WRECK OF THE SCOW SCHOONER W. R. HANNA:
AN ARCHAEOLOGICAL INVESTIGATION
IN LAKE ERIE AT KELLEYS ISLAND, OHIO

by
C. Patrick Labadie
and
Charles E. Herdendorf

Great Lakes Historical Society
Peachman Lake Erie Shipwreck Research Center
Technical Report No. 2
WRECK OF THE SCOW SCHOONER W. R. HANNA: AN ARCHAEOLOGICAL INVESTIGATION IN LAKE ERIE AT KELLEYS ISLAND, OHIO

by

C. Patrick Labadie
Thunder Bay National Marine Sanctuary
National Oceanic and Atmospheric Administration
Alpena, Michigan

and

Charles E. Herdendorf
Department of Geological Sciences
The Ohio State University
Columbus, Ohio

Great Lakes Historical Society
Peachman Lake Erie Shipwreck Research Center
Technical Report No. 2
May 2004
WRECK OF THE SCOW SCHOONER W. R. HANNA:
AN ARCHAEOLOGICAL INVESTIGATION IN LAKE ERIE AT KELLEYS ISLAND, OHIO

C. Patrick Labadie and Charles E. Herdendorf

Published by the Great Lakes Historical Society, a nonprofit organization incorporated in 1944 at Cleveland, Ohio. The Society is located at 480 Main Street, Vermilion, Ohio 44089.

Christopher H. Gillcrst
Executive Director

Rita Howley Summers
Chair, Publications Committee

Nautical Archaeology Series Editor: Charles E. Herdendorf, Ph.D.

Published in cooperation with the Ohio Department of Natural Resources, Office of Coastal Management pursuant to National Oceanic and Atmospheric Administration Award No. NA07OZ0128 and with the Maritime Archaeological Survey Team, Inc. (MAST). Format design and computer page layout by Rickie C. Herdendorf, EcoSphere Associates Garfield Farms, 4021 Detroit Road, Sheffield Village, Ohio 44054.

Citation:

The Peachman Lake Erie Shipwreck Research Center (PLESRC), located on the grounds of the Inland Seas Maritime Museum in Vermilion, Ohio, is a component of the Great Lakes Historical Society. The PLESRC vision is to be the most comprehensive source of shipwreck information for Lake Erie and its environs.

Dr. Charles E. Herdendorf
Coordinator, PLESRC

Capt. Wayne E. Bratton
Chair, PLESRC Subcommittee

Cover Illustration:
Lumber-Boats, Sandusky, Ohio. Woodcut of early steam barge and scow schooner, circa 1870, from Ohio Illustrated.

Plate 1:
Site Plan of Scow Schooner W. R. HANNA (1857-1886) Kelleys Island, Ohio. Dive slate Guides to Lake Erie’s Historic Shipwrecks, published in 2002 by the Great Lakes Historical Society in cooperation with the Ohio Sea Grant College Program (OSU-02-020).

TABLE OF CONTENTS

Introduction .. 1

Great Lakes Scow Schooners ... 3

Commercial Ships in Kelleys Island History ... 10

Kelleys Island Limestone Industry ... 13

Geology ... 13

History of North Bay Quarries ... 13

Quarry Operations & Lime Production .. 16

Dimension Stone ... 17

Lime Production ... 17

Crushed Stone ... 19

Archaeological Survey .. 23

1998 Field Investigations ... 23

Survey Results .. 24

Shipwreck Identification ... 27

1999 Field Investigations ... 33

Final Cargo ... 33

Measurements of Limestone Cargo on the Wreck of the W. R. HANNA 34

Acknowledgments .. 37

About the Authors ... 38

Literature Cited ... 39

Plate ... 41

1. Site Plan of Scow Schooner W. R. HANNA ... 42

Copyright © 2004 by the Great Lakes Historical Society
Vermilion, Ohio
WRECK OF THE SCOW SCHOONER W. R. HANNA: AN ARCHACOLOGICAL INVESTIGATION IN LAKE ERIE AT KELLEYS ISLAND, OHIO

by C. Patrick Labadie, Historian, Thunder Bay National Marine Sanctuary and Charles E. Herdendorf, Department of Geological Sciences, The Ohio State University

INTRODUCTION

During the second week of September 1997, a four-day workshop in underwater archaeology was conducted at Huron and Kelleys Island, Ohio in western Lake Erie by the authors in conjunction with Firelands College of Bowling Green State University and sponsored by Lake Erie Protection Fund Grant No. 63-97. Field exercises focused on the wreck of the small wooden steamship ADVENTURE (Ohio State Archaeological Site #33ER481), which sank on the north side of Kelleys Island in October 1903 following a disastrous fire (Labadie and Herdendorf 1998).

Site documentation included examination and recordation of disarticulated debris surrounding the 105-foot steamer. This debris consisted of the ship’s stem, which had by some means been displaced about 150 feet in a northerly direction from its normal position, and what was presumed to be one of the ship’s sides lying about 50 feet away in the opposite direction. Careful examination of the latter wreckage revealed that it was not a part of the steamer ADVENTURE at all, but rather the remains of an entirely different vessel. It was believed to be the wreckage of a distinctive Great Lakes sailing craft known as a scow schooner. The second vessel was subsequently assigned Ohio State Archaeological Site #33ER488 (41°37.091’N, 82°40.849’W).

Time and resources did not allow for a survey of the second wreck during the 1997 season, and so nothing more than a cursory examination was done that year. Plans for more thorough documentation were deferred until the following year. In October 1998 the second in a series of shipwreck archaeology workshops was again sponsored by the Lake Erie Protection Fund (Grant No. 89-98) which was attended by 40 recreational divers. The second shipwreck, W. R. HANNA, was mapped as a class exercise and its documentation is a focus of this final grant report. Additional field work on the site was completed in the summer of 1999.

Preliminary analysis of the second site indicated that it represented the entire lower hull of a wooden scow schooner, a simple square-ended vessel used on the Great Lakes from at least the 1820s until the turn of the century. The centerline keel assembly was found almost complete, measuring 82 feet in length and including a centerboard trunk. The outlines of both sides could be traced for much of the vessel’s length, and their position indicated a beam (width) of approximately 20 feet. In addition, several longitudinal keelsons were found in the ship’s bottom on either side of the keel. Many of the central features of the little ship were obscured by a mound of limestone presumed to be the ship’s cargo; both ends of the hull were missing.

Interestingly, the vessel proved to be “cross-planked,” unlike most wooden ships, which are longitudinally or “fore-and-aft” planked. As far as is known this is the first vessel of that variety yet discovered on the Great Lakes, and it provides a rare opportunity for study. The longitudinally-planked scow schooner ROCKAWAY was documented off South Haven, Michigan in 1984 by an archaeological team from the Lake Michigan Maritime Museum, providing many valuable observations on that variety of scows. Cross-planked ships are a very old vessel type, but little is known of their construction. Wooden ships of the Western World are almost universally built with longitudinal planking fixed to transverse frames, and cross-planked vessels must of necessity, have had longitudinal frames. It has long been acknowledged that some cross-planked scows were built on the Great Lakes, but scholars have long puzzled about the details of their construction, and in particular, how they must have been framed. The documentation of this vessel will be a highly significant contribution to the history of regional watercraft as a result. Unfortunately, we are not able to answer all of the structural questions because both ends of the vessel have been destroyed.

Unidentified scow schooner in Detroit River, circa 1905 (C. P. Labadie Collection). Note typical two-mast, gaff-topmast rig and sharp or “flat-iron” bow.
Great Lakes Scow Schooners

A scow is a vessel with flat bottom, vertical sides, and a "hard chine" or square bilge (Plate 1). More conventional sailing ships the world over had rounded bottoms and sides with a relatively gentle curve at the bilge where bottom and side came together. In general, the rounder the bilge, the stronger the vessel’s hull. The simple scow hull-type appears to have been in use before the medieval period in the shallow rivers and estuaries of Western Europe. Their sturdy shallow-draft hulls made scows particularly suitable for ferries. Although the earliest of these vessels seem to have been rowed, sculled, pole-driven, or pulled by ropes, some seventeenth-century Dutch engravings show sail-driven scow ferries as well, fitted with a single spritsail (DeGroot and Vorstman 1980:181,200). Interestingly in these craft, the mast was stood at the vessel’s side so that wagons and carriages could be loaded on deck without the obstruction posed by a mast on the centerline. The literature seems to apply to these vessels the name “pont” or “poster,” undoubtedly the root for the modern term “punt,” which refers to a small, square-built duck-boat. British historian John Leather attributes the origin of the general scow pattern to the old Dutch *schoon*, "a swim-ended craft with bow and stern transoms, really a large form of pram" (Leather 1984:221). The British used many different scow-type vessels in the 17th and 18th centuries, all of which were classified as barge types (Carr 1936:5ff,15-16).

It is not known how or when scows were introduced to the New World, but it would not be surprising if the tradition was brought by Dutch or English colonists very early in the history of this country. Scows were tailor-made for large estuaries like the Chesapeake, Hudson, Delaware or the innumerable smaller tributaries reaching inland from the Atlantic Ocean. Historian Howard I. Chapelle describes many varieties of flat-bottomed watercraft in use in American waters in the eighteenth and nineteenth centuries, including several different sailing scows (Chapelle 1951:32, 33,4ff). Georgia archaeologist Mark Newell studied numerous "flatboat" designs used in the Southeast, and concluded that the general type was probably brought to America by the English, who used it to colonize the

Unidentified scow schooner under construction at George Smalley Yards in Bay City, Michigan showing method for framing bow and sides (C. P. Labadie Collection).
sea. He refers to "flat-bottomed pull boats" employed in the American colonies as early as 1638 (Newell 1996:9). Newell also describes a primitive variety of small, cross-planked scows which he calls "chine-girdle boats." He attributes their development to the very old split log tradition, where the sides of a boat were fashioned from two halves of a split log, and transverse bottom planks were attached between them to gain sufficient width for carrying cargo. He does not venture to guess when the first sailing scows were developed.

Commercial navigation came to the Great Lakes ostensibly following the War of 1812 when the British relinquished their tight control over the region and American entrepreneurs began building ships for competitive trade. The vessel of choice for the next decades was the two-masted schooner. By 1820, there were dozens of them operating on lakes Ontario and Erie, and ten years later their numbers had multiplied several fold. At the height of the sailing ship era in 1870, there were nearly 2,000 schooners on the Great Lakes, including several varieties of sailing scows.

