Exploring All Bipedal Gaits with a United Simplistic Model

Chang Liu, Zhenyu Gan, and C. David Remy
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI

Motivation

- Bipedal Spring Loaded Inverted Pendulum (SLIP) model with one predefined contact angle (angle of attack) for both legs can be used to simulate walking and running gaits.
- Touch-down and lift-off events are triggered when foot strikes the ground (event detection functions).
- There are other bipedal gait types such as hopping, skipping, and galloping, where two legs can have different angles of attack.
- Numerical errors are observed when foot is hovering only slightly above/below the ground (for instance, grounded running).

Gait Creation

- The Gait Creation is the implementation of Boundary Value Problem (BVP).
- The generalized position and velocity in the model are \(\mathbf{q} = [x, y]^T \) and \(\dot{\mathbf{q}} = [\dot{x}, \dot{y}]^T \).
- Except for asymmetrical walking, Poincare section is selected in apex where \(y = 0 \).
- To avoid numerical errors that are observed in previous research, four timing variables \(t \) are used to determine the touch-down and lift-off events.
- To find solutions with arbitrary foot patterns, the order of these events is not specified, but their values are restricted within the time interval of a stride \([0, t_{\text{Stride}}] \).
- The active parameters \(\gamma \) in the system include:
 - the total energy \(E_{\text{total}} \), and two angles of attack \((\alpha_1, \alpha_2) \).
- The dynamics of the model are governed by a set of differential equations (EOM):
 \[\mathbf{q} = f (\mathbf{q}, \dot{\mathbf{q}}, \mathbf{e}). \]

Searching Algorithm

- To identify all regions of periodic solutions from this model, we have conducted a multi-dimensional continuation in the parameter space.
- That is, with a grid size of 0.001, we uniformly mesh the whole parameter space spanned by \(E_{\text{total}}, \alpha_1, \alpha_2 \).
- For each periodic solution, we conduct Floquet analysis on the Poincare map, and create candidates in all nearby grids. The initial guesses of the candidates are the given periodic solution and the prediction of the corresponding eigenvectors. Then we run root search to see if the candidate is periodic.
- When the borders of regions that connects different gait are reached, we run separate instances of continuation algorithm to track the bifurcations that are characterized by having two “+1” Floquet multipliers that correspond to \(x \) and \(y \).
- The model and the searching algorithm are implemented in MATLAB. The root search is solved numerically using the integrator ODE45, with an accuracy of \(10^{-9} \).

Current Results

- Entire solution volume spans in 3D \(E_{\text{total}}, \alpha_1, \alpha_2 \).
- Solutions at high energy level (up to \(\infty \)) are found to be hopping at high speed with large angles of attack.
- Symmetries are observed in angles of attack space, and analyzing one of the 4 parts is suffice.

Model

- To find all bipedal gaits that can be generated passively, we modified the original bipedal SLIP model by including two varying angles of attack \((\alpha_1, \alpha_2)\) for two legs.
- Neither friction nor collision losses are considered so that an energetically conservative system is created.
- Angles of attack are periodic.
- Fixed parameters in this study: Spring stiffness \(k_{\text{leg}} = 20 \), the gravity \(g = 1 \), the rest length for both legs \(l_0 = 1 \), and the center of mass (COM) \(M = 1 \).

References

Chang Liu (jackliu@umich.edu)
Zhenyu Gan (ganzheny@umich.edu)
C. David Remy (cdremy@umich.edu)