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Disclaimer

These lecture notes were written for a first-year Ph.D. course on General

Equilibrium Theory and Contract Theory. They are a work in progress and

may therefore contain errors. The GE section borrows liberally from Levin’s

(2006) notes and from Wolitzky’s (2016) notes. I am grateful to Angie Ac-

quatella for many helpful comments. Any comments or suggestions would

be greatly appreciated.
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Introduction

In the first three weeks of this course, our goal is to develop a parsimo-

nious model of the overall economy to study the interaction of individual

consumers and firms in perfectly competitive decentralized markets. The re-

sulting framework has provided the workhorse micro-foundations for much

of modern macroeconomics, international trade, and financial economics. In

the last three and a half weeks, we will begin to study managed transactions

and in particular how individuals should design institutions such as contracts

and property rights allocations to governance structures, to achieve desirable

outcomes.
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Part I

The Invisible Hand

1
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The main ideas of general equilibrium theory have a long history, going

back to Adam Smith’s evocative descriptions of how competition channels

individual self-interest in the social interest and how a sense of “coherence

among the vast numbers of individuals and seemingly separate decisions”

(Arrow, 1972) can arise in the economy without explicit design. General

equilibrium theory addresses how this aggregate “coherence”emerges from

individual interactions and can potentially lead to socially desirable alloca-

tions of goods and services in the economy. The mechanism through which

this coherence emerges is, of course, the price mechanism. Individuals facing

the same, suitably determined, prices will end up making decisions that are

well-coordinated at the economy-wide level.

What distinguishes general equilibrium theory from partial equilibrium

theory, which you have studied in Economics 2010a, is the idea that if we

want to develop a theory of the price system for the economy as a whole,

we have to consider the equilibrium in all markets in the economy simulta-

neously. As you can imagine, thinking about all markets simultaneously can

be a complicated endeavor, since markets are interdependent: the price of

computer chips will affect the price of software, cars, appliances, and so on.

General equilibrium theory was the most active research area in economic

theory for a good part of the 20th century and is therefore a very rich topic.

Our goal over the first three weeks of the course is to cover only the basics.

In many ways, the first part of this class will be structured the way an

applied theory paper is structured. We will start by talking about the setup
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of a model: who are the players, what do they do, what do they know, what

are their preferences, what is the solution concept we will be using? Then we

will partially characterize its solution, focusing on its effi ciency properties in

particular. What do I mean by partially characterize? I mean that we will

be describing some properties of equilibria that we can talk about without

actually solving the full model. That should take us through the first week.

In the second week, we will do a little bit of heavier lifting and begin with

a question that is often easy to overlook but is very important to answer:

does an equilibrium exist? Existence proofs can sometimes seem like a bit of

an esoteric detour, but a good existence proof is especially useful if it helps

build tools to answer other important questions about the model. After

we establish that an equilibrium exists, we will ask questions like: when is

there a unique equilibrium? Are equilibria stable? What are the testable

implications of equilibrium behavior?

In the third week, we will put the model’s solution concept, competitive

equilibrium, on firmer microfoundations. A lot of economics is buried in the

solution concept, and developing microfoundations for the solution concept

is a useful way to flesh out some of the key insights. We will conclude with

what I will blandly call “extensions,”but are really the meat and potatoes

of how general equilibrium theory gets used in practice. We will show how

we can introduce firms, time, and uncertainty into the framework, and we

will talk about how and when the main results we identified above apply in

these settings as well.



Chapter 1

Pure Exchange Economies

A general equilibrium model describes three basic activities that take place

in the economy: production, exchange, and consumption. For the first two

weeks, we will set production aside and focus on the minimal number of

modeling ingredients necessary to give you a flavor of the powerful results of

general equilibrium theory.

We begin with a description of the model we will be using. As always,

the exposition of an economic model specifies a complete description of the

economic environment (players, actions, and preferences) and the solution

concept that will be used to derive prescriptions and predictions.

The Model Formally, a pure exchange economy is an economy in which

there are no production opportunities. There are I consumers i ∈ I =

{1, . . . , I} who buy, sell, and consume L commodities, l ∈ L = {1, . . . , L}.

5
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A consumption bundle for consumer i is a vector xi = (x1,i, . . . , xL,i),

where xi ∈ Xi, which is consumer i’s consumption set and just describes her

feasible consumption bundles. We will assume throughout that Xi contains

the 0 vector and is a convex set. Consumer i has an endowment of the

L commodities, which is described by a vector ωi = (ω1,i, . . . , ωL,i) and has

preferences over consumption bundles, which we assume can be represented

by a utility function ui : Xi → R. A pure exchange economy is therefore

a set E =
(
(ui, ωi)i∈I

)
, which fully describes the model’s primitives: the set

of players, their preferences, and their endowments.

Each consumer takes prices p = (p1, . . . , pL) as given and solve her con-

sumer maximization problem:

max
xi∈Xi

ui (xi) s.t. p · xi ≤ p · ωi,

where the right-hand side of the consumer’s budget constraint is her wealth,

as measured by the market value of her endowment at prices p. Consumer i’s

feasible actions are therefore xi ∈ Bi (p) ≡ {xi ∈ Xi : p · xi ≤ p · ωi}, where

we refer to Bi (p) as her budget set at prices p. Given prices p and endow-

ment ωi, we will refer to consumer i’s optimal choices as her Marshallian

demand correspondence and denote it by xi (p, p · ωi). Simply put, all

consumers do in this model is to choose their favorite consumption bundles

in their budget sets.

We have now described the players and their actions, but no model de-
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scription is complete without a solution concept. Here, the solution con-

cept will be a Walrasian equilibrium, which will specify a set of prices and

a consumption bundle for each consumer (we will refer to a collection of

consumption bundles for each consumer as an allocation) that satisfy two

properties: consumer optimization and market-clearing. Given prices p, each

consumer optimally chooses her consumption bundle, and total demand for

each commodity equals total supply.

Definition 1. AWalrasian equilibrium for the pure exchange economy

E is a vector
(
p∗, (x∗i )i∈I

)
that satisfies:

1. Consumer optimization: for all consumers i ∈ I,

x∗i ∈ argmaxxi∈Bi(p∗) ui (xi) ,

2. Market-clearing: for all commodities l ∈ L,

∑
i∈I

x∗l,i =
∑
i∈I

ωl,i.