The late Dr. Richard Wright of Bowling Green State University (Ohio), using official U.S. government enrollments, found references to scow schooners operating on Lake Ontario and the Finger Lakes of New York as early as the mid-1820s (Wright, personal interview, c.1985). Twenty years later they were in use all over the Great Lakes and in Lake Champlain. Several hundred scow schooners were eventually built on the Great Lakes, and others were constructed on the Gulf Coast, in California, and eventually in Australia and New Zealand. It was said that there were 400 scow schooners on San Francisco Bay at the turn of the century (Olmsted 1988:24). At least six hundred have been documented on the Great Lakes using official U.S. Customs Department enrollments (1857-1886); other sources are not nearly as reliable, but suggest that their numbers may have been still greater. Some records describe schooners with "scow bottom" or "scow stern," for instance, and it is impossible to ascertain whether or not such craft were really scows by our definition. It does not help that 19th century journalists were particularly casual about their use of sailing craft terminology. The heyday of scow schooners must have been around 1885, although some of these quaint vessels survived well into the 20th century.
Scow TALLAHASSEE (Range Collection, Milwaukee Public Library). Built at Manitowoc, Wisconsin in 1881, 79.0 x 21.1 x 6.4 feet; note lack of "sheer"—upward curve of deck toward the bow and stern.

Scow schooner HENDY at Duluth, Minnesota, circa 1873 (C. P. Lodge Collection). Note square topsails; in 1872 this "old-fashioned" rig came from wrecked schooner ALICE CRAIG which was originally built as the revenue cutter JOHN W. LEWIS in 1828.
In spite of their general longevity and profitability, scows were never ranked by the shipping industry with their more conventional sisters. A key measure of their acceptance was their insurance rating as determined by underwriters. Vessels constructed according to a strict code of standards, "underwriters' rules," were rated A1, A2, B1, B2, C1 and C2 or, worst of all, "not insurable." The higher the rating, the lower the insurance premiums for a given vessel. The Board of Lakes Underwriters (1866:14) adopted a rule stating:

"Frame-built scows, well-constructed and of good material, with fore and aft bottom plank, may be entitled to class B1 [for] five years, but in no case will scows be entitled to the B1 grade if built with garswale sides or athwartships [cross-planked] bottom."

Scow schooners seem to have been most numerous in the Bay of Quinte and eastern Lake Ontario, in western Lake Erie, and around Lake St. Clair and the Detroit and St. Clair Rivers, although they were found from the St. Lawrence River all the way to Duluth, Minnesota. Insights into the operation of a typical Lake Michigan scow may be found in the Diary of Soren Kristiansen, published by the Delta County Historical Society Foundation (1981) of Escanaba, Michigan. The principal criterion for their construction and practical use was undoubtedly shallow water, but they were also very economical. Scows could be built with little money and limited skills, and they could be managed safely by crews smaller than conventional sailing craft (Inches and Partlow 1964:291). There were many variants of scow hulls, with square "but-end," pointed "flat-iron," round "southern" or "swoon-headed," or barrel-shaped ends (Barkhausen 1947:13-14, Wilson n.d.:32-34). Most scows were built with conventional transverse frames and longitudinal planking, although some had either diagonal or cross-planking, both of which would have required a specialized and non-traditional framing scheme (Greenhill and Manning 1988:126-157).

"Gunwale-built" scows had thick sides that provided the requisite longitudinal strength to their hulls, and they could forego the conventional longitudinal planking in their bottoms and utilize simple cross-planking instead (Inches and Partlow 1964:290; Leather 1984:222). Some scows had internal bulkheads running longitudinally, which served the same purpose as the thick gunwales (Hawkins 1987:24-28). Scow rigs were as varied as were their hulls. There were sloops, two- and three-masted schooners (with and without topmasts), scow brigs, brigantines, and barkentines. Most scows used one, two, or three head sails (jibs), and all seem to have been provided with conventional bowsprits for that purpose. Many carried one or two gaff-topsails, although some were "bald-headed" with no topsails at all. Some scows used triangular "raffes" on their foremasts, and a handful, especially in the 1840s, 1850s, and 1860s, used old-fashioned square topsails. Almost all were fitted up with centerboards. Although there are no known photographs of the scow W.R. HANNA, illustrations presented throughout this paper demonstrate the variety of scow schooner designs and riggings in use on the Great Lakes in the 19th and early 20th centuries.

In spite of their unsophisticated hull forms, scow schooners were generally regarded as good sailers (Chapelle 1951:50; Olmsted 1988:19). In March 1860, the scow GRANGER made two trips from Detroit to Kelleys Island for stone within six days in spite of an accidental sinking in the meantime, having been raised the next day (Detroit Free Press, March 31, 1860). The SENATOR made 24 round trips from Port Huron, Michigan to Ohio ports during 1870, handling 36 cargoes in a 225-day season (Port Huron Daily Times, December 23, 1870). In the 1870s an unnamed scow reportedly outran a fleet of sailing yachts during a much-publicized race from Detroit to Put-in-Bay, when westerly wind conditions were optimal. Scows were also sturdy vessels, capable of sailing in heavy weather and surviving frequent groundings. A Detroit Free Press article (June 20, 1874) refers to the 98-foot scow C.C. BUTTS:

"For the twelfth time, the scow BUTTS has been rescued from the beach, and after some tinkering, will if possible, eke out a few years more in the coasting trade...she is 29 years old...and has been wrecked on each of the four [sic] Lakes."
COMMERCIAL SHIPS IN KELLEYS ISLAND HISTORY

Kelleys Island, Ohio is located in Lake Erie very near the port of Sandusky. It is an important source for high-quality limestone, its stone quarries dating back to about 1830. At one time it was the largest producer of lime in the world. The island’s quarries furnished building stone for coastal construction projects, flux stone for steel mills, burned stone for agricultural use, and many other lime products. All of these stone products were transported from Kelleys Island on shipboard.

Until around 1880, most of Kelleys Island’s stone was carried on board Great Lakes schooners varying in size from two-masters 50 feet in length to deep-draft three-masters 200 feet long. Schooners dominated all of the Great Lakes carrying trades from just after the war of 1812 until nearly 1890. During this time the average schooner grew in dimension and tonnage on account of improvements in shipbuilding technology and the general deepening of harbors and channels, but also in response to the burgeoning requirement for the transport of commodities. At the peak of the schooner era in 1871, nearly 2,000 schooners were registered at Great Lakes ports. The number of sailing craft dwindled after that time because of the growing popularity of steam freighters. With a few rare exceptions, the last schooners disappeared during the 1920s. In general, ships trading at Kelleys Island reflected the broad patterns of ships employed on the rest of the Lakes, although they were often of the smaller classes because of the necessity to navigate in and out of small unimproved harbors. As early as 1850, many of the craft regularly engaged in trade were small scow schooners. These rugged little sailing craft were ideally suited for the shallow-draft ports on Lake Erie and Lake Huron; most could be sailed handily by two or three men.

Another class of vessels frequenting Kelleys Island loading docks after the middle 1860s was the “steam barge.” This was a single-decked, wooden steamer of a little more than 100 feet in length, built to carry lumber cargoes or bulk products such as salt, stone, coal, or iron ore. The earliest steam barges had their pilothouses and all of their cabins perched on the stern along with boiler and engine spaces. After 1880 larger steam barges appeared, some as much as 200 feet in length with raised forecastles and pilothouses at the bow. Most of the steam barges in the Kelleys Island stone trade were of the smaller variety, seldom exceeding 120 feet in length. They were often paired with consort-barges of similar dimension. A typical schooner could be sailed by four to six men, while a steam barge required 12 to 15; a consort-barge on the other hand, required only two or three. The combination of steamer and barge (or barges) could haul several hundred tons of stone products inexpensively, and unlike sailing craft, they were not dependent on favorable winds. The Kelleys Island Lime & Transport Company operated its own fleet of these efficient little steamers from 1872 until they were superseded by more modern craft in the 1940s. Dozens of other owners ran steam barges to the three big docks on Kelleys Island dating back to the time when steam vessels superseded the earlier classes of sail craft. The steam barge ADVENTURE was typical of them; her remains were documented at Kelleys Island during 1998, just 50 feet from the site of the smaller scow schooner that is the subject of the present study (Labadie and Herdendorf 1998).

Statements of vessel traffic at Kelleys Island indicate that most of the tonnage in stone was hauled in a few relatively large vessels, but that the most numerous ships were small ones carrying very limited cargoes. Most of the cargoes were destined for Cleveland, Ohio, but small loads were taken to ports all over the region.

Newspaper items for 1881 are typical of this era:

- “KELLEYS ISLAND, O., April 25 — Arrivals since Saturday evening — Steam barge MONITOR, [from] Toledo, light; schooner N. C. WEST, Toledo, light; scow PILOT, Detroit, light; schooner A. J. ROGERS, light; scow SELKIRK, in tow of tug AMADEUS from Cleveland, light. Cleared April 25th — steam barge MONITOR [for]
Detroit [with stone]; scow PILOT, Detroit, stone. The ROGERS and SELKIRK will load with stone for Cleveland and get away Tuesday...” (Cleveland Herald, April 26, 1881).

“KEELLYS ISLAND, O., April 26 – Arrivals this day – schooner S. B. CONKLIN, from Cleveland, light; scow JOHN J. HILL from Cleveland, light. Cleared – schooner SELKIRK in tow of the tug AMADEUS, limestone for Calcins & Co., Cleveland; schooner A. J. ROGERS, flux stone, Cleveland. The scows CONKLIN and HILL are loading stone for Cleveland, but will not get away before tomorrow...” (Cleveland Herald, April 27, 1881).

“KEELLYS ISLAND, O., April 27 – Arrivals since noon yesterday – scow J. M. SPaulding [from] Detroit, light; schooner FERRET, Detroit, light; scow J. U. PORTER, light; steam barge GEORGE A. MARSH, Cleveland, light. The schooners CARD and KIMBALL, Cleveland, light, arrived at noon today. Cleared April 27th – schooners JOHN J. HILL, Cleveland, flux stone; scow J. M. SPaulding, Detroit, building stone; scow S. B. CONKLIN, Cleveland, flux stone; schooner FERRET, Detroit, limestone; the CARD and KIMBALL will load stone for Cleveland, but will not leave before Thursday evening.” (Cleveland Herald, April 28, 1881).

A larger sampling would, of course, be more accurate, but its results would not be much different. For that period in Kelleys Island history, it would illustrate that about half the vessels trading there were scow schooners, although far more than half of the stone was carried in large vessels like the 350-ton F. CARD, the 359-ton ALBERT Y. GOWAN, and the 420-ton S. H. KIMBALL. In later years, the proportions would shift further in favor of large vessels, since the average size of schooners had by then grown to 600 tons and more.

Kelleys Island Limestone Industry

GEOLoGY

The limestone deposits on Kelleys Island have long been known to science because of their well-preserved fossil coral reef fauna, the remarkable glacial grooves carved in the surface of the limestone, and the massive quarries that dominate the island’s landscape. For decades high-quality building stone, lime, and crushed rock were produced from these quarries (Stauffer 1909:136-142).

