ 

Hendricks, N.P., J.P. Janzen, and A. Smith. 2015. “Futures prices in supply analysis: Are 

instrumental variables necessary?” American Journal of Agricultural Economics 

97(1):22-39. 

http://ageconsearch.umn.edu/handle/200927
https://www.ers.usda.gov/webdocs/publications/err162/43668_err162.pdf
http://ensia.com/voices/gmos-silver-bullets-and-the-trap-of-reductionist-thinking/
http://www.ucsusa.org/sites/default/files/legacy/assets/documents/food_and_agriculture/failure-to-yield.pdf
http://www.ucsusa.org/sites/default/files/legacy/assets/documents/food_and_agriculture/failure-to-yield.pdf
https://nphendricks.com/


26 

 

Hendricks, N.P., A. Smith, and D.A. Sumner. 2014. “Crop supply dynamics and the illusion of 

partial adjustment.” American Journal of Agricultural Economics 96(5):1469-1491. 

Huber, L.L., C.R. Neiswander and R.M. Salter. 1928. “The European corn borer and its 

environment.” Wooster, OH: Ohio Agricultural Experiment Station. Bulletin 429. 

December. 

Jorgenson, D., F. Gollop, and B. Fraumeni. 1987. Productivity and U.S. economic growth.  

Harvard Univ. Press, Cambridge, MA.; Jorgenson, D., M. Ho, and K. Stiroh. 2005. Productivity: 

Information technology and the American growth resurgence. MIT Press, Cambridge, 

MA 

Just, R.E., and R.D. Pope. 1978. “Stochastic specification of production functions and economic 

implications.” Journal of Econometrics 7(1):67-86. 

Klümper, W. and M. Qaim. 2014. “A meta-analysis of the impacts of genetically modified 

crops.” PLoS One 9(11):p.e111629. 

Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S.T., Iwai, M., Niyogi, K.K. and Long, S.P., 

2016. “Improving photosynthesis and crop productivity by accelerating recovery from 

photoprotection.” Science 354(6314):857-861. 

Leibman, M., J.J. Shryock, M.J. Clements, M.A. Hall, P.J. Loida, A.L. McClerren, Z.P. 

McKiness, J.R. Phillips, E.A. Rice, and S.B. Stark. 2014. “Comparative analysis of maize 

(Zea mays) crop performance: Natural variation, incremental improvements and 

economic impacts.” Plant Biotechnology Journal 12(7):941–950. 

Lobell, D.B., K.G. Cassman, and C.B. Field. 2009. “Crop yield gaps: their importance, 

magnitudes, and causes.” Annual Review of Environment and Resources 34(1):179-204. 

Ma, B.L., F. Meloche, and L. Wei. 2009. “Agronomic assessment of Bt trait and seed or soil-

applied insecticides on the control of corn rootworm and yield.” Field Crops Research 

111(3):189-196. 

MacDonald, P.J. and C.R. Ellis. 1990. “Survival time of unfed, first-instar western corn 

rootworm (Coleoptera: Chrysomelidae) and the effects of soil type, moisture, and 

compaction on their mobility in soil.” Environmental Entomology 19(3):666-671. 

McAllister, C.H., P.H. Beatty, and A.G. Good. 2012. “Engineering nitrogen use efficient crop 

plants: the current status.” Plant Biotechnology Journal 10(9), pp.1011-1025. 

National Academies of Sciences, Engineering, and Medicine. 2016. Genetically Engineered 

Crops: Experiences and Prospects. Washington, DC: The National Academies Press. doi: 

10.17226/23395. 

Nolan, E. and P. Santos. 2012. “The contribution of genetic modification to changes in corn yield 

in the United States.” American Journal of Agricultural Economics 94(5):1171-1188. 

Perry, E.D., F. Ciliberto, D.A. Hennessy, and G. Moschini. 2016. “Genetically engineered crops 

and pesticide use in US maize and soybeans.” Science Advances 2(8):e1600850. 

Perry, E. D., G. Moschini, and D.A. Hennessy. 2016. “Testing for complementarity: Glyphosate  

tolerant soybeans and conservation tillage.” American Journal of Agricultural Economics 

98(3):765-784. 

Ray, D.K., N. Ramankutty, N.D. Mueller, P.C. West, and J.A. Foley. 2012. “Recent patterns of 

crop yield growth and stagnation.” Nature communications 3:1293. 

Ray, D.K., N.D. Mueller, P.C. West, and J.A. Foley. 2013. “Yield trends are insufficient to 

double global crop production by 2050." PloS One 8(6):e66428. 

  



27 

 

Roberts, M.J., and W. Schlenker. 2013. “Identifying supply and demand elasticities of  

 agricultural commodities: Implications for the US ethanol mandate.” American Economic 

Review 103(6):2265-2295. 

Schlenker, W. and M.J. Roberts. 2009. “Nonlinear temperature effects indicate severe damages 

to US crop yields under climate change.” Proceedings of the National Academy of 

Sciences 106(37):15594-15598. 

Shi, G., J.P. Chavas, and K. Stiegert. 2010. “An analysis of the pricing of traits in the US corn 

seed market.” American Journal of Agricultural Economics 92(5):1324-1338. 