We have now fully specified the model, but before we start to go into

more detail discussing the properties of Walrasian equilibria, there are a

couple more important definitions to introduce. The first is the notion of a

feasible allocation, which is just a collection of consumption bundles for each

consumer for which the total amount consumed for each commodity does not

exceed the total endowment of that commodity.
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Definition 2. An allocation (xi)i∈I ∈ RL·I+ is feasible if for all l ∈ L,∑
i∈I xl,i ≤

∑
i∈I ωl,i.

The next definition is going to describe how we will be thinking about

optimality in the economy. For a lot of optimization problems you have seen

in your other courses, the appropriate notion of optimality is straightfor-

ward. For example, if a consumer has a well-defined utility function, it is

straightforward to think about what is optimal for her given her budget set.

Once we start thinking about environments with more than one consumer, we

would, in some sense, like to maximize multiple objective functions (i.e., each

consumer’s utility) simultaneously. In general, there are no allocations that

simultaneously maximize the utility of all consumers– consumers’objectives

are typically in conflict with one another’s– so the appropriate notion of op-

timality is not as straightforward. The notion will we use is that of Pareto

optimality, which means that all we are doing is ruling out allocations that

are dominated by other feasible allocations.

Definition 3. Given an economy E , a feasible allocation (xi)i∈I is Pareto

optimal (or Pareto effi cient) if there is no other feasible allocation (x̂i)i∈I

such that ui (x̂i) ≥ ui (xi) for all i ∈ I with strict inequality for some i ∈ I.

In words, all Pareto optimality rules out is allocations for which someone

could be made better off without making anyone else worse off. This notion

of optimality is therefore silent on issues of distribution, since it may be

Pareto optimal for one consumer to consume everything in the economy and
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for everyone else to consume nothing.

Assumptions on Consumer Preferences and Endowments Through-

out the next few sections, we will invoke different sets of assumptions for

different results. I will collect these assumptions here and will be explicit in

referring to them when they are required for a result.

Assumption A1 (continuity): For all consumers i ∈ I, ui is continuous.

Assumption A2 (monotonicity): For all consumers i ∈ I, ui is increasing:

ui (x
′
i) > ui (xi) whenever x′l,i > xl,ic for all l ∈ L.

Assumption A3 (concavity): For all consumers i ∈ I, ui is concave.

Assumption A4 (interior endowments): For all consumers i ∈ I, ωl,i >

0 for all l ∈ L.

The first three assumptions should be familiar from Economics 2010a.

The results we will be establishing in the upcoming sections will hold under

weaker assumptions– for example, (A2) can typically be relaxed to local

nonsatiation,1 and (A3) can typically be relaxed to quasiconcavity. The last

assumption is a strong assumption that will prove to be suffi cient for ruling

out some pathological cases in which a Walrasian equilibrium does not exist.

Graphical Examples Many of the main ideas of general equilibrium the-

ory can be understood in a two-consumer, two-commodity pure exchange

1We say that consumer i’s preferences satisfy local non-satiation if for every xi ∈ Xi
and every ε > 0, there is an x′i ∈ Xi such that ||x′i − xi|| ≤ ε and ui (x′i) > ui (xi).
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economy. We can get most of the results across graphically in what is re-

ferred to as an Edgeworth box. Edgeworth boxes are informationally dense,

so let me introduce the constituent elements separately.

Figure 1(a) depicts the relevant information for consumer 1. On the

horizontal axis is her consumption of commodity 1 and on the vertical axis

is her consumption of commodity 2. Her endowment is ω1 = (ω1,1, ω2,1). At

prices p = (p1, p2), she can afford to buy any consumption bundle in the set

B1 (p). The slope of her budget line is −p1/p2. Given her preferences, which

are represented by her indifference curve, and given prices p and endowment

ω1, she optimally chooses to consume x∗1 (p) =
(
x∗1,1 (p) , x∗2,1 (p)

)
. In other

words, at prices p, she would optimally like to sell ω1,1 − x∗1,1 (p) units of

commodity 1 in exchange for x∗2,1 (p) − ω2,1 units of commodity 2. Figure

1(b) depicts the same information for consumer 2.
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Figures 1(a) and 1(b): consumer-optimization problems

The Edgeworth box represents both consumers’ endowments and their

optimal choices as a function of the prices p, so it will incorporate all the

information in Figures 1(a) and 1(b). To build towards this goal, Figure

2(a) depicts all the non-wasteful allocations in the economy: allocations

(xi)i∈{1,2} for which xl,1 + xl,2 = ωl,1 + ωl,2 for l ∈ {1, 2}. The bottom-

left corner is the origin for consumer 1, and the upper-right corner is the

origin for consumer 2. The length of the horizontal axis is equal to the total

endowment of commodity 1, and the length of the vertical axis is equal to

the total endowment of commodity 2. The horizontal axis, read from the left
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to the right, represents consumer 1’s consumption of commodity 1, and read

from the right to the left, represents consumer 2’s consumption of commodity

1. The vertical axis, read from the bottom to the top, represents consumer

1’s consumption of commodity 2, and read from the top to the bottom,

represents consumer 2’s consumption of commodity 2. The endowment ω is

a point in the Edgeworth box, and it represents a non-wasteful allocation,

since ωl,1 + ωl,2 = ωl,1 + ωl,2 for l ∈ {1, 2}. The allocation x also represents

a non-wasteful allocation, since xl,1 + xl,2 = ωl,1 + ωl,2 for l ∈ {1, 2}.

Figure 2(a): non-wasteful allocations Figure 2(b): prices and budget sets

Figure 2(b) adds prices into the picture and shows that, given any price
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vector p, the Edgeworth box can be partitioned into the budget sets for

the two consumers. Given these prices, consumer 1 can choose any con-

sumption bundle to the bottom left of the diagonal line, and consumer 2

can choose any consumption bundle to the upper right of the diagonal line.