Columbus Limestone (Middle Devonian Period) underlies the major portion of Kelleys Island. This formation is covered by only a thin layer of glacial drift, thus rock outcrops are common, particularly along the shores. Outcrops are of two types: (1) broad shell areas with gentle dip slopes, common along the south and east shores and (2) vertical to overhanging cliffs up to 25 feet high, especially along the north and west shores (Fischer 1922:7). An uplift in the bedrock west of the Bass Islands, known as the Cincinnati Arch, gives the rock formations in the islands a gentle dip toward the southeast. As a result, most of the islands of western Lake Erie, including Kelleys Island, have a cuesta shape—steep cliffs on the side toward the arch and gentle, shoaling shore away from the arch (Carman 1946:282). Late Paleozoic, Mesozoic and Early Cenozoic erosion of the region has left the resistant rock of Kelleys Island as a remnant of the ridge that once divided preglacial river valleys (Hobson et al. 1969:219). The Columbus Limestone is underlain by the Lucas Dolomite, which is exposed in the bottom of the deepest quarries on Kelleys Island.

Columbus Limestone consists of three lithologic units on Kelleys Island: (1) a basal, thick-bedded, magnesite limestone, (2) a middle layer of cherty limestone, and (3) an upper sequence of thin-bedded highly calcareous limestone (Fisher 1922:9). The basal beds are well exposed in the North Bay and South Side quarries where they present a massive, vertical face of grayish-brown fossiliferous limestone, 22 feet thick. The cherty layer is about 4 feet thick in the quarry walls and contains numerous gray and white chert nodules. The upper 25-foot thick beds are bluish-gray and the purest part of the formation. The bottom 8 feet of the upper unit is a massive layer of gray to brown limestone known to the quarriers as “bottom rock” because it formed the floor over most of the later quarries, the next 7 feet up is more fossiliferous, but somewhat less massive in character, while the top 10 feet splits into thin slabs (1 to 3 inches thick) on weathering and contains extensive layers of brachiopod fossils, especially Spirifer acauminatus (Fischer 1922:9,21-23; Stauffer 1909:136-142).

History of North Bay Quarries

The first limestone quarry on Kelleys Island was located on the north shore just west of North Bay (Ohio State Archaeological Site #33ER343). This quarry was operated by John A. Clemmon between 1830 and 1835 (Hills 1925:122), exploiting limestone ledges that rise about 25 feet above the lakeshore. Clemmon constructed a short dock at the base of the cliff. The dock endured for many years (Hills 1925:122), even though it was not within the shelter of the bay and was exposed to the fury of northerly storms. In 1833 Clemmon employed 5 to 6 families to work the quarry (Myers et al. 1992:20). That year the Kelleys brothers (Datus and Ira) purchased most of the island including the north shore quarry and dock. The following year, the Kelleys began shipments of stone and cedar to Cleveland from this dock, only to abandon the quarry in 1835 as they moved their operations to the south side of the island.

Quarrying operations at North Bay did not resume until 1872, when William D. Kelleys sold the property to G. W. Calkins & Company. G. W. Calkins, M. C. Younglove, and Charles Hickox were partners in this firm. A new quarry was soon opened about 1,000 feet southwest of the lakeshore quarry known as the north side quarry (Ohio State Archaeological Site #33ER336), and many improvements were undertaken. The company built a new dock in the bay and also had a steam barge built at the Black River (now Lorain, Ohio) shipyards of Henry D. Root. This vessel was christened CHARLES HICKOX and was employed in transporting lime and stone from the island to Cleveland (Hills 1925:137).

In 1875 G. W. Calkins & Company brought several lime kilns to the island from their Cleveland operation and erected them near the new North Bay dock. The same year an extensive cooer shop was built where barrels were made to ship the lime and an elevated wharf was added to the dock (Myers et al. 1992:23). The company also constructed tenement houses and a boarding house for the employees.
In 1876 the engineering firm of Baker, Van Block & Company contracted with G. W. Calkins & Company for dimension stone to be used for the first large American lock at Sault Ste. Marie. The engineering firm took charge of quarrying the blocks and employed a 150-man force for a year (Hills 1925:124).

The industrial census of 1880 reported that G. W. Calkins & Company had a capital investment of $35,000 in the quarry complex and that 15,000 cubic yards of stone had been excavated since 1872. Cleveland was listed as the principal market port. The full-time work force (10-hour day) averaged 20 men (peak of 25), and the average salary was $1.25/day.

On December 28, 1886, a few months after the W. R. HANNA was wrecked in North Bay, G. W. Calkins & Company was reincorporated as the Kelley Island Lime & Transport Company (KIL&T Co.) with M. C. Yeunglove, Caleb E. Gowan, and E. B. Merrian as partners. KIL&T Co. soon consolidated the holdings of the smaller quarry operators into three “theaters” of operation—North Bay (Ohio State Archaeological Site #33EK336), South Bay (Site #33ER338), and West Bay (Site #33EK337). When KIL&T Co. took over the North Bay complex, 8 kilns were in operation. In the next two years 8 more kilns were built, a narrow gauge railroad system was constructed that included two Shay locomotives and 15 cars on 5 miles of track, a new 315-foot long dock was erected that had elevated pockets, and steam power was introduced, replacing animal traction and human labor in the handling of stone.

By 1888 KIL&T Co. had also procured a fleet of 5 steam barges at a cost of $140,000, including the ALBERT Y GOWEN, GOOD HIT, HANDY BOY, JIM SHERIFFS, and TEMPEST. These vessels had an aggregate tonnage of 3,200 (Nichols 1888:23). JIM SHERIFFS carried stone to Duluth while ALBERT Y. GOWEN carried lime to Cleveland and Detroit. Later the company purchased two more steamers, DESMOND and ISABELLA J. BOYCE, and used them for the Cleveland stone trade and the steamer NORMA (later replaced by the EDWARD P. RECOR) to carry freight between Sandusky and Kelleys Island. In addition to these vessels, KIL&T Co. operated the steam tug L. P. SMITH and 2 steel barges to transport limestone to Cleveland (Hills 1925:26). In the late 1880s KIL&T Co. became the largest landowner and employer on the island and by the turn of the century it was advertised as the largest producer of lime products in the world (Hatcher 1969:304, Pape 1988:911).

When completed in the early 1900s, the North Bay complex included an extensive quarry, 16 lime kilns, a cooper shop, warehouses for barrel storage, a stone crusher for production of flux stone, boarding anchorages.
houses and other facilities for the resident labor force, horse barns, carpenter and blacksmith shops, a locomotive shop, a water tower, and several other structures. A constantly changing network of roads and narrow gauge rail lines linked these facilities to the two docks on the North Bay of Kelleys Island.

Lime products, which had been the main focus of the north side quarry were eclipsed by the flux stone market in the first decade of the 20th century. In 1907 a large stone crushing complex was built alongside the North Bay quarry to meet the demand for steel mill flux stone. Lime production was phased out and the kilns were closed and dismantled in 1909. Thereafter, the work pace slowed at the North Bay quarry as KIL&T Co. concentrated its efforts on the South Bay and West Bay operations, and the North Bay quarry fell into disuse and neglect. The outer dock on the north shore burned in 1913, and three years later the elevated dock burned when ashes from a locomotive fell into its loading pockets (Myers et al. 1992:24). The North Bay quarry was virtually abandoned in 1924.

Quarry Operations & Lime Production

Quarrying was easy and economical on Kelleys Island because the loose thin soil could be readily removed from above the limestone. Since the basal beds of the Columbus Limestone were best suited for dimension stone, deep quarries were the flux to be developed. These quarries produced massive stone used for buildings, piers and breakwaters. In addition to building stone, the early quarries were soon organized to produce lime (calcium oxide). Lime replaced dimension stone in the 1870s with the construction of large kilns and dominated operations for three decades. By the early 1900s the focus changed from the production of lime to that of flux stone, an important ingredient in the manufacture of steel. To produce this type of stone, large stone crushing complexes were built on the island. With the decline in the demand for dimension stone, and the expense of deep quarrying for lime rock, the deeper parts of the quarries were abandoned. By the 1920s, only the thin-bedded upper zone was being utilized and that for crushed stone.

Dimension Stone. Kelleys Island dimension stone was sold by the cord, a cord being equivalent to 5.5 tons (128 cubic feet per cord). Several docks were built and used for shipping both stone and cedar wood. Thus, numerous boats were able to dock at the island to purchase stone. A typical early cargo would amount to 50 or 60 cords of stone. The breakwaters at Cleveland and Cedar Point were constructed with Kelleys Island limestone, as well as the piers for the Cleveland High Level Bridge and the first American lock at Sault Ste. Marie (Martin 1975:25). Ross (1949:39) points out that “the islanders are proud of the fact that many churches in Detroit, some of the finest office buildings in Cleveland, and the Poe lock at the Soo were built of stone taken from the island.”

The early methods of quarrying on Kelleys Island were largely performed by hand. Until the 1880s the steps in the stone extraction process included drilling, black power blasting, and hand sledging. Blast-hole drilling was done with a single-jack (one man with a chisel and 4-pound hammer creating a 3-foot deep hole or double-jack (team of three laborers, one to hold drill and two to alternately strike it with 20-pound hammers). Hand-chute drills and hand augers that could reach a depth of 8 feet were also used. Dimension stone, stone for lime burning, and flux stone were all quarried with the same tools (Myers et al. 1992:27). The difference in their extraction was related to the size of the rock to be removed and this was controlled by the spacing and depth of the blast holes.

In the late 1880s the mode of quarrying was mechanized with the introduction of the steam drill. Once the holes were filled with powder, a single set of blasts would free as much as 400 cords of blue-white stone, remarkably free of spots or impurities (Nichols 1888:22). Steam drills at that time consisted of a piston drill that was an extension of the cylinder of a steam engine. These drills were powered by steam supplied by piping from a remote boiler (Myers et al. 1992:27). Piston drills were capable of drilling holes up to 15 feet deep.

Lime Production. As a secondary product of dimension stone quarrying, the broken blocks of the lower beds were burned for lime. These pieces had a
higher magnesium content which required less heat to burn than the more calcareous upper beds (Fisher 1922:21). The north shore quarry (Ohio State Archaeological Site #3ER343) furnished both the magnesite-rich portion of the Columbus Limestone and underlying beds of Calcium Dolomite, also rich in magnesite, for an early lime kiln.

In 1855 lime kilns were built on the south shore by George Kelley (Pape 1988:8[12]; Myers et al. 1992:30) and by G. W. Calkins & Company on the north shore in 1875 (Bekahne 1974:7). In 1886 a huge complex of lime kilns was positioned at North Bay by the KIL&T Co. when the demand for building stone declined. Nichols (1888:23,24) describes the early operations of the KIL&T Co. in vivid detail. To work the quarries and kilns, foreign workers were imported from central and eastern Europe—Italians, Slavs, Greeks, Hungarians, Portuguese, Poles, Macedonians, Bulgarians, and German.