Tack, J., A. Barkley, and L.L. Nalley. 2015. “Effect of warming temperatures on US wheat 

yields.” Proceedings of the National Academy of Sciences 112(22):6931-6936. 

Tack, J., A. Barkley, and L.L. Nalley. 2015. “Estimating yield gaps with limited data: An 

application to United States wheat. American Journal of Agricultural Economics 

97(5):1464-1477.  

Turpin, F.T. and D.C. Peters. 1971. “Survival of southern and western corn rootworm larvae in 

relation to soil texture.” Journal of Economic Entomology 64(6):1448-1451. 

Xu, Z., D.A. Hennessy, K. Sardana, and G. Moschini. 2013. “The realized yield effect of 

genetically engineered crops: US maize and soybean.” Crop Science 53(3):735-745. 

 

  



28 

 

Supplementary Material: Adoption of Genetically Engineered Corn on Yield and the 

Moderating Effects of Weather, Soil Characteristics, and Geographic Location 

 

 

 

 

 

This document reports supplementary tables S1-S4 and figures S1-S10 that are referenced in the 

manuscript.  
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Supplementary Tables 

Table S1.  Summary statistics for raw and interpolated state-level GE adoption rates, 1980-2015 

Site   Mean Std Dev Min Max Obs 

All States: Raw 0.349 0.395 0.00 0.98 419 

               Interpolated 0.322 0.377 0.00 0.98 481 

Illinois: Raw 0.322 0.381 0.00 0.93 33 

               Interpolated 0.294 0.370 0.00 0.93 37 

Indiana: Raw 0.289 0.366 0.00 0.88 33 

               Interpolated 0.262 0.354 0.00 0.88 37 

Iowa: Raw 0.368 0.399 0.00 0.95 33 

               Interpolated 0.341 0.385 0.00 0.95 37 

Kansas: Raw 0.381 0.408 0.00 0.95 33 

               Interpolated 0.353 0.394 0.00 0.95 37 

Michigan: Raw 0.312 0.371 0.00 0.93 33 

               Interpolated 0.284 0.359 0.00 0.93 37 

Minnesota: Raw 0.387 0.409 0.00 0.93 33 

               Interpolated 0.360 0.394 0.00 0.93 37 

Missouri: Raw 0.341 0.373 0.00 0.93 33 

               Interpolated 0.315 0.360 0.00 0.93 37 

Nebraska: Raw 0.388 0.413 0.00 0.96 33 

               Interpolated 0.360 0.399 0.00 0.96 37 

North Dakota: Raw 0.391 0.462 0.00 0.97 28 

               Interpolated 0.357 0.414 0.00 0.97 37 

Ohio: Raw 0.252 0.338 0.00 0.86 33 

               Interpolated 0.228 0.327 0.00 0.86 37 

South Dakota: Raw 0.437 0.446 0.00 0.98 33 

               Interpolated 0.409 0.429 0.00 0.98 37 

Texas: Raw 0.360 0.425 0.00 0.91 28 

               Interpolated 0.327 0.378 0.00 0.91 37 

Wisconsin: Raw 0.319 0.369 0.00 0.92 33 

               Interpolated 0.293 0.357 0.00 0.92 37 
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Table S2. Regression results: impacts of GE adoption on variance and skewness of corn yields 

  Variance Skewness 

Variables 
  

GE adoption rate -95.18 1526.6 

 
[166.1] [10927.8] 

Time trend 9.086** -134.0 

 
[4.588] [306.5] 

Precipitation (mm) -22.46*** -352.3 

 
[7.371] [503.8] 

Precipitation squared (mm
2
) 0.187*** 3.344 

 
[0.0498] [4.773] 

Degree Days 0-10°C 0.689 -22.56 

 
[0.512] [50.22] 

Degree Days 10-29°C -0.375 -8.051 

 
[0.354] [24.25] 

Degree Days above 29°C 4.955** 104.7 

 
[1.940] [183.8] 

County fixed effects Y Y 

State-specific trends Y Y 

R-squared 0.134 0.034 

Observations 28,628 28,628 

Counties 819 819 

Years 36 36 

Notes: The reported coefficient estimates for the time trend variable in both models is the simple average of 

the state-specific estimates. Two-way clustered standard errors by year and county-adoption are reported in 

square brackets. *, **, and *** denote statistical significance at the 10, 5, and 1 percent levels.  
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Table S3.  Joint hypothesis tests for the heterogeneous GE effect models 

Null Hypothesis P value 

Weather interaction model 
 

  All weather/gmo interactions are equal to zero 0.3344 

  All precipitation/gmo interactions are equal to zero 0.4538 

  All temperature/gmo interactions are equal to zero 0.6672 

State specific GE effect 
 

  All state specific GE effects are equal 0.1117 

GE effect varies by soil water holding capacity 
 

  All GE effects for each group are equal 0.0000 

GMO effect varies by soil type 
 

  All GE effects for each group are equal 0.0001 

Notes: The reported p-values correspond to the joint hypothesis of a homogenous GE 

effect using two-way clustered standard errors by year and county-adoption.  
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Table S4.  Regression results: heterogeneous impacts of GE adoption by soil type 