Given these prices, Figure 3(a) shows that consumer 1 will optimally choose

bundle x∗1 (p, p · ω1), and Figure 3(a) shows how x∗1 (p, p · ω1) varies as the

price ratio varies. Note that, in terms of determining consumer 1’s optimal

choice, the price ratio p1/p2 is a suffi cient statistic for the price vector p. This

is because Marshallian demand correspondences are homogeneous of degree

zero in prices (i.e., x∗1 (p, p · ω1) = x∗1 (λp, λp · ω1) for all λ ∈ R++).The curve

traced out in Figure 3(b) is referred to as consumer 1’s offer curve.
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Figures 3(a) and 3(b): Consumer 1’s Marshallian demand for a fixed p and her offer curve

Recall from above that in a Walrasian equilibrium
(
p∗, (x∗i )i∈{1,2}

)
, con-

sumer i optimally chooses x∗i given equilibrium prices p∗. This means that

in any Walrasian equilibrium, both consumers’optimal choices lie on their

offer curves. Figure 4(a) depicts, for a given price vector p, both con-

sumers’optimal choices. At this price vector, consumer 1 would like to sell

ω1,1−x∗1,1 (p, p · ω1) units of commodity 1 in exchange for x∗2,1 (p, p · ω1)−ω2,1

units of commodity 2, and consumer 2 would like to buy x∗1,2 (p, p · ω2)−ω1,2

units of commodity 1 and sell ω2,2−x∗2,2 (p, p · ω2) units of commodity 2. The

associated allocation, (x∗1 (p, p · ω1) , x∗2 (p, p · ω2)), is not a Walrasian equilib-
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rium allocation, since consumer 1 would like to sell more units of commodity

1 than consumer 2 would like to buy, so the market for commodity 1 does

not clear: ω1,1 − x∗1,1 (p, p · ω1) > x∗1,2 (p, p · ω2)− ω1,2.

Figures 4(a) and 4(b): disequilibrium and equilibrium allocations

It should be clear from the above argument, then, that any Walrasian

equilibrium allocation has to occur at a point where both consumers’offer

curves intersect. Figure 4(b) illustrates such a point. The upper-left point at

which the two offer curves intersect is a Walrasian equilibrium allocation, and

the price vector that ensures both players optimally choose the associated

consumption bundles is a Walrasian equilibrium price vector. This example
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also illustrates that, relative to the Walrasian equilibrium allocation, there

are no other feasible allocations that can make one of consumers better off

without hurting the other consumer. The Walrasian equilibrium allocation

is therefore Pareto optimal. Note that the offer curves also intersect at the

endowment point, but the endowment point is not a Walrasian equilibrium

allocation in this particular example– why?

The Edgeworth box is also useful for illustrating why there may be mul-

tiple Walrasian equilibria and why a Walrasian equilibrium might fail to

exist. Figure 5(a) illustrates a situation in which there are multiple Wal-

rasian equilibria. Here, the two consumers’offer curves intersect multiple

times. Exercise 2 asks you to solve for the set of Walrasian equilibria in
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another example in which there are multiple equilibria.

Figures 5(a) and 5(b): multiple Walrasian equilibria and no Walrasian equilibria

Figure 5(b) illustrates a situation in which there are no Walrasian equi-

libria. In the example, consumer 1 is endowed with no units of commodity 1

and with all the units of commodity 2. Consumer 2 is endowed with all the

units of commodity 1 and with no units of commodity 2. Consumer 2 cares

only about her consumption of commodity 1, and consumer 2 cares about

both her consumption of commodity 1 and her consumption of commodity

2. Moreover, consumer 1’s marginal utility of consuming the first unit of

commodity 1 is infinite, and her marginal utility of consuming commodity 2
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is strictly positive. For any prices p with p1 > 0, the market for commodity

1 cannot clear, since consumer 2 will always choose x∗1,2 (p, p · ω2) = ω1,2,

and consumer 1 will always choose x∗1,1 (p, p · ω1) > 0, unless p2 = 0. And

if p2 = 0, then x∗2,1 (p, p · ω1) = +∞, so the market for commodity 2 can-

not clear. This example illustrates why things can go awry when assumption

(A4) is not satisfied. These examples tell us that the answers to the following

two important questions is “no”: (a) is there always a Walrasian equilibrium?

(b) if there is a Walrasian equilibrium, is it unique?

Figure 6: Pareto-optimal allocations and the

contract curve

Finally, Figure 6 shows that we can use the Edgeworth box to illustrate
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the entire set of Pareto-optimal allocations. The Pareto set is the set of

all feasible allocations for which making one consumer better off necessarily

means making the other consumer worse off. It also illustrates the contract

curve, which is the set of Pareto-optimal allocations that both players prefer

to the endowment. If the two consumers were to negotiate a deal, given their

endowments as their outside options, they would likely reach a point on the

contract curve. Walrasian equilibrium allocations are typically a small subset

of the contract curve, and in particular, they lie on the Pareto set. This result

is known as the first welfare theorem, and we will now establish this result.

Exercise 1 (Adapted from MWG 15.B.2). Consider an Edgeworth
box economy in which the consumers have Cobb-Douglas utility functions
u1 (x1,1, x2,1) = xα1,1x

1−α
2,1 and u2 (x1,2, x2,2) = xβ1,2x

1−β
2,2 , where α, β ∈ (0, 1).

Consumer i’s endowments are (ω1,i, ω2,i) >> 0 for i = 1, 2. Solve for the
Walrasian equilibrium price ratio and allocation. How do these change as
you increase ω1,1? Note: Feel free to avoid writing expressions out as much as
possible. For example, if you solve for price, feel free to leave the solutions for
demand in terms of the price variable instead of plugging in. For comparative
statics, if you can find the sign without having to write it out, that’s fine.

Exercise 2 (Adapted from MWG 15.B.6). Compute the Walrasian
equilibria for the following Edgeworth box economy (there is more than one
Walrasian equilibrium):

u1 (x1,1, x2,1) =

(
x−2

1,1 +

(
12

37

)3

x−2
2,1

)−1/2

, ω1 = (1, 0) ,

u2 (x1,2, x2,2) =

((
12

37

)3

x−2
1,2 + x−2

2,2

)−1/2

, ω2 = (0, 1) .