The North Bay kilns were so constructed that the stone could be conveyed by car or wagon to the mouths of the kilns which were constructed on the same level as the quarry floors. The kilns burned about 90 cords of stone and 48 cords of wood per day. Once the supply of wood on the island was used up other sources were developed. Nichols (1888:24) noted that “an inexhaustible supply of wood” being obtained from the Canadian shore, just across the lake.” Wood for the kilns was also obtained from Oak Harbor on the Portage River in Ottawa County, Ohio.

When limestone, a carbonate of calcium (CaCO₃), is heated sufficiently it undergoes a decomposition which yields calcium oxide and carbon dioxide (CaCO₃ → CaO + CO₂). The temperature required to maintain this conversion at one atmosphere of pressure is about 1250° F (Nebergall et al. 1963:650). The manufacture of calcium oxide or quicklime on Kelleys Island was carried out in tall chimneys like furnaces or kilns. In a continuous process, the limestone, which was fed in at the top of the kiln, was heated and decomposed by a draft of hot gas, and the lime was drawn off at the bottom of the kiln. The blast of hot gases through the furnace kept the partial pressure of the carbon dioxide at a minimum and permitted the reaction to go to completion at a much lower temperature than would otherwise be required. In a typical kiln furnace of the period, carbon dioxide began to dissociate at 700° F and was completely freed at 900° F. Operators of the Kelleys Island kilns attempted to maintain a constant temperature of about 800° F for optimal processing (Myers et al. 1992:30).

Pure lime (calcium oxide or quicklime) is a white amorphous substance that emits an intense light, called “limelight” when heated to a high temperature. Lime is a hazardous substance which reacts vigorously and exothermally (heat-releasing) with water, forming a hydroxide (CaO + H₂O = Ca(OH)₂ + 15,500 cal/mole) which is known as hydrated lime or slaked lime (Nebergall et al. 1963:651). Lamp lime, unsalted or unhydrated lime was the type of hard, white material obtained from the kilns on Kelleys Island. It combines with water giving off great heat sufficient to cause ignition when in contact with combustible substances (Leeming 1942:366). Because lime produced on Kelleys Island was a perishable product, particularly susceptible to the deleterious effects of moisture, the most convenient and safe way to ship the product from the island was in water-tight, wooden barrels.

After burning to drive off carbon dioxide, the lime (calcium oxide) was drawn out at the base of the kiln onto a substantial stone floor where it was packed into wooden barrels. The barrels were then rolled to an adjacent warehouse (6,000-barrel capacity) or loaded on shipboard as vessels laid alongside the warehouse dock. The kiln-dock complex included a large cooper shop where 22 men were employed in raking and repairing barrels. The annual lime production by KIL&T Co. in the late 1880s was about 650,000 barrels and involved some 275 workers. Nichols (1888:23) observed that “the lime produced by this firm is singularly white, strong and pure, being used almost exclusively for building and plastering purposes.” Maritime facilities at the North Bay complex also included a concrete pocket dock which consisted of an extended jetty with an elevated track and chute on the sides for loading boats. Barges, steamers, and other vessels of 8,000 to 10,000 tons capacity could be easily loaded from this dock in a matter of two to three hours (Ryall 1913:186).

At the turn of the century, the 16 North Bay kilns were running at full capacity, producing 1,800 barrels of lime per day plus large volumes of crushed stone. KIL&T Co. then employed about 500 men and 50 horses. By the second decade of the century, the company found it cheaper and more convenient to ship the stone, and then burn the lime at its plants in Duluth, thus the focus of its operation changed from the production of lime to the production of flux stone. At this time, the Kelleys Island kilns and cooperage on North Bay were torn down (Ryall 1913:188).

Crushed Stone. In referring to the thinly bedded rock overlying the famous bed, Nichols (1888:23) pointed out that “above the famous limestone being a valuable and extensive strata of what is termed ‘flux stone’ used in the process of purifying metals, which commands a ready market all over the continent.” To capitalize on these beds and produce flux and other types of crushed stone, two large stone crushing complexes were built, one at North Bay and one at South Bay. Crusher plants, storage bins, and railroad grades are still intact at these two sites. The large scale production of flux stone also required a sizeable inventory of narrow gauge rolling stock and steam cranes. A machine shop, blacksmith shop, locomotive shed, and ancillary sheds were established at West Bay to accommodate maintenance and repair of these components and an office building/general store were built at the North Bay quarry complex.

In the early 1920s, the upper part of the Columbus Limestone was quarried by drilling a row of holes 25 feet back from the working surface, 25 feet apart, and inch ring; and for surfacing roads, all that passed through a 0.75-inch ring, including dust, was used (Fisher 1922:21).

The rapid falling off in demand for building stone in the late 1800s and the increase in demand of crushed stone for lime, flux, and road building made it more economical to quarry only the thin bedded upper rock and just some of the “bottom rock” of the Columbus Limestone. Ver Steeg and Yung (1935:432) noted that “as a result almost the whole top of the island is being
Archaeological Investigation of a Great Lakes Schooner

removed from west to east; the average depth of the vast quarry is twenty-five feet."

Because the upper thin-bedded limestone was generally less than 20 feet thick, the later quarries tended to expand over great areas without attaining much depth. By the early 1920s KIL&T Co. owned about 40% of the island and most of their holdings had been opened to quarrying of the thin-bedded upper strata. The islanders began to resist any attempts on the part of KIL&T Co. to obtain more land, fearing that practically the whole island would be devastated by extension of the quarries (Fisher 1922:23). Thus, quarry operations began to dwindle and KIL&T Co. went out of business on the island in 1942. In 1947 KIL&T Co. continued to be a major property holder on the island, but the abandoned North Bay quarry was only used for drying fishing nets.

Glacial grooves in Columbus Limestone at G. W. Calkins & Company's North Bay quarry, circa 1873 (photo by A. C. Piatt, courtesy of Ohio Historical Society). Note steamer CHARLES HICKOX at North Bay dock.

Maps of Kelleys Island showing land ownership (top) and land use patterns (bottom) in 1947 (from Morrison 1950:107,111). Note North Bay quarry is abandoned and being used only for drying fishing nets.
1998 FIELD INVESTIGATIONS

Following the 1997 survey of the steamer ADVENTURE, plans were made to return to Kelleys Island the next year and to survey the small scow schooner found nearby. Buoyed by their success with the 105-foot steamer, however, it was the general consensus that the much smaller wreck would not be the primary objective during 1998, but only a secondary or alternate site. One of the three or four larger wrecks lying near Kelleys Island would be given priority. It was a risky choice, since a larger vessel would be much more of a challenge, and the two weekends allotted for the task might not prove adequate. The question of whether or not to go to another site was rendered moot when the team gathered for the workshop early in October and found sustained northerly winds pounding the north shore of Kelleys Island. Worse still, the choppy seas had churned up the Lake causing visibility underwater to drop to zero. Even where there was some shelter from the wind and waves, it was impossible to work productively underwater. On Saturday, October 10, an effort was made to set up base lines and to begin a survey of the 140-foot schooner EXCHANGE, lying 300 feet off the south shore of Kelleys Island near the ferry landing. After several attempts, the survey was aborted due to the extremely poor visibility. Virtually no useful information was gathered from the site.

On Sunday morning, October 11, the wind diminished and the water clarity began to improve on the north side of Kelleys Island, and the decision was made to attempt a survey of the unknown scow schooner. This was the last day of the workshop, and only a small site could have been undertaken at that stage. After several days of frustration and indecision, all of the participants were enthusiastic and optimistic, and they quickly organized into teams.

Project leaders fixed a measuring tape to the centerline keel structure of the wreck, with the zero point at its western (bow) end; this would form the survey baseline. All subsequent observations and measurements would be made relative to that line. Four teams were assigned to different sectors of the wreck site and given the responsibility to document whatever features of hull, cargo, artifacts, or debris might be found there. Each team had a lead person, an artist or draftsman, at least two divers capable of making and recording measurements of wreck features relative to the baseline, and a photographer.

The scow wreck was not believed to be of singular historical value, and it had clearly suffered from decades of exposure to shallow water and vandalism by recreational divers. Virtually no retrievable artifacts were seen at the site, and no excavation was planned. Thus, no attempt was made to precisely record the site with traditional XYZ-coordinate grids and the stratigraphic measurements normally employed on terrestrial sites. Rather, a simple, but reliable method was chosen to map the site as efficiently and accurately as possible with the resources available. Wherever possible, simple right-angle measurements were used to establish the location of wreck features, taking advantage of the structure of the ship itself. Since the bottom planking was known to lie at right (90 degree) angles to longitudinal structures like the keel or kneesons, the bottom planks could be used like draftsmen's T-squares to ascertain right-angle measurements outboard on either side of the baseline. A feature might lie one foot four inches to port of the 56-foot mark on the baseline. When it was not possible to fix the location of some feature using the right-angle method, more laborious "trilateration" was employed. Using this technique, two measurements are required from different positions on the baseline, and the feature can be shown to lie at the intersection of two arcs defined by the separate measurements. When the measurements are transferred to a scaled site plan, the position can be accurately established. Photographs and measured sketches were also encouraged to illustrate special features.

A project leader gathered information from the teams during a debriefing that followed each dive, and data was immediately entered onto a site plan. While difficult, it was essential to motivate participants and to track survey progress. The resultant, constantly-evolving plan made it clear where any voids existed in the accumulated data, and it ensured that the on-going survey was targeted at those weaknesses. The site plan was a rough drawing which would be corrected and improved long afterward using field notes, sketches, and photographs generated during the progress of the survey (Plate 1). Video documentation would also have been enormously helpful during this latter stage of the project, although the necessary photographic equipment was not available during the field work.
SURVEY RESULTS

In spite of the serious time constraints imposed by the fall weather, the archaeology team was able to gather much valuable data on the Kelleys Island wreck during its one-day field investigation. It was confirmed that the craft was indeed a cross-planked scow schooner as suspected. It measured approximately 83.5 feet in length and 20 feet in width (Plate 1). The wreck lay in 10 to 12 feet of water on a sand bottom, approximately 50 feet southeast of the ADVENTURE site and 300 feet from shore. The keel was oriented on a compass heading of approximately 220 degrees. At least one-half of the site was buried under the quarry stone which had been the ship’s cargo.

Besides the sizeable mound of stone cargo, measuring approximately 30 by 60 feet, the principal features of the wreck consisted of the centerline keel assembly, several keelsons on each side, most of the ship’s bottom planking, and some lower portions of the sides. There were also remnants of the inner planking or “ceiling” and a scattering of artifacts. There were no clues found regarding the circumstances of the vessel’s loss.

