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Introduction

In nature, bipedal animals switch gaits at differ-
ent speeds to minimize their energy expenditure
[1]. The most common bipedal gaits are walking
and running. Geyer et al. explored the parameter
space of the bipedal SLIP (Spring Loaded Inverted
Pendulum) model, showing that it is able to reveal
the underlying dynamics of both walking and run-
ning with one mechanical system. Rummel et al.
investigated regions of walking patterns with 2, 3,
and 4 humps in the vertical GRFs (Ground Reac-
tion Forces), level walking, running, and grounded
TUNNING.

However, in the previous SLIP models, the dy-
namics of the swing leg is replaced by one contact
angle. This means, at touch-down events, both
limbs have the same contact angle. This limitation
confines these models to producing only symmetri-
cal gaits such as walking and running. Moreover,
due to the lack of articulated knee joints in the
model, the leg length is set to its uncompressed
spring length during swing, some of the realistic
solutions at low speeds were ignored.

Besides walking and running, terrestrial animals
in nature use many other bipedal gaits such as
hopping, skipping, and galloping. For instance,
skipping is often used by some primates such as
lemurs [4], and hopping is often observed in many
birds and mammals including crows and kanga-
roos [5, 6]. Bipedal galloping is also adopted by
humans in special situations such as fast turning,
stairs descending, or in low gravity environments
[7, 8].

In order to reveal the relationships among all these
gaits, there is still a need to develop a single uni-
fied model that can reproduce the motions of all
these gaits. For example, as shown in the previous
research [3], a smooth transition from walking to
running was identified. We are wondering if simi-
lar relationships can be extended to other bipedal
gaits.

Therefore, in this project, we propose a bipedal
model with two compliant legs that is similar to
the Geyer SLIP model. Unlike the previous mod-
els, we assign different contact angles (angles of

attack) for different legs, so that walking, run-
ning, hopping, and skipping/galloping gaits can be
found.

With respect to the model’s dynamics, the touch-
down and lift-off events are triggered by additional
timers whose exact values are found by the nonlin-
ear solver. By conducting a detailed continuation
in the selected parameter space (Energy and an-
gles of attack), regions of all the bipedal gaits are
revealed.

Methods

The method used in this study is similar to
the implementation of the BVP (Boundary Value
Problem) [9]. The generalized position and ve-
locity in the model are q = [m,y]T and q =
[#,9]". We select the apex transition as our
Poincaré section. Five timing variables e =
[tLtd7 trio, tRtds tRlos tApx]T are used to determine
the touch-down and lift-off events. To find solu-
tions with arbitrary footfall patterns, the order of
these events are not specified, but their values are
restricted within the time interval of [0, ¢ 4,]. The
active parameters in the system p include the to-
tal energy E;, and two angles of attack (oy, ;).
Therefore, the dynamics of the model are governed
by a set of differential equations (EOM):

él:f(q,él,e;p)- (1)

To identify all regions of periodic solutions from
this model, we have conducted a multidimensional
continuation in the parameter space. That is,
we uniformly mesh the whole parameter space
spanned by E;, oq, and ... For each periodic solu-
tion from this model, we conduct Floquet Analysis
on the Poincaré map, and create candidate solu-
tions in all nearby grids. The initial guesses of the
candidates are based on the given periodic solu-
tion as well as the prediction of the corresponding
eigenvectors. Then we run the root search to see
if the candidate solution is periodic.

When the borders of regions that connects differ-
ent gaits are reached, we run separate instances
of continuation algorithm to track the bifurcations
that are characterized by having two ”+1” Floquet



multipliers that correspond to the two continuous
states: © and y. The model and the searching al-
gorithm are implemented in MATLAB. The root
search is solved numerically with an accuracy of
1077,

Results & Discussion
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Figure 1: All the periodic solutions of the pro-
posed SLIP model are shown in this figure.
They include multiple walking and running gaits,
and several new gaits like hopping and skip-

ping/galloping.

From the current results, we have successfully re-
produced all solutions found in previous research
in addition to several new bipedal gaits as shown
in Fig. 1. The manifold of bipedal hopping has
very similar shape of the running solution. Skip-
ping gait is found as a pitch-fork bifurcation from
the hopping manifold. In this gait, one leg strikes
the ground first as the trailing leg and the other
one touches the ground in the front as the leading
leg. The grounded running and the level walking
are essentially the same gait that reside in the dif-
ferent regions of the same surface. One side of
this surface joins to the running through saddle-
node bifurcations and the other side of this surface
is directly connected to walking with 2 humps in
vertical GRFs.

Different from the solutions reported in the previ-
ous literature, our model suggests that the walk-
ing regions with 2, 3, and 4 maxima (W2, W3,
and W4) in the vertical GRFs can be extended
to lower speed regions. Eventually, all these solu-
tions join together at zero speed and become the
hopping in-place gaits.

We found that all these bipedal gaits are just dif-
ferent oscillation modes of the same mechanical
system. These modes of solutions live on multi-
ple manifolds on the same Poincaré section, and
they are connected at multiple landmark solutions
where we see smooth transitions from one mode
to another. These results may help understanding
the relationships among bipedal gaits in nature,
and designing controllers for efficient gait transi-
tions in legged robots. Hence, this model has the
potential to serve as the general template for the
study of bipedal locomotion.

References

[1] R McN Alexander. The gaits of bipedal and
quadrupedal animals. The International Jour-
nal of Robotics Research, 3(2):49-59, 1984.

[2] Hartmut Geyer, Andre Seyfarth, and Reinhard
Blickhan. Compliant leg behaviour explains
basic dynamics of walking and running. Pro-
ceedings of the Royal Society of London B: Bi-
ological Sciences, 273(1603):2861-2867, 2006.

[3] Juergen Rummel, Yvonne Blum, and Andre
Seyfarth. From walking to running. In Au-
tonome Mobile Systeme 2009, pages 89-96.
Springer, 2009.

[4] Michael H Dickinson, Claire T Farley, Robert J
Full, MAR Koehl, Rodger Kram, and Steven
Lehman. How animals move: an integrative
view. science, 288(5463):100-106, 2000.

[5] G Hayes and R Alexander. The hopping gaits
of crows (corvidae) and other bipeds. Journal
of Zoology, 200(2):205-213, 1983.

[6] R Alexander and Alexandra Vernon. The me-
chanics of hopping by kangaroos (macropo-
didae). Journal of Zoology, 177(2):265-303,
1975.

[7] Alberto E Minetti. The biomechanics of skip-
ping gaits: a third locomotion paradigm? Pro-
ceedings of the Royal Society of London B: Bi-
ological Sciences, 265(1402):1227-1233, 1998.

[8] Pieter Fiers, Dirk De Clercq, Veerle Segers,
and Peter Aerts. Biomechanics of human
bipedal gallop: asymmetry dictates leg func-
tion. Journal of Experimental Biology, 216(7):
1338-1349, 2013.

[9] Andreas Merker, Dieter Kaiser, and Martin
Hermann. Numerical bifurcation analysis of
the bipedal spring-mass model. Physica D:
Nonlinear Phenomena, 291:21-30, 2015.