Exercise 3 (Adapted from MWG 15.B.9). Suppose that in a pure ex-
change economy, we have two consumers, Alphanse and Betatrix, and two
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commodities, Perrier and Brie. Alphanse and Betatrix have the utility func-
tions:

uα (xp,α, xb,α) = min {xp,α, xb,α} and uβ (xp,β, xb,β) = min
{
xp,β, (xb,β)1/2

}
,

(where xp,α is Alphanse’s consumption of Perrier, and so on). Alphanse starts
with an endowment of 30 units of Perrier (and none of Brie); Betatrix starts
with 20 units of Brie (and none of Perrier). Neither can consume negative
amounts of a commodity. If the two consumers behave as price takers, what
is the equilibrium? [Hint: consider the market-clearing condition in the cases
when both prices are positive, when only the price of Perrier is positive, and
when only the price of Brie is positive.]

Exercise 4. Consider an exchange economy with two consumers. The utility
functions and endowments are given by

u1 (x1,1, x2,1) = x1,1 −
x−3

2,1

3
, ω1 = (K, r)

u2 (x1,2, x2,2) = x2,2 −
x−3

1,2

3
, ω2 = (r,K) .

Assume that K is suffi ciently large so that each consumer can achieve an
interior solution to her optimal consumption problem. Note that p∗ = (1, 1)
is an equilibrium price vector.

(a) For what values of r will there be multiple Walrasian equilibria in this
economy? [Hint: first solve for q = py/px by showing that rt4− t3 + t−r = 0,
where t = q1/4. Note this expression factors as (t+ 1) (t− 1) (rt2 − t+ r) =
0.]

(b) For what value of r will p∗ = (1, 3) be an equilibrium price vector?

(c) [Optional: algebra intensive] Assume that K = 10 and that r takes the
value identified in part (b). Find all equilibrium prices and allocations.

(d) [Optional: algebra intensive] Rank the outcomes identified in part (d) in
terms of most preferred to least preferred for each consumer.



1.1. FIRST WELFARE THEOREM 21

1.1 First Welfare Theorem

At the Walrasian equilibria in the examples we just saw, there are no feasible

allocations that make both players better off: the Walrasian equilibrium

allocation was Pareto optimal. This, it turns out, is a general result and

perhaps one of the most important results of GE. This result is known as the

first welfare theorem. Before stating and proving the first welfare theorem,

we will first establish an intermediate result known as Walras’s Law, which is

a direct implication of consumer optimization when consumers’preferences

are monotonic (or more generally, satisfy local non-satiation).

Lemma 1 (Walras’s Law). Given an economy E and prices p, if (A2)

holds, then p ·
(∑

i∈I xi (p, p · ωi)
)

= p ·
(∑

i∈I ωi
)
.

Proof of Lemma 1. Since (A2) holds, each consumer will optimally choose

to exhaust her budget: p · xi (p, p · ωi) = p · ωi for all i ∈ I. Summing this

condition over consumers gives us the expression in the Lemma.�

Note that Walras’s Law holds for any set of allocations that are consumer-

optimal– the result does not require that the allocation (xi (p, p · ωi))i∈I is a

Walrasian equilibrium allocation.

Exercise 5 (Adapted from MWG 15.B.1). Consider an Edgeworth box
economy in which the two consumers’preferences satisfy local nonsatiation.
Let xl,i (p, p · ωi) be consumer i’s demand for commodity l at prices p =
(p1, p2).

(a) Show that p1

∑
i∈I (x1,l − ω1,l) + p2

∑
i∈I (x2,l − ω2,l) = 0 for all prices

p 6= 0.
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(b) Argue that if the market for commodity 1 clears at prices p∗ >> 0, then
so does the market for commodity 2; hence p∗ is a Walrasian equilibrium
price vector.

We can now prove a version of the first welfare theorem.

Theorem 1 (First Welfare Theorem). Suppose
(
p∗, (x∗i )i∈I

)
is a Wal-

rasian equilibrium for the economy E . Then if (A2) holds, the allocation

(x∗i )i∈I is Pareto optimal.

Proof of Theorem 1. In order to get a contradiction, suppose theWalrasian

equilibrium allocation (x∗i )i∈I is not Pareto optimal. Then there is some

other feasible allocation (x̂i)i∈I for which ui (x̂i) ≥ ui (x
∗
i ) for all i ∈ I

and ui′ (x̂i′) > ui′ (x
∗
i′) for some i

′. Since (x∗i )i∈I is a Walrasian equilibrium

allocation, and consumers’preferences satisfy (A2), by revealed preference,

it has to be the case that p∗ · x̂i ≥ p∗ · x∗i for all i ∈ I and p∗ · x̂i′ > p∗ · x∗i′.

Summing up over these conditions,

p∗ ·
(∑

i∈I
x̂i

)
> p∗ ·

(∑
i∈I

x∗i

)
= p∗ ·

(∑
i∈I

ωi

)
,

where the equality holds by Lemma 1. Since equilibrium prices p∗ are non-

negative (why are they nonnegative?), this inequality implies that there is

some commodity l such that
∑

i∈I x̂i,l >
∑

i∈I ωi,l, and therefore (x̂i)i∈I is

not a feasible allocation.�

The first welfare theorem is a remarkable result because (a) its conclusion

is both intellectually important and powerful, (b) its explicit assumptions are
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quite weak, and (c) it has a simple proof, in the sense that it involves only

a couple steps, and each step is completely transparent. Let me comment a

bit more on each of these three points.

The first welfare theorem provides a formal statement of a version of

Adam Smith’s argument that the “invisible hand”of decentralized markets

leads selfish consumers to make decisions that lead to socially effi cient out-

comes. Despite there being no explicit coordination among consumers, the

resulting equilibrium allocation is Pareto optimal.