The ship’s backbone assembly consisted of a keel, two assistant keelsons, and two rider keelsons; all white oak, fastened with 9/4-inch iron treenails. The keel and riders were pierced just forward of amidships by a centerboard trunk approximately 24 feet long. The keel measured 14 x 14 inches in cross-section for most of its length, but it was mounded 14 inches and sided 10 inches at the after end. Outboard or “floor” keelsons, five on either side of the keel, were moulded 8 inches and sided 6 inches; these appear to have been fir rather than oak. In most large commercial ships, oak was used for framing members, while white pine was used for deck beams, cabins, and masts (Hall 1880:138). The spacing between keelsons averaged 16 inches, but it varied because the keelsons were lap-jointed rather than scarphed, causing doubling up at some locations. The configuration and dimension of chine-logs proved difficult to establish, since these features were not intact at any location, and where they did survive, they were largely buried in the ship’s cargo. The arrangement of the chine-logs is of great interest, since they are essential to an understanding of the framing scheme employed in this vessel type. A careful examination of this feature indicated that they were sided 6 inches and moulded 9 inches, fixed to side and bottom planking with treenails of 9/4-inch diameter. Since so little of the ship’s sides were preserved, it was not possible to determine how the vertical framing in the sides was fixed to the chine-logs, although it was clear that the ship was fitted with light frames between inner and outer planking, and not the thick edge-bolted sides characteristic of “gunwale-built” scows. No rabbits or mortises were seen in the chine-logs to indicate the dimension or spacing of the vertical frames, but a uniform spacing between inner and outer planking indicated a moulded dimension of 6 inches.

Planking was approximately 2 inches thick inside and out, averaging 10 inches in width. Fastenings were 9/4-inch square nails. Bottom planking near the bow averaged only 6 inches in width while the remainder of the bottom planking averaged 10 inches. It seems likely that the wider planking is a part of the original fabric of the ship, while the narrower pieces at the forward end probably represent repairs. Hull damage resulting from groundings would logically occur at the ship’s bow, thus it is logical to assume that the discrepancy in planking characteristics was a result of routine repairs during the ship’s 29 years of service. The outer planks appeared to be white oak throughout, whereas the ceiling seemed to be 2-inch fir, except for the occasional 2/2- to 3-inch oak ceiling plank, evidently introduced for strength at key locations. Not enough of the ceiling was exposed to determine the arrangement of these thicker planks in the hold, but one such plank was seen near the 56-foot mark on the baseline, perhaps marking the location of some feature such as a hatch opening or the ship’s main mast. No elements of the ship’s decks, beams, or upper works have survived, perhaps because they were fabricated of fir, but undoubtedly because they were also exposed to sunlight, wave action, and ice movement near the lake’s surface.

No elements of the ship’s rigging were found at the site. The size of the vessel suggests that it was a two-masted schooner, although the mast steps were not positively identified in the surviving rider keelsons. Their positions would be of interest. Short oak bolsters were found on either side of the keelsons near the bow (from position 5 to position 8), perhaps indicating the location of the forward mast step, although this could not be corroborated by any other evidence. A single iron “chain plate” or strap was discovered during the 1997 field work, lying along the Kelleys Island shore several hundred feet west of the location of the wreck. This distinctive fastening for the mast shrouds cannot
be positively associated with the scow wreck, but its size and crude manufacture strongly suggest that possibility; it appears to be too small for the nearby ADVENTURE. The chain plate measures ½ inch in thickness, 2½ inches in width, and 63 inches in length; one end is rolled into a loop for the strop of a wooden “deadeye.” The total absence of iron shrouds, fittings, or rigging tools indicates that the scow may have been hemp-rigged. Iron wire for ship rigging was common by the mid-1860s, and its absence may suggest a vessel of pre-Civil War construction, although modest vessels like scow schooners were not always equipped with the costly English-made cable even decades later (Martin 1990:8-9).

Relatively few artifacts were found in association with the ship, although several elements of a cast-iron cook stove were observed about 20 feet off the starboard side and others on the same side near the stern. A few nondescript iron fittings and clay potshards were discovered lying in the wreckage, plus the broken remnants of a one-gallon clay jug and a perfectly-preserved draw knife. No thorough search was made of the area surrounding the wreck, but the excavation of shallow test holes suggests that a significant body of artifacts may lie buried in the sand. Toledo area sports divers produced a collection of artifacts reportedly removed from the site many years ago, including woodworking tools and personal effects. Among them were a variety of hammers, files, twist drills and ship augers, an adz, a stick, a large jug, and a high-topped leather shoe. All of these artifacts were suggestive of mid-to-late 19th century manufacture. Some of the tools had manufacturer’s marks, but none have yet been investigated. It is interesting to note that all of the tools were woodworking tools rather than boatswain’s tools or rigging hardware. No tackle blocks, rigging wire, shackles, or splicing tools were discovered. Aside from the fact that all sailing craft carried some boatswain’s stores, this is also a strong indication that the scow was rope-rigged rather than wire-rigged which had become commonplace long before 1886.

Shipwreck Identification

The scow schooner found alongside the steam barges ADVENTURE in 1998 was not immediately identified. There were no known local traditions regarding the wreck. Veteran local divers thought that the vessel was part of the larger steamer, although some had been diving on it for years. As a result, no effort had been made to determine the identity of the sunken scow. When it was established that the wreck was indeed distinct from the nearby ADVENTURE, many standard historical sources were consulted. None described a wreck near the ADVENTURE site, although many small sailing craft were reported lost in the general vicinity of the Lake Erie Islands and the nearby Pelee Passage. Among the vessels lost in the area were several scow schooners.
ARCHAEOLOGICAL INVESTIGATION OF A GREAT LAKES SCOW SCHOONER

A preliminary list of vessels lost at or near Kelleys Island, Ohio, was compiled from several popular sources (Hamilton et al. 1966, Mansfield 1899, Metzler 1978, Rungen d.n.d., Swazy 1999, Wachtet and Wachtet 2001, and Wright n.d.):

1837 • Schooner RAINBOW sank NW of Kelleys Island (Aug)
1844 • Schooner CLEVELAND sank near Kelleys Island; stone cargo
1847 • Brig UNCLE SAM grounded E of Kelleys Island; lumber cargo (Dec)
1848 • Schooner ASIBABULA capsized near Kelleys Island (Jun)
1850 • Schooner EMORY FLETCHER sank at North Bay, Kelleys Island in gale; raised (Apr)
1852 • Brig F. C. CLARK wrecked off Middle Island (Nov)
1852 • Sidelwheel steamer ST. LOUIS wrecked on Kelleys Island Shoal NE of Kelleys Island (Nov)
1853 • Schooner GOVERNOR PORTER sank near Kelleys Island; stone cargo
1854 • Schooner HOME sank W of Kelleys Island (Dec)
1854 • Schooner FLORENCE grounded off Kelleys Island (Dec)
1857 • Bark EMPIRE wrecked off Marblehead (May)
1861 • Scow WILLIAM MATTHEWS grounded at Kelleys Island
1867 • Scow EAGLE aground at Kelleys Island
1867 • Scow FAIRY reported ashore at Kelleys Island
1869 • Schooner IRIS aground at Kelleys Island
1870 • Schooner MARY ANN wrecked off Marblehead; stone cargo (Nov)
1871 • Schooner VERNIE M. BLAKE sank at Kelleys Island
1872 • Schooner LOUIS McLANE grounded at anchorage N of Marblehead (Aug)
1872 • Schooner ERIE grounded at anchorage off Marblehead (Sep)
1874 • Schooner EXCHANGE sank S of Kelleys Island; stone cargo
1875 • Schooner CONSUELO grounded off Marblehead; raised (May)
1875 • Scow MAYFLOWER sank off Kelleys Island; limestone cargo; recovered (Aug)
1877 • Scow GRAND ARMY capsized near Kelleys Island (Jul)
1879 • Scow JOHN A. SAUNDERS stranded off Marblehead; stone cargo (Nov)
1880 • Scow UNCLE SAM stranded off Kelleys Island
1881 • Schooner Q. A. GILLMORE wrecked on Gulf Island Shoal (Jun)
1882 • Schooner OAK VALLEY stranded off W of Kelleys Island
1882 • Schooner GALATIA stranded off N of Middle Island (Apr)
1883 • Schooner H. F. BALDWIN stranded off Kelleys Island; stone cargo
1884 • tug RELIEF burned & beached on Carpenter Point, Kelleys Island (Jul)
1884 • Schooner KING SISTERS stranded & broke up on Gulf Island Shoal (Oct)
1886 • Scow L. B. CROCKER stranded at Carpenter Point, Kelleys Island (Sep)
1886 • Schooner STAR OF HOPE stranded & broke up off Kelleys Island (Oct)
1886 • Scow W. R. HANNA grounded & pounded to pieces at Kelleys Island; stone cargo (Oct)
1888 • Schooner C. H. PLUMMER burned & sank S of Kelleys Island (Nov)
1894 • Schooner H. D. ROOK stranded W of Kelleys Island (Apr)
1902 • Steam barge GEORGE DUNBAR stranded off Kelleys Island (Jun)
1902 • Schooner AMARETTA MOSSER stranded on Stave Island Reef; coal cargo (Nov)
1903 • Steam barge ADVENTURE burned & sank in North Bay; lime cargo (Oct)
1903 • Schooner JOHN MARK stranded with stone S of Kelleys Island; recovered (Oct)
1905 • Barque RACINE stranded at Kelleys Island; stone cargo
1906 • Schooner WILLIAM CROSTHWAIT stranded SW of Kelleys Island; lumber cargo (Sep)
1906 • Barque CONSTITUTION stranded near West Dock, Kelleys Island; stone cargo (Sep)
1911 • Scow KEEPSAKE stranded on Gulf Island Shoal N of Kelleys Island (Aug)
1911 • Steamer F. H. PRINCE aground & burned E of Kelleys Island (Aug)
1916 • Steamer ISABELLA J. BOYCE aground & burned on East Point Reef off Middle Bass Island (Jun)
1922 • Barque JOHN I. BARLUM grounded SE of Kelleys Island (Sep)

Locations of shipwrecks and wrecking events in the eastern portion of the islands region of western Lake Erie, showing boundary of Kelleys Island Port Authority (base map from chart no. 14844, National Ocean Service, NOAA; illustration prepared by Charles E. Hendendorf).
A methodical check of the known schooner losses in the area established that only the W. R. HANNA’s dimensions were a perfect match to those of the North Bay scow wreck, and it seems a safe assumption that other vessels may consequently be ruled out. Newspaper accounts of the W. R. HANNA’s loss have so far not provided sufficient information to confirm the wreck’s identity, however, and local historians are seeking corroborating evidence. The late Kelleys Island historian Captain Frank Hamilton noted that the scow schooner W. R. HANNA had “foundered (and) pounded to pieces at Kelleys Island” in October 1886 with a cargo of stone, although no specific location was identified for the loss. A chart of western Lake Erie shipwrecks based on Hamilton’s research shows the W. R. HANNA off the tip of Long Point, on Kelleys Island Shod, several miles northeast of the North Bay wreck’s location.