Variables Model 1 Model 2 

(GE adoption rate) X (<10
th

 p water holding capacity) 12.50* 
 

 
[7.070] 

 
(GE adoption rate) X (10-25

th
 p water holding capacity) 18.68*** 

 

 
[6.971] 

 
(GE adoption rate) X (25-50

th
 p water holding capacity) 14.12** 

 

 
[6.805] 

 
(GE adoption rate) X (50-75

th
 p water holding capacity) 15.69** 

 

 
[6.941] 

 
(GE adoption rate) X (75-90th p water holding capacity) 21.84*** 

 

 
[6.866] 

 
(GE adoption rate) X (>90th p water holding capacity) 25.13*** 

 

 
[7.002] 

 
(GE adoption rate) X (clay soil) 

 
24.01* 

  
[12.31] 

(GE adoption rate) X (clay-loam soil) 
 

19.46*** 

  
[7.385] 

(GE adoption rate) X (loam soil) 
 

22.35*** 

  
[6.861] 

(GE adoption rate) X (loamy-sand soil) 
 

7.537 

  
[7.329] 

(GE adoption rate) X (sand soil) 
 

3.911 

  
[7.955] 

(GE adoption rate) X (sandy-loam soil) 
 

12.56* 

  
[7.436] 

(GE adoption rate) X (silt-loam soil) 
 

16.41** 

  
[6.934] 

(GE adoption rate) X (silty-clay soil) 
 

14.79** 

  
[7.490] 

(GE adoption rate) X (silty-clay-loam soil) 
 

22.99*** 

  
[7.382] 

Simple average of GE effects 17.99*** 16.00** 

  [6.735 [6.963] 

R-squared 0.7929 0.7927 

Out of Sample RMSE (% Reduction) -50.1 -50.0 

Observations 28,628 28,628 

Counties 819 819 

Years 36 36 

Notes: Both models include a full set of controls: weather variables, county fixed effects, and 

state-specific linear trends. The out-of-sample prediction comparison reports the percentage 

reduction in the root-mean-squared prediction error (RMSE) for each model compared to a 

baseline model that does not include any control variables and assumes a homogeneous GE effect. 

Each model is estimated 1,000 times, where each iteration randomly selects 80 percent of the 

sample observations. Relative performance is measured according to the accuracy of each model’s 

prediction for the omitted 20 percent of the data. Two-way clustered standard errors by year and 

county-adoption are reported in square brackets. *, **, and *** denote statistical significance at 

the 10, 5, and 1 percent levels.  
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Supplementary Figures 

 

Figure S1. Spatial and temporal variation of yields. We observe yields at the county-year 

level, and construct boxplots for each year. Each box is defined by the upper and lower quartile, 

with the median depicted as a horizontal line within the box. The endpoints for the whiskers are 

the upper and lower adjacent values, which are defined as the relevant quartile +/- three-halves of 

the interquartile range, and circles represent data points outside of the adjacent values.  
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Figure S2. Observed and interpolated values for state-level GE adoption rates. The dots 

represented observed data, and the lines denote interpolated (predicted) values for the rates using 

two different. We interpolate missing data using predictions from a generalized linear model 

with a binomial family and a logit link function. The “prediction pooled” model pools all states 

and includes state fixed effects, while the “prediction state” model estimates a separate model for 

each state.  
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Figure S3. Spatial map of counties included in analysis. In-sample counties are green. 
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Figure S4. Spatial and temporal variation of weather variables. We observe the weather 

variables at the county-year level, and construct boxplots for each year. Each box is defined by 

the upper and lower quartile, with the median depicted as a horizontal line within the box. The 

endpoints for the whiskers are the upper and lower adjacent values, which are defined as the 

relevant quartile +/- three-halves of the interquartile range, and circles represent data points 

outside of the adjacent values. 
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Figure S5. Precipitation difference, pre- and post-GE. For each county we calculate the 

average of the observed cumulative growing season precipitation across years in the pre- and 

post-GE periods. We report the percentage change of the latter over the former here.  
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Figure S6. Extreme heat difference, pre- and post-GE. For each county we calculate the 

average of the observed cumulative growing season degree days over 29°C across years in the 

pre- and post-GE periods. We report the percentage change of the latter over the former here.  

 

  



39 

 

 

Figure S7. Spatial map of water holding capacity (mm). For each county we observe the total 

volume of plant-available water that the soil can store within the root zone.  

 

  



40 

 

 

Figure S8. Spatial map of soil types. For each county we observe the most common soil 

texture.  
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Figure S9. Impacts of GE corn adoption (bushels per acre) by state. The parameter of 

interest in the regression model measuring the impact of GE adoption on yield is allowed to vary 

by state. Estimated impacts are then binned according to values in the figure legend.     
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Figure S10. Impacts of GE corn adoption (bushels per acre) by counties’ water holding 

capacity and soil texture, reported for each state. County-level estimates from figures 2 and 3 

are reported by state. The vertical bars are the distance between the highest and lowest value 

within each state. Dots denote the average of the county-level estimates within each state. 
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