Second, the only explicit assumption we made in order to prove the first

welfare theorem was that consumers have monotonic preferences– and even

this assumption can be relaxed, as exercise 6 below asks you to show. But in

the background, there are several strong and important assumptions. First,

we assumed that all consumers face the same prices as each other for all

commodities. Second, we assumed that all consumers are price takers– they

take prices as given and understand that their consumption decisions do

not affect these prices. Third, there are markets for each commodity, and

all consumers can freely participate in each market. Fourth, we assumed

that each consumer cares only about her own consumption and not about

the consumption of anyone else in the economy– we have therefore ruled

out externalities. Finally, we assumed that there are a finite number of

commodities and consumers. Exercise 6 asks you to show that when there

are an infinite number of commodities and consumers, Walrasian equilibrium

allocations need not be Pareto optimal.
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Exercise 6 (Adapted fromMWG 16.C.3). In this exercise, you are asked
to establish the first welfare theorem under a set of assumptions compatible
with satiation. First, we will define the appropriate notion of equilibrium.
Given an economy E , an allocation (x∗i )i∈I and a price vector p = (p1, . . . , pL)
constitutes a price equilibrium with transfers if there is an assignment
of wealth levels (w1, . . . , wI) with

∑
i∈I wi = p ·

(∑
i∈I ωi

)
such that: (i) con-

sumers optimize: x∗i (p, wi) = x∗i and (ii) markets clear:
∑

i∈I x
∗
i =

∑
i∈I ωi.

Suppose that every Xi is nonempty and convex and that every ui is strictly
convex. Prove the following:

(a) For every consumer i, there is at most one consumption bundle at which
she is locally satiated. Such a bundle, if it exists, uniquely maximizes ui on
Xi.
(b) Any price equilibrium with transfers is a Pareto optimum.

Exercise 7. This exercise illustrates that the importance of the assumption
that there are a finite number of commodities for the first welfare theorem.
Consider an economy in which there is one physical good, available at infi-
nitely many dates: t = 1, 2, . . . , so there are effectively an infinite number
of commodities: the physical good at date 1, the physical good at date 2,
and so on. One consumer (or “generation”) is born at each date t = 1, 2, . . . ,
and lives and consumes at dates t and t + 1 (“young”and “old”). We will
refer to the consumer born in date t as consumer t. There is also one old
consumer alive at date t = 1 (call her consumer 0), and she is endowed with
zero units of the good. Each consumer is endowed with one unit of the good
when she is young, no units of the good when she is old, and no storage is
possible. Consumption in each period is non-negative, and each consumer t’s
preferences over consumption is given by ut (xt,t, xt+1,t) = u (xt,t) +u (xt+1,t),
where u is smooth, increasing, and strictly concave, with u′ (0) <∞.
(a) Show that there is a Walrasian equilibrium in which each consumer con-
sumes her endowment and gets utility u (1) + u (0).

(b) Show that the above Walrasian equilibrium is unique.

(c) Show that the above Walrasian equilibrium allocation is not Pareto opti-
mal. In other words, construct a feasible allocation that is strictly better for
each consumer.

I want to conclude this section with a couple comments on the simplicity
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of the proof of the first welfare theorem. First, the theorem itself presents a

partial characterization of equilibrium allocations. To prove the statement,

we did not need to solve explicitly for a Walrasian equilibrium and show that

it is Pareto optimal. Instead, we described properties that all Walrasian equi-

librium allocations must satisfy. Second, the statement itself is a conditional

statement. It is a statement of the form “if (x∗i )i∈I is a Walrasian equi-

librium, then (x∗i )i∈I is Pareto optimal.”This conditional statement dodges

the question of whether there is in fact a Walrasian equilibrium– we showed

above that there does not always exist a Walrasian equilibrium, and we will

spend some time next week providing conditions under which a Walrasian

equilibrium in fact exists. Finally, the proof is a proof by contradiction, and

it effectively takes the form of “if this Walrasian equilibrium allocation was

not Pareto-optimal, then stuff doesn’t add up.”While elegant, the proof it-

self provides little insight into why the first welfare theorem holds. We will

spend a little more time discussing the “why”in week 3.

1.2 Second Welfare Theorem

The first welfare theorem establishes that Walrasian equilibrium allocations

are Pareto optimal. The second welfare theorem in some sense establishes a

converse. It says that, under some assumptions, any Pareto optimal alloca-

tion can be “decentralized”as a Walrasian equilibrium allocation, given the

correct prices and endowments.
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Theorem 2 (Second Welfare Theorem). Let E be an economy that

satisfies (A1) − (A4) and Xi = RL+. If (ωi)i∈I is Pareto optimal, then there

exists a price vector p ∈ RL+ such that
(
p, (ωi)i∈I

)
is a Walrasian equilibrium

for E .

Before proving the second welfare theorem, we will state a version of an

important theorem in convex analysis, which is used in the key step of the

proof of the second welfare theorem.

Lemma 2 (Separating Hyperplane Theorem). If W ⊆ Rn is an open

convex set, and z 6∈ W is a point not in W, then there exists a vector p 6= 0

and such that p · x ≥ p · z for all x ∈ cl (W).

Figure 7(a) illustrates this version of the separating hyperplane theorem

in two dimensions. The set W is open and convex, and z 6∈ W. The point z

is on a line (which is a hyperplane in a two-dimensional space) characterized

by the equation p · x = p · z (i.e., p is the normal vector to the line). All the

points to the upper right of that line satisfy p · x > p · z, and all the points

to the lower left of that line satisfy p ·x < p · z. And in particular,W is fully

to the upper right of this line. In the case illustrated in Figure 7(a), there

are of course many other separating hyperplanes satisfying p · x ≥ p · z for

all x ∈ W corresponding to differently sloped lines going through z but not

intersecting W. Figure 7(b) shows why the assumption that W is a convex

set is important for this result. If z 6∈ W, but z ∈ conv (W),2 then there is

2The set conv (W) is defined to be the smallest convex set containing W. In two
dimensions, you can visualize conv (W) by taking W and putting a rubber band around
it.
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no vector p 6= 0 for which p · x ≥ p · z for all x ∈ W. Exercise 8 asks you to

prove a stronger version of the separating hyperplane theorem, which shows

that any two disjoint convex sets can be separated by a hyperplane.

Figures 7(a) and 7(b): separating hyperplane theorem and convexity.

The idea of the second welfare theorem is to show that, if the endowment

(ωi)i∈I is Pareto optimal, we can always find a price vector that separates

the set of allocations preferred by all consumers in the economy from (ωi)i∈I

and therefore show that
(
p, (ωi)i∈I

)
is a Walrasian equilibrium.