The W. R. HANNA was built in 1857 at Sandusky, Ohio by William R. Hanna for Jonathan Learned (sometimes spelled Larned), also of Sandusky. According to her official U.S. Customs enrollment documents, she was a single-decked scow schooner with two masts and a square bow and stern. She measured 86’ 6” in length overall, 22’ 4” breadth of beam, and 6’ 0” depth of hold. Her registered tonnage was 102’¾ according to the old style of measure (in accordance with a Treasury Department regulation adopted in 1790) or 86.16 gross tons and 81.16 net tons (according to regulations adopted in 1864 and amended in 1881). She was assigned official number 26669. Her enrollments indicate that she changed hands several times, although it should be observed that the enrollment dates do not necessarily coincide with the dates of actual sales; rather, they reflect the dates when those transactions were registered with the U.S. Customs Department. It may be useful to note here, too, that “tonnage” as reflected in vessel enrollments does not mean weight, but rather a register ton refers to the true capacity of the vessel’s cargo space. One register ton represents 100 cubic feet of enclosed space in the ship’s hull or superstructure. Inspection of enrollment documents yielded the following history of this vessel:

• July 23, 1857, Sandusky, Ohio. W. R. HANNA, new; owned by Jonathan Learned, who was also the ship’s master or captain.

• September 8, 1857, Sandusky; owned by Jonathan Learned and Rollin B. Hubbard of Sandusky, each one-half.

• March 28, 1859, Sandusky; owned by Watson Hubbard of Sandusky; Jonathan Learned still master.

• April 10, 1865, Sandusky; W. R. HANNA “readmeasured” to conform with newly-adopted federal regulations. Her measurements according to the new system were 84.7 x 21.6 x 5.6 feet, and 86.16 gross tons. The name of her master (and former owner) is listed in this document as “J. Larned.”

• June 5, 1868, Port Huron, Michigan; vessel sold to Henry and John Howard of Port Huron, each one-half; her master was Thomas A. Ellery.

• February 27, 1871, Port Huron, Michigan; owners unchanged, her master is listed as A. H. Peer.

• April 13, 1875, Port Huron, Michigan; ownership transferred to Lawrence Sinclair of Port Huron, who was also her master.

• April 21, 1877, Port Huron, Michigan; ownership changed to Lawrence Sinclair and M. C. Brown of Port Huron, each one-half; Mr. Sinclair is listed as master.

• March 29, 1878, Port Huron, Michigan; owners changed to Henry Howard and Elizabeth Bedford of Port Huron; George H. Bedford, master.

• May 5, 1881, Port Huron, Michigan; new owner is Horatio N. Jex of Port Huron, who is also master.

• May 15, 1882, Detroit, Michigan; a temporary enrollment indicated that the vessel was owned by L. J. Seek of Toledo, Ohio, “ice dealer”; her master was listed as Frank Provosha. This document was succeeded by a permanent enrollment issued at Toledo, Ohio on January 2, 1885, confirming the same owner and master.

The vessel was removed from U.S. registry at Toledo on June 30, 1888 with a notation that her official papers were lost when the vessel was wrecked, although no date for her loss was recorded at the time. The failure of incoming vessels to file their reports in the Fall of 1886 may indicate the intention of her owners to salvage the vessel, although no evidence of salvage attempts has yet been found in local newspapers.

A violent storm swept across Lake Erie on October 14 and 15, 1886, taking a heavy toll among the ships. Several substantial schooners were destroyed. The schooner SAINT JOSEPH grounded at Fish Point, Pelee Island; the SEA LARK stranded on Pelee Island; the O. M. BOND was driven ashore at Sandusky; owned by Jonathan Learned and Rollin B. Hubbard of Sandusky, each one-half. Learned was still master.

Rondeau on the Canadian shore; the NEVADA was beached at Ashtabula, Ohio; the BELLE MITCHELL foundered southwest of Long Point (with all hands); and the GEORGE M. CASE went down off Port Colborne. The last ship, OFFSET HOPE was lost off Kelleys Island. Several barges in tow of the steamer PASSAIC were badly damaged and nearly lost. All were victims of a gale-force wind that rose in the South and shifted to the West on the night of the 14th (Wachter and Wachter 2001:91).

Northern Ohio newspapers (Sandusky, Cleveland, and Toledo) described the severity and the tragic aftermath of the storm:

• “Toledo, Oct. 14 — The storm today struck Toledo about noon, and from that until three o’clock, the velocity of the wind was about forty-five miles per hour. There was considerable damage done in a small way, blowing down chimneys, breaking in show windows, unroofing buildings, blowing down telegraph and telephone lines and overturning shade trees. No casualties. Reports from north-western Ohio bring tidings of similar damages. Shade trees. No casualties. The most serious, so far being the Court House at Napoleon, which was injured to the extent of one thousand and seventy dollars. [It] was much excoriated during the afternoon, as four yachts, one from Detroit, and three from here, were engaged in a race on Lake Erie. The yachts, however, all arrived safe at Monroe, Mich.” (Sandusky Daily Register, October 15, 1886).

• “Buffalo, Oct. 14 — A terrific gale accompanied by rain set in here this afternoon and continues with increasing fury. At midnight the wind is blowing at the rate of eighty miles per hour. ‘The Island’ inhabited by squatters is flooded and water is rushing in huge waves over it. Twenty-nine houses have been totally destroyed and over 100 persons are homeless. The wife and daughter of Charles Lambert were drowned and several others are reported missing. The basements of all houses on Canal Street are flooded and the Western Transportation [ware] house was blown down, causing a blockade of the Lackawanna tracks. Michigan and Main streets are flooded 700 feet from the dock and Ohio Street is completely flooded. All the lumber yards on the island are wrecked. The damage to shipping is very great. Barges are floating over Evans’ dock and a number are reported smashed. At 8 this evening the rear wall of the new music hall went down with a crash. No one was injured.” (Sandusky Daily Register, October 15, 1886).

• “LAKE AND HARBOR [Sandusky] — There were no arrivals or departures in marine circles yesterday on account of the storm. . . . The JAY COOKE came in from Put-in-Bay but reported a stormy passage, and they would not attempt return, and remained at her dock. The [R. B.] JAYES was an hour getting over from Fox’s dock and would not venture out again. The [AMERICAN] EAGLE started out in the afternoon, but did not go far before she gave up and returned. The [R. F.] FERRIS also gave up and stayed in. . . . The Bay was in a turbulent condition all day, and outside of the waves were said to be mountain high. There are a number of vessels at the B & O dock, but none of them ventured out, although some are ready to sail. . . . A pound boat capsized near Kelley’s Island yesterday morning, but as far as could be learned there was no damage except a good wetting to those in the boat.” (Sandusky Daily Register, October 15, 1886).

• “Port Colborne, Ont., Oct. 14 — An unknown schooner, supposed to be a three masted vessel, foundered when about three miles off this port this afternoon. The tug RUTH started immediately to try and pick up the sailors. A heavy gale was blowing from the southwest at the time. The tug RUTH reports the foundered vessel as the schooner GEO. M. CASE. Capt. Cook, grain laden, bound from Chicago for Buffalo. She saved four of the crew, which were found clinging to the derelict. Capt. Cook and one man never came up after the vessel went down.” (Sandusky Daily Register, October 15, 1886).

• “BLOW YE WINDS — A POWERFUL SOUTHWESTER STIRS UP THE ELEMENTS — About 4 o’clock yesterday morning a gentle breeze sprang up from the southwest which gradually increased until by ten o’clock a semi-tornado accompanied by heavy rain was making things lively in this vicinity. The wind continued with unabated fury all day and into the night, but about two o’clock this morning began to abate and gradually died down to its normal velocity. Inquiry at the Signal Station showed that during the day the wind at the most attained a velocity of 53 miles per hour, which is considered very near a hurricane. Advices from other places show that the storm has been wide spread and has probably created considerable damage but the extent was impossible to learn last night as the wires were down in every direction and particulars were received in a round about manner and were very meager. At one o’clock this morning the wires were reported down east of Dunkirk.”
and Buffalo, which would indicate that the storm, which is probably the one that originated in and shook up the Gulf of Mexico, so badly, is moving to the north and east. This has probably been one of the heaviest gales that has visited these parts in a number of years."

(Sandusky Daily Register, October 15, 1886).

- "LAKE AND HARBOR – The schooner McBRIER is loading coal for Marline City. The steamer OHIO that left this Thursday morning bound for Ashland [Wisconsin] with coal, went aground near Cedar Point before getting outside, and is there yet hard and tight in the mud. The scow HURON [sic] is reported aground on Kelley's Island. The scow ST JOSEPH is aground at Pelice Island in a bad condition. The water was reported to be down three feet below normal Thursday evening." The MONTECELLO with ore from Escanaba arrived outside Thursday morning, but was unable to get in on account of the blow and anchored outside. During Thursday night the wind changed and she got into a trough of sea which rolled her over so bad that they were forced to knock out bulwarks in order to let the water off quicker and keep her from founding. They were towed into the B. & O. dock last evening. The Captain says he never saw such a time on the water before in his life. The wind blew the water as high as the mast head and the waves were rolling over the vessel all the time." (Sandusky Daily Register, October 16, 1886).

- "Detroit, Oct. 15 – Word has been received from the [Detroit] Free Press of the wrecking of the schooner O. M. BOND, from Oswego, at Rountou Point, Lake Erie, yesterday. The vessel and cargo is a total wreck; valued at $8,000. It carried 22,000 bushels of wheat, with which it left here on Wednesday bound for Buffalo. Paddy Ryan, mate of Oswego and a sailor named Joseph Hughes, of Muskegon, were drowned." (Sandusky Daily Register, October 16, 1886).

- "[Sandusky] – The wind did great damage at the Northern Pacific Tea Co., in the West block last night. The wind broke in the large plate of French glass in the north side, and the shattered debris fell in upon the large display of silverware and jewelry, damaging it to a large extent." (Sandusky Daily Register, October 16, 1886).

- "THE MOST SEVERE GALE FOR YEARS – Port Colborne, Ont., Oct. 15 – The gale yesterday was the hardest blow experienced here for years. Water was raised some eight feet in the harbor and the current into the canal was equal to Niagara's river. The wind was principally from the southwest and continued until midnight, when it shifted to the westward and moderated. This morning it was still blowing strong from the west. About four hundred feet of the west pier was washed away. The schooner HARTFORD from Detroit arrived here all safe about 4 o'clock this morning. The captain says the sea was something terrible, washing clear over the vessel and filling the cabin, but the boat sustained no serious damage." (Cleveland Plain Dealer, October 17, 1886).

- "LAKE AND HARBOR – There has yet been no news of the missing schooner BELLE MITCHELL, and there is now no doubt but what she has gone down with all on board. It has been over a week now since she was seen or heard of and all hope of seeing her again has been given up. She left Toledo for Buffalo on Wednesday of last week (October 13, 1886), and has not since been heard from. It is supposed that she was the schooner reported as going to pieces off Erie, Pa. She carried eight men and Capt. T. J. Ruscho, of Clayton, N.Y., was her master. She was owned by T. J. Ruscho, and valued at $9,000." (Sandusky Daily Register, October 22, 1886).

- "ALONG THE LAKE – Masters of vessels arriving at Buffalo have for some time reported seeing spars with rigging and a flag on the middle of the lake off Long Point cut. The rigging seemed to be attached to something under the water. This may possibly be the wreck of the BELLE MITCHELL." (Sandusky Daily Register, October 27, 1886).

- "Erie, Pa., Oct. 26 – William Ruscho, of Clayton, N.Y., is still here looking after the wreckage of the vessel which is reported to have gone down above Erie, and of which it is believed his brother, T. G. Ruscho, of the BELLE MITCHELL was captain. Mr. Ruscho still finds pieces of the wreckage which are familiar to him as portions of the BELLE MITCHELL. The beach is being traversed daily with the expectation that the bodies will wash up." (Sandusky Daily Register, October 27, 1886).

- "The scow W. R. HANNA, owned [sic] by Capt. Frank Provnowha of this city, went ashore during the recent great storm on Kelley's Island, and was pounded to pieces. She is a total loss. She was partly loaded with stone for Detroit at the time. The HANNA was valued at $1,000. No insurance." (Toledo Blade, October 30, 1886).

We suspected that the reference to the scow "HURON" in the Sandusky Daily Register of October 16 was probably an error, and that the vessel in difficulty was in fact, the W. R. HANNA. No scow HANNA is known to have been in service at that date.

1999 FIELD INVESTIGATIONS

In addition to the high quality of the stone, economical water transportation has been noted as a prime factor in the growth of Kelleys Island into the largest limestone producing center in Ohio and the lower Great Lakes region at the turn of the century (Orton and Peppel 1906:212). At that time limestone was sold by weight and a ton of dimension stone was marked between $1.00 and $2.00 a ton, whereas, lump lime in barrels ranged from $5.36 to $6.60 per ton. In 1905 the cost of barrels ready to fill was about $0.21 each. Barrels of "ordinary size" were used—15'/2" to 16'/2" in diameter and 28'/2" in staves. An empty barrel weighed 15 to 16 pounds and could hold 185 pounds net of lump lime or nearly 400 pounds of ground lime. The cost of producing a barrel of lump lime from quarry to loaded aboard a vessel included: quarrying and transport to kiln $0.05, fuel $0.07, labor $0.09, fixed costs $0.04, and barrel $0.21, for a total of $0.46. In 1905 the F.O.B. dockside sales price was about $0.56 per barrel (Orton and Peppel 1906:232).

Final Cargo. The W. R. HANNA was one of the dozens of steam and sailing vessels that serviced the limestone industry of Kelleys Island in the late 1800s. The final cargo of medium-sized dimension stone is believed to have been destined for Detroit (Toledo Blade, October 30, 1886). In June 1999, an attempt was made to estimate the size of the cargo by direct measurement of randomly selected blocks. The limestone blocks, mostly rectangular in shape, occupy most of the central portion of the site, from a position of 9 feet on the baseline to a position of 74 feet, with most of the concentration between 15 and 65 feet. A total of 27 blocks were measured for length, width, and thickness, yielding an average weight of 146.5 pounds per block.

The stone cargo covers an area of approximately 1,060 square feet (average stone = 1.5 square feet) and ranges from 1 to 4 stones deep (average 2.5 stones) which gives an average thickness of 1.4 feet. These approximations yield an estimated total of 1,700 limestone blocks, which occupy 1,500 cubic feet, for a total weight of about 253,000 pounds or 126.5 tons. The intended purpose of the stone is unknown, but the size of the blocks is consistent with the material that was being used for harbor and breakwater structures in the late 1800s, particularly the size of the stone that was used to fill timber cribs.

The transport of limestone and lime products contributed greatly to the early commercial traffic on the Great Lakes and has traditionally ranked among the top five commodities in shipping tonnage. Initially, much building stone was shipped from Kelleys Island (Ver Steeg and Yunck 1935:433). In the period immediately following the sinking of the W. R. HANNA, the island quarry operators concentrated on burned lime and crushed flux stone which was shipped throughout the Great Lakes region on vessels such as the steam barge ADVENTURE.
Measurements of Limestone Cargo on the Wreck of the W.R. Hanna

<table>
<thead>
<tr>
<th>Artifact No.</th>
<th>Baseline Position 1</th>
<th>Length (in)</th>
<th>Width (in)</th>
<th>Thickness (in)</th>
<th>Shape of Stone Block</th>
<th>Volume (cu. ft.)</th>
<th>Weight 2 (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-1</td>
<td>9</td>
<td>18</td>
<td>15</td>
<td>8</td>
<td>Rectangular</td>
<td>1.25</td>
<td>210.6</td>
</tr>
<tr>
<td>H-2</td>
<td>10</td>
<td>25</td>
<td>20</td>
<td>7</td>
<td>Rectangular</td>
<td>2.03</td>
<td>342.0</td>
</tr>
<tr>
<td>H-3</td>
<td>11</td>
<td>14</td>
<td>12</td>
<td>4</td>
<td>Rectangular</td>
<td>0.39</td>
<td>65.7</td>
</tr>
<tr>
<td>H-4</td>
<td>12</td>
<td>20</td>
<td>12</td>
<td>7</td>
<td>Rectangular</td>
<td>0.97</td>
<td>163.4</td>
</tr>
<tr>
<td>H-5</td>
<td>14</td>
<td>20</td>
<td>14</td>
<td>6</td>
<td>Rectangular</td>
<td>0.97</td>
<td>163.4</td>
</tr>
<tr>
<td>H-6</td>
<td>20</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>Triangular</td>
<td>0.25</td>
<td>42.1</td>
</tr>
<tr>
<td>H-7</td>
<td>24</td>
<td>15</td>
<td>10</td>
<td>6</td>
<td>Rectangular</td>
<td>0.52</td>
<td>87.6</td>
</tr>
<tr>
<td>H-8</td>
<td>26</td>
<td>14</td>
<td>11</td>
<td>6</td>
<td>Rectangular</td>
<td>0.53</td>
<td>89.3</td>
</tr>
<tr>
<td>H-9</td>
<td>27</td>
<td>31</td>
<td>14</td>
<td>6</td>
<td>Triangular</td>
<td>0.75</td>
<td>126.4</td>
</tr>
<tr>
<td>H-10</td>
<td>30</td>
<td>14</td>
<td>13</td>
<td>6</td>
<td>Rectangular</td>
<td>0.63</td>
<td>106.1</td>
</tr>
<tr>
<td>H-11</td>
<td>31</td>
<td>22</td>
<td>14</td>
<td>6</td>
<td>Rectangular</td>
<td>1.07</td>
<td>180.3</td>
</tr>
<tr>
<td>H-12</td>
<td>32</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>Rectangular</td>
<td>0.38</td>
<td>64.0</td>
</tr>
<tr>
<td>H-13</td>
<td>34</td>
<td>18</td>
<td>12</td>
<td>7</td>
<td>Rectangular</td>
<td>0.88</td>
<td>148.3</td>
</tr>
<tr>
<td>H-14</td>
<td>38</td>
<td>20</td>
<td>14</td>
<td>6</td>
<td>Rectangular</td>
<td>0.97</td>
<td>163.4</td>
</tr>
<tr>
<td>H-15</td>
<td>39</td>
<td>19</td>
<td>12</td>
<td>7</td>
<td>Rectangular</td>
<td>0.92</td>
<td>155.0</td>
</tr>
<tr>
<td>H-16</td>
<td>40</td>
<td>18</td>
<td>15</td>
<td>6</td>
<td>Rectangular</td>
<td>0.94</td>
<td>158.4</td>
</tr>
<tr>
<td>H-17</td>
<td>41</td>
<td>19</td>
<td>12</td>
<td>9</td>
<td>Rectangular</td>
<td>1.19</td>
<td>200.5</td>
</tr>
<tr>
<td>H-18</td>
<td>49</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>Rectangular</td>
<td>0.33</td>
<td>55.6</td>
</tr>
<tr>
<td>H-19</td>
<td>50</td>
<td>22</td>
<td>14</td>
<td>9</td>
<td>Rectangular</td>
<td>1.60</td>
<td>269.6</td>
</tr>
<tr>
<td>H-20</td>
<td>51</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>Rectangular</td>
<td>0.75</td>
<td>126.4</td>
</tr>
<tr>
<td>H-21</td>
<td>55</td>
<td>15</td>
<td>12</td>
<td>6</td>
<td>Triangular</td>
<td>0.73</td>
<td>123.0</td>
</tr>
<tr>
<td>H-22</td>
<td>57</td>
<td>15</td>
<td>12</td>
<td>7</td>
<td>Rectangular</td>
<td>0.91</td>
<td>153.6</td>
</tr>
<tr>
<td>H-23</td>
<td>58</td>
<td>15</td>
<td>14</td>
<td>9</td>
<td>Rectangular</td>
<td>1.09</td>
<td>153.6</td>
</tr>
<tr>
<td>H-24</td>
<td>59</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>Rectangular</td>
<td>0.22</td>
<td>37.1</td>
</tr>
<tr>
<td>H-25</td>
<td>61</td>
<td>22</td>
<td>21</td>
<td>7</td>
<td>Rectangular</td>
<td>1.87</td>
<td>315.1</td>
</tr>
<tr>
<td>H-26</td>
<td>68</td>
<td>16</td>
<td>15</td>
<td>7</td>
<td>Rectangular</td>
<td>0.98</td>
<td>163.4</td>
</tr>
<tr>
<td>H-27</td>
<td>74</td>
<td>19</td>
<td>14</td>
<td>3</td>
<td>Rectangular</td>
<td>0.26</td>
<td>60.7</td>
</tr>
</tbody>
</table>

Mean: 17.3, 12.6, 6.6, 0.87, 146.5

1 Baseline oriented toward the northeast, starting at the bow
2 Weight based on a specific gravity of limestone (CaCO₃) at 2.7 (1,728 cu. in. = 1 cu. ft. = 168.5 lbs. of stone)
ACKNOWLEDGMENTS

The authors acknowledge the assistance of our colleagues in organizing and teaching the nautical archaeology workshop: W. Jeffrey Welsh, Professor of History, Firelands College, Bowling Green State University at Huron, Ohio; William O’Brien, former Director of the Island Seas Maritime Museum in Vermilion, Ohio; Michael J. Colvin, Manager of Ohio Coastal Management Program, Ohio Department of Natural Resources; Franco Ruffini, Ohio Historic Preservation Office, Ohio Historical Society; Kenneth Baker, Professor of Biology, Heidelberg College, Tiffin, Ohio; Joyce Hayward, Educator and Diver from Bellevue, Ohio; and Russell MacNeal, Master Dive Instructor and Chairperson of the Ohio Maritime Advisory Council from Elyria, Ohio. Workshop staff members Ellen L. Keller of Willoughby Hills, Ohio; Susan E. MacNeal of Grafton, Ohio; and Linda and Scott Pansing of Delaware, Ohio also provided valuable assistance to this project.