Proof of Theorem 2. By the statement of the theorem, (ωi)i∈I is Pareto

optimal. Let us define the set of aggregate consumption bundles that can be
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allocated in such a way among consumers to make them all strictly better

off than under (ωi)i∈I . To do so, define the set of consumption bundles that

consumer i prefers to ωi:

Ai =
{
a ∈ RL : a+ ωi ≥ 0 and ui (a+ ωi) > ui (ωi)

}
.

Since ui is concave, the set Ai is convex. The Minkowski sum of the sets Ai

is therefore also a convex set.3 That is, if we define

A =
∑
i∈I
Ai =

{
a ∈ RL : ∃a1 ∈ A1, . . . ,∃aI ∈ AI with a =

∑
i∈I

ai

}
,

then A is a convex set. The set A does not contain the 0 vector because

(ωi)i∈I is Pareto optimal. To see why this is the case, note that if 0 ∈ A,

then there would exist (ai)i∈I with
∑

i∈I ai = 0 and ui (ai + ωi) > ui (ωi)

for all i. That is, we could essentially just reallocate the endowment (ωi)i∈I

among the I consumers and make them all strictly better off, but that would

contradict the assumption that (ωi)i∈I is Pareto optimal.

Next, by Lemma 2, there is some price vector p∗ 6= 0 such that p∗ · a ≥ 0

for all a ∈ cl (A). Moreover, each of the prices p∗l ≥ 0. To see why, suppose

p∗l < 0 for some l. Take some a for which al is arbitrarily large and all

other al′ are arbitrarily small but positive. By the monotonicity of consumer

3The Minkowski sum of two sets A and B is just the set of vectors x that can be written
as the sum of vectors x = a + b for which a ∈ A and b ∈ B. The closest visual analog to
thinking about the Minkowski sum of sets in two dimensions is the way the clone stamp
tool in Photoshop works if you are familiar with it.
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preferences, a ∈ A, but if a is chosen this way, then p · a < 0. We therefore

have that p∗ > 0 (i.e., p∗l ≥ 0 for all l ∈ L with at least one inequality strict).

We will now show that
(
p∗, (ωi)i∈I

)
is a Walrasian equilibrium. To do so,

we need to show that at p∗, consumers optimally consume their endowments

and that markets clear. The second condition is immediate. It remains to

show that at this p∗, consumers optimally consume their endowments. To do

so, suppose there is some x̂i ∈ RL+ for which ui (x̂i) > ui (ωi). We will show

that this x̂i 6∈ Bi (p∗). By the definition of A, the allocation (xi)i∈I − (ωi)i∈I

with xi = x̂i and xj = ωj for all j 6= i, is in cl (A). By the definition of p∗, we

necessarily have that p∗·(x̂i − ωi)+p∗·
∑

j 6=i (ωj − ωj) ≥ 0, which implies that

p∗ · x̂i ≥ p∗ · ωi > 0, where this last inequality holds because of Assumption

(A4) that all consumers have positive endowments of all commodities.

We are not yet done, because we have to show that this last inequality is

strict. This is where continuity of preferences (Assumption (A1)) comes into

the picture. Since ui (x̂i) > ui (ωi), this implies that for λ just less than 1,

ui (λx̂i) > ui (ωi), which in turn implies that λp∗·x̂i ≥ p∗·ωi > 0. This cannot

be the case if p∗ · x̂i = p∗ · ωi, so we must therefore have that p∗ · x̂i > p∗ · ωi

and hence x̂i 6∈ Bi (p∗)– that is, any allocation preferred by consumer i to

her endowment is unaffordable, and hence her optimal consumption bundle

is her endowment.�

The second welfare theorem does not show that every Pareto optimal

allocation is a Walrasian equilibrium given a particular endowment. Instead,

it says that if we were to start from a particular endowment (ωi)i∈I , and
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an allocation (xi)i∈I is Pareto optimal, then we could reallocate consumers’

endowments in such a way that (xi)i∈I is a Walrasian equilibrium allocation.

The version of the theorem that we just proved carries out this exercise using

a particularly stark reallocation of endowments (i.e., it just sets (ωi)i∈I =

(xi)i∈I). There are versions of the theorem that involve carrying out lump-

sum transfers of wealth rather than directly moving around endowments. As

you might expect, decentralizing a particular Pareto-optimal allocation in

practice potentially requires large-scale redistribution of wealth. I view the

result more as establishing an equivalence between Walrasian equilibria and

Pareto-optimal allocations rather than as a practical guide for figuring out

how to achieve a particular distribution of consumption in society.

It is worth a reminder that convexity of consumers’preferences was crit-

ical in establishing the result that A was a convex set, which in turn is

required for using the separating hyperplane theorem. Figure 8 shows an ex-

ample where the conclusion of the second welfare theorem fails if consumers’
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preferences are not convex.

Figure 8: Non-convex preferences

In this figure, the endowment is a Pareto-optimal allocation, since consumer

1’s and consumer 2’s better-than sets are separated. But there are no prices

that can make it optimal for consumer 1 to consume ω1.

Nevertheless, a version of the second welfare theorem continues to hold

when consumers do not have convex preferences if you replicate the econ-

omy a large number of times. Think of the 2-consumer economy as being

a metaphor for a large economy with two types of consumers: type-1 con-

sumers have preferences u1 and endowments ω1, and type-2 consumers have

preferences u2 and endowments ω2. If we replicate the economy a large num-
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ber of times, so that there are N type-1 consumers and N type-2 consumers,

where N is large, then we can support ω as a Walrasian equilibrium allo-

cation, at least on average. This result follows from an application of the

Shapley-Folkman lemma, which roughly says that the Minkowski average of

sets converges to the convex hull of that set. You don’t need to know the

math behind this result, but it is a useful result to be aware of. Figure 9

illustrates a replication economy for the economy described in Figure 8. It

shows that there may be a p for which there is an x1 ∈ x1 (p, p · ω1) and

an x′1 ∈ x1 (p, p · ω1), so that if we allocate a fraction λ of type-1 consumers

to consume x1 and a fraction 1 − λ of type-1 consumers to consume x′1, on

average they are consuming ω1: λx1 + (1− λ)x′1 = ω1.