The workshop and research for this paper were supported by a grant from the Ohio Lake Erie Commission (Lake Erie Protection Fund Grant No. S9-89). Co-sponsors of the project included the Ohio Maritime Advisory Council, Ohio Lake Erie Commission, Ohio Department of Natural Resources, Ohio Historical Society, Great Lakes Historical Society, Ohio Sea Grant College Program at The Ohio State University, and Firelands College of Bowling Green State University. James K. Bissell, Coordinator of Natural Areas, Cleveland Museum of Natural History, granted a permit to the Museum’s property on Kelleys Island that greatly facilitated access to the shipwrecks in North Bay. Craig Morton, Manager, Kelleys Island State Park, graciously arranged access to archaeological and geological sites within the park. The authors are particularly indebted to Georgann and Michael Wachter of Avon Lake, Ohio, who participated in the June 1999 survey of the site, researched local newspapers, and provided historic photographs of the quarrying operations on Kelleys Island.

Robert W. Graham, archivist, Historical Collections of the Great Lakes, Bowling Green State University and Gordon Weidt, maritime historian from Sandusky, Ohio provided valuable information on the history of ADVENTURE and W. R. HANNA. Franco Ruffini of the Ohio Historic Preservation Office and Ruth G. Myers of Gray and Pape, Inc., Cultural Resources Consultants, supplied useful documents and reports on the history of the Kelleys Island limestone industry and on archaeological investigations of the North Bay complex of the Kelley Island Lime and Transport Company. The assistance of these researchers is greatly appreciated.

The 43 students who participated in the nautical archaeology workshop and assisted with the underwater measurement of the shipwreck have added materially to the content of this paper. The authors appreciate their energetic work on this project and gratefully acknowledge their contributions:

Matthew Ballish, Euclid, Ohio
Heather L. Bussmann, Lakewood, Ohio
Dennis C. Cilensek, Mentor, Ohio
John D. DeLuca, Garfield Heights, Ohio
Joe Dolan, Willoughby, Ohio
Jeffrey Dooley, Cleveland, Ohio
Duke DuShane, Coldwater, Michigan
Sam Fair, Whitehouse, Ohio
Roger L. Franklin, Huron, Ohio
Danny J. Garner, Lake Milton, Ohio
Gregory A. Gossman, Wixom, Michigan
Neo O. Hadijahardambus, Monroe, Michigan
Roy L. Heaton, Jr., Manta, Ohio
Ricki C. Herndon, Sheffield Village, Ohio
Michael Courtney Herr, Manta, Ohio
Joel Hogue, Columbus, Ohio
John L. Hoyt, Marblehead, Ohio
Joseph C. Hoyt, Marblehead, Ohio
Laura Jeter, Stow, Ohio
Bill Kamen, Huron, Ohio
James C. Ladd, Cleveland, Ohio
David W. Liggett, Dublin, Ohio
Jeffrey S. Malcolm, Norwalk, Ohio
Jame B. Mauer, Columbus, Ohio
Kevin F. May, Columbus, Ohio
Laura Mayer-Rihm, Centerville, Ohio
Gregory J. Millinger, Port Clinton, Ohio
Judy A. Ormeroid, Marysville, Ohio
Jack S. Ott, Cleveland, Ohio
Linda L. Pansing, Delaware, Ohio
Markson R. Pansing, Columbus, Ohio
Anthony Pietrowski, Cleveland, Ohio
James T. Redmond, Aurora, Ohio
Daniel S. Rihm, Centerville, Ohio
David J. Rihm, Centerville, Ohio
Charles W. Robert, Akron, Ohio
Bobbie Sayle, Baltimore, Ohio
Georgann S. Wachter, Avon Lake, Ohio
Michael G. Wachter, Avon Lake, Ohio
Christopher T. Walter, Bellevue, Ohio
Eileen A. Weinstein, Toledo, Ohio
Deidre M. Williams, Perrystrug, Ohio
Robert A. Zogg, Lyndhurst, Ohio

Vessel flattening (left) and sandstone grinding wheel (right) salvaged from the W. R. HANNA shipwreck in the 1980s (photo by Georgann Wachter).

Ship’s tools and other artifacts salvaged from the W. R. HANNA shipwreck in the 1980s (photo by Georgann Wachter).
ABOUT THE AUTHORS

C. PATRICK LABADIE
Mr. Labadie is historian and exhibit coordinator at the Thunder Bay National Marine Sanctuary in Alpena, Michigan. He is the former Director of the U.S. Army Corps of Engineers' Lake Superior Visitors Center (formerly the Canal Park Marine Museum) in Duluth, Minnesota, a position he held from 1973 to 2000. He is well known in the Great Lakes region as a maritime historian and for his special interest in 19th century wooden shipbuilding technology. Mr. Labadie started his maritime career in 1960 as exhibits preparator and assistant to the Curator at the Dossin Great Lakes Museum in Detroit, Michigan. In 1968, he was appointed Director of the Saguaneack Marine Museum which is housed on board the retired passenger steamer KEWAWIN in Douglas, Michigan. Mr. Labadie has served as a consultant on submerged cultural resources and maritime history to numerous organizations, including the Great Lakes Historical Society, U.S. National Park Service, Minnesota Historical Society, Illinois Historic Preservation Agency, State Historical Society of Wisconsin, Michigan Department of Historic Preservation, and Tidewater Atlantic Research. Mr. Labadie is an active member of the Association for Great Lakes Maritime History and lectures widely on maritime topics.

CHARLES E. HERDENFORD
Dr. Herdenford is Professor Emeritus of Geological Sciences and Zoology at The Ohio State University. He started his Great Lakes career as a geologist with the Lake Erie Section of the Ohio Geological Survey in 1960, then joined the faculty of The Ohio State University in 1971 where he was the founding director of the Center for Lake Erie Area Research (CLEAR) and the Ohio Sea Grant College Program; from 1973 to 1988 he also directed the Franz Theodore Stone Laboratory, Ohio's biological field station on Lake Erie at Put-in-Bay. Dr. Herdenford is a certified geologist, fisheries scientist, and underwater archaeologist; he served as science coordinator of the SS CENTRAL-AMERICA Project, a 5-year expedition to explore the 1857 shipwreck of a gold-rush steamship that sank in a hurricane nearly 200 miles off the Carolina coast, in water 8,000 feet deep! He teaches courses in oceanography, marine biology and geology, Great Lakes studies, and nautical archaeology. He currently serves as trustee of the Great Lakes Historical Society and coordinator of its Peacock Lake Erie Shipwreck Research Center in Vermilion, Ohio. He also operates a Great Lakes and oceanographic consulting firm, EcoSphere Associates, located at Garfield Farts in Sheffield Village, Ohio.

LITERATURE CITED

Cleveland Herald, Cleveland, Ohio. April 26-28, 1881.
Cleveland Plain Dealer, Cleveland, Ohio. October 17, 1886.
Detroit Free Press, Detroit, Michigan. March 31, 1860; June 20, 1874.
Fisher, M. 1922 The Geology of Kelleys Island, M. A. Thesis, Ohio State University, Columbus, Ohio. 29 pp.
Metzler Publisher, Lakewood, Ohio. 1 chart.

Morrison, P. C. 1950 Kelleys Island, Ohio: An
economy in transition. Economic Geography
26(2):105-124.

Myers, R. G, W. K. Pape, T. J. Minichillo, and E. J.
Harris 1992 Phase IV Data Recovery on a Portion
of the Kelleys Island Lime & Transport Co. North
Bay Quarry Complex (Site 33ER336) Kelleys Island,
Erie County, Ohio. Project Rept. No. 91-8 to Ohio
Department of Natural Resources, Columbus, Ohio.
170 pp.

Nebergall, W. H., F. C. Schmidt, and H. F. Holtzclaw,
Jr. 1963 College Chemistry with Qualitative
Analysis, (2nd Ed.). D. C. Heath and Co., Boston,
Massachusetts. 861 pp.

Newell, M. M. 1996 The Historic Working Craft of
South Carolina: A General Typology with a Study
of Adaptations of Flatboat Design. Research
Manuscript No. 7. The Georgia Archaeological
Institute, Augusta, Georgia. 170 pp.

Nichols, G. G. 1888 Nichols' Handy Guide Book to
Put-in-Bay, Middle Bass and Kelleys Island. I. F.
Mack and Brother, Sandusky, Ohio. 32 pp.

Olmsted, R. R. 1988 Scow Schooners of San Francisco
Bay. Local History Studies Volume 33, California
History Center, Cupertino, California. 102 pp.

Orton, E., Jr. and S. V. Peppel 1906 The Limestone
Resources and the Lime Industry in Ohio. Ohio
365 pp.

Pape, W. K. 1988 Nomination of Kelleys Island
Historic District to National Register of Historic
Places. U.S. Department of the Interior, National
Park Service. NRIS Reference No. 88002734. 107
pp.

Port Huron Daily Times, Port Huron, Michigan.
December 23, 1870.

Ross, H. H. 1949 Enchanting Isles of Erie. The Toledo
Blade, Toledo, Ohio. 80 pp.

Runge, H. G. n.d. (c. 1944) List of Great Lakes
Shipwrecks: 1679 to 1943. Unpublished manuscript
in Maritime Collection, Milwaukee Public Library,
Milwaukee, Wisconsin. 393 pp.

Ryall, L. J. 1913 Sketches and Stories of the Lake Erie

Sandusky Daily Register, Sandusky, Ohio. October 15
& 16, 1886.

Staucfer, C. R. 1909 The Middle Devonian of Ohio.
10. 204 pp.

Swaze, D. D. 1999 The Great Lakes Shipwreck File:
David D. Swaze, Publisher, Lake Isabella, Michigan. 592 pp.

Toledo Blade, Toledo, Ohio. October 30, 1886.

U.S. Customs Department 1857-1886 Records of
Enrollment of U.S. (Merchant) Vessels. Records
group 41 in U.S. National Archives, Washington, DC.

Ver Steeg, K. and G. Yenck 1935 Geography and
geology of Kelleys Island. Ohio J. Sci. 35(6):421-
433.

Wachtler, R. and M. Wachtler 2001 Erie Wrecks West:
A Guide to the Shipwrecks of Western Lake Erie.

Wilson, L. G. n.d. Untitled, unpublished manuscript
in Historical Collections of the Great Lakes, Jerome
Library, Bowling Green State University, Bowling
Green, Ohio. 176 pp.

Wright, R. J. n.d. (c. 1978) Preliminary Historical
Inventory of Water-Related Sites for Northern Ohio.
Prepared by the Center for Archival Collections,
Bowling Green State University for Ohio
Department of Natural Resources, Columbus, Ohio.
19 pp.