Figure 9: Replication economy
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This figure illustrates the idea that large numbers “convexifies”the econ-

omy. There is a recurring theme throughout general equilibrium theory that

many of the pathologies that arise seem to “go away” in suffi ciently large

economies. Nonconvexities seem esoteric, since we usually think of con-

sumers’preferences as having diminishing marginal utility and preferences for

variety. Nonconvexities become especially relevant when we think of firms,

though. When there are fixed costs, for example, the firm analogue of con-

sumers’“better-than”sets are not convex, since the set of production levels

better than “not even breaking even” can include both “shut down” and

“produce, but at a much larger scale.”

Finally, we made use of Assumption (A4) in a somewhat opaque way in

the proof. What Assumption (A4) rules out is cases like the one illustrated

in Figure 5(b) in which there were no Walrasian equilibria. The failure of

equilibrium existence illustrated in Figure 5(b) arises because of a sort of

“division by zero” problem: supporting the endowment as an equilibrium

allocation would have required consumer 2 to buy only a finite amount of a

commodity with a zero price when she has zero wealth.

Exercise 8. This question is intended to guide you through a proof of the
separating hyperplane theorem. This is more of an exercise in math than in
economics, so feel free to skip to the next step if you get stuck.

(a) Prove that if y ∈ RN and C ⊆ RN is closed, then there exists a point
z ∈ C such that ||z − y|| ≤ ||x− y|| for all x ∈ C. That is, there exists a point
in C that is closest to y. (You may assume that ||·|| is the Euclidean norm.)
Hint: use the Weierstrass extreme value theorem– if f is a real-valued and
continuous function on domain S, and S is compact and non-empty, then
there exists x such that f (x) ≥ f (y) for all y ∈ S.



34 CHAPTER 1. PURE EXCHANGE ECONOMIES

(b) Suppose further that C ⊆ RN is convex, and note from above that if
y 6∈ C, then there exists z ∈ C that is closest to y. Let x ∈ C with x 6= z.

(i) Show that (y − z)·z ≥ (y − z)·x. Hint: consider ||y − (z + t (x− z))||
for t ∈ [0, 1], the distance between y and a convex combination of x and z.

(ii) Use the above result to show that for all x ∈ C, (y − z)·y > (y − z)·x.

(iii) Explain how this is a special case of the separating hyperplane the-
orem, which states that for any disjoint convex sets A,B ⊆ RN , there exists
nonzero p ∈ RN such that p · u ≥ p · v for any u ∈ A and v ∈ B.

(iv) Use the result of (ii) to deduce the separating hyperplane theorem.
Hint: consider y = 0 and C = A− B = {u− v : u ∈ A, v ∈ B}.

1.3 Characterizing Pareto-Optimal Allocations

The welfare theorems provide a tight connection between the set of Pareto

optimal allocations and the set of Walrasian equilibrium allocations. This

section will provide a short note on how to find Pareto optimal allocations in

particularly well-behaved environments. Define the utility possibility set

U =
{

(u1, . . . , uI) ∈ RI : there is a feasible allocation (xi)i∈I with ui (xi) ≥ ui for all i
}
.

If the sets Xi are convex sets and consumers’preferences are concave, then U

is a convex set. When this is the case, the problem of finding Pareto-optimal

allocations can be reduced to the problem of solving Pareto problems of

the form

max
u∈U

λ · u
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for some non-zero vector of Pareto weights λ ≥ 0. The objective function

of this problem is sometimes called a linear Bergson-Samuelson social welfare

function. We will say that u∗ is a Pareto-optimal utility vector if there is

a Pareto-optimal allocation (xi)i∈I for which ui (xi) = u∗i for all i ∈ I. The

next theorem establishes the result.

Theorem 3. If u∗ is a solution to the Pareto problem described above for

some vector of Pareto weights λ >> 0, then u∗ is a Pareto-optimal utility

vector. Conversely, if the utility possibility set U is convex, then any Pareto-

optimal utility vector u∗ is a solution to the Pareto problem for some non-zero

vector λ ≥ 0.

Proof of Theorem 3. The first part is immediate: if u∗ is not Pareto

optimal, then any Pareto-dominating utility vector would give a higher value

in the Pareto problem for any Pareto weight vector λ >> 0.

The second part of the theorem makes use of the supporting hyperplane

theorem, which says that a convex set can be separated from any point outside

its interior (see Section M.G of the mathematical appendix of MWG). If u∗

is a Pareto-optimal utility vector, then it lies on the boundary of U , so

by the supporting hyperplane theorem, there exists λ 6= 0 such that λ ·

u∗ ≥ λ · u for all u ∈ U . Further, the Pareto weights satisfy λ ≥ 0, since

if λi < 0 for some i, then λ · u∗ < λ · ũ, where for some K > 0, ũ =(
u∗1, . . . , u

∗
i−1, u

∗
i −K, u∗i+1, . . . , u

∗
I

)
∈ U . This contradicts the claim that λ ·

u∗ ≥ λ · u for all u ∈ U , so it must be the case that λ ≥ 0.�
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The theorem shows that when the utility possibility set is a convex set,

the problem of finding Pareto-optimal allocations boils down to solving a

class of Pareto problems. If we further assume that consumers’utility func-

tions are differentiable, then Pareto-optimal allocations can be characterized

by taking first-order conditions. For example, suppose utility functions are

differentiable with ∇ui (xi) >> 0 for all xi, and we have an interior solution,

we can find Pareto-optimal allocations by solving the problem:

max
(xi)i∈I

∑
i∈I

λiui (xi)

subject to feasibility for each commodity:

∑
i∈I

xl,i ≤
∑
i∈I

ωl,i for all l ∈ L.

Then one can use the Kuhn-Tucker theorem to verify that any Pareto-

optimal allocation (xi)i∈I with xi >> 0 for all i ∈ I must satisfy

∂ui/∂xl,i
∂ui/∂xl′,i

=
∂ui′/∂xl,i′

∂ui′/∂xl′,i′
=
µl
µl′

for all i, i′, l, l′

for some µl, µl′ > 0. This condition says that the marginal rate of substitution

between any two commodities must be equalized across consumers in any

Pareto-optimal allocation. If this condition failed, there would be a Pareto-

improving exchange of commodities l and l′ between consumers i and i′.

The values µl corresponds to the Lagrange multiplier on the commodity-l
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feasibility constraint
∑

i∈I xl,i =
∑

i∈I ωl,i.

As an illustration of the second welfare theorem, given a Pareto-optimal

allocation (xi)i∈I that satisfies the optimality conditions above, if you set

pl = µl for all l ∈ L, then
(
p, (xi)i∈I

)
is a Walrasian equilibrium of the econ-

omy E =
(
(ui)i∈I , (xi)i∈I

)
. This point is illustrated in Figure 4(b). In that

figure, at the Walrasian equilibrium allocation, consumers’marginal rates

of substitution across the two commodities were equalized. Moreover, these

marginal rates of substitution were also equal to the price ratio that corre-

sponded to the Walrasian equilibrium (and given that price ratio, moving the

endowment along the boundary of consumers’budget sets does not change

their ultimate consumption choices, so the same price vector would also be

an equilibrium price vector if we just set consumers’endowments equal to

their Walrasian equilibrium allocations).

Exercise 9 (Adapted from MWG 16.C.4). Suppose that for each con-
sumer, there is a “happiness function”depending on her own consumption
only, given by u (xi). Every consumer’s utility depends positively on her own
and everyone else’s “happiness”according to the utility function

Ui (x1, . . . , xl) = Ui (u1 (x1) , . . . , ul (xl)) .

Show that if x = (x1, . . . , xl) is Pareto optimal relative to the Ui (·)’s, then
x = (x1, . . . , xl) is also a Pareto optimum relative to the ui’s. Does this
mean a community of altruists can use competitive markets to attain Pareto
optima? Does your argument depend on the concavity of the ui’s or the Ui’s?
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1.4 Existence of Walrasian Equilibrium

Last week, we focused on the normative, effi ciency properties of Walrasian

equilibria. This week, we will focus on a couple positive properties. In par-

ticular, we will begin by asking what seems like a straightforward question:

does a Walrasian equilibrium exist? And then we will ask a few other impor-

tant questions relating to equilibrium uniqueness, equilibrium stability, and

the comparative statics of Walrasian equilibria.

The question of whether a Walrasian equilibrium exists really boils down

to: under what conditions on preferences and endowments does a Walrasian

equilibrium exist? We know from the example in Figure 5(b) from last week

that a Walrasian equilibrium does not always exist. And we know from the

second welfare theorem that when assumptions (A1) − (A4) are satisfied,

then if the endowment is a Pareto-optimal allocation, there is a Walrasian

equilibrium for which it is the equilibrium allocation. In some sense, the

second welfare theorem provides a bit of a mundane answer to the existence

question, since it provides conditions under which no trade is optimal for each

consumer. The more interesting question is the more diffi cult one: when is

a Walrasian equilibrium guaranteed to exist if the endowment itself is not

already Pareto optimal? That is, when is there a Walrasian equilibrium that

actually involves trade?

This was an open question ever since Walras’s formulation of the GE

model in the 1870’s until Arrow, Debreu, and McKenzie produced the first



1.4. EXISTENCE OF WALRASIAN EQUILIBRIUM 39

rigorous existence proofs in the 1950’s. The basic question is, given aggregate

demand functions
∑

i∈I xl,i (p, p · ωi) for each commodity, when does there

exist a price vector p∗ such that
∑

i∈I xl,i (p
∗, p∗ · ωi) =

∑
i∈I ωl,i for all l ∈ L?

Early arguments amounted to just counting up the number of equations and

unknowns, but these approaches were not satisfactory, since it would not be

clear what would happen if the solution to the equations involved negative

prices or quantities. The breakthrough came in the 1950’s when Arrow and

Debreu (1954) proved the following existence result.

Theorem 4 (Existence of Walrasian Equilibrium). Given an economy

E satisfying (A1)− (A4), there exists a Walrasian equilibrium
(
p∗, (x∗i )i∈I

)
.

The key insight in the 1950’s was to reframe the Walrasian equilibrium

existence question as a fixed-point question, following John Nash’s (1951)

proof of the existence of Nash equilibrium using a related approach. A fixed

point of a correspondence f : Z ⇒ Z is a point z such that z ∈ f (z), and

fixed-point theorems provide fairly general conditions under which functions

or correspondences have fixed points.

The important step in making use of the general-purpose technology of

fixed-point theorems is to figure out how to map the equilibrium existence

question into the question of whether a suitably chosen correspondence has

a fixed point: it is about choosing the right correspondence. Suppose the

correspondence f maps an allocation (xi)i∈I and a price vector p into a new

allocation (x′i)i∈I and price vector p
′, where the new allocation is the set of op-

timal choices for consumers given the price vector p, and the new price vector
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p′ is one that raises the prices of over-demanded goods and lowers the price

of under-demanded goods under the allocation (xi)i∈I and otherwise does

not change prices. Then a fixed point of f will be a Walrasian equilibrium,

so if we can show that f satisfies the conditions required for a fixed-point

theorem to apply, then we can conclude that a Walrasian equilibrium exists.

Two-Commodity Intuitive Sketch

We will first go through an intuitive argument for equilibrium existence in the

special case of two commodities, and then we will go through the more general

result described in Theorem 4. The argument in the two-commodity case will

also develop some tools that will be useful when we talk about uniqueness

and stability of Walrasian equilibrium. For this part, we will strengthen the

monotonicity condition (A2) to a strong monotonicity condition (A2′).

Assumption A2’(strong monotonicity). For all consumers i ∈ I, ui is

strictly increasing: ui (x′i) > ui (xi) whenever x′l,i ≥ xl,i for all l ∈ L with at

least one inequality strict.

As a starting point, we are going to introduce the idea of an excess de-

mand function for an economy E = (ui, ωi)i∈I . The excess demand func-

tion for consumer i is zi (p) = xi (p, p · ωi) − ωi. The aggregate ex-

cess demand function is the sum of consumers’excess demand functions

z (p) =
∑

i∈I zi (p). It should be clear from the definition of the aggregate

excess demand function that if there is a p∗ that satisfies z (p∗) = 0, then
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p∗, (x∗i )i∈I

)
with x∗i = xi (p

∗, p∗ · ωi) is a Walrasian equilibrium. The way

x∗i is defined, it is clear that at p
∗, x∗i is consumer i’s optimal consumption

bundle. Moreover, if z (p∗) = 0, then markets clear for each commodity.

In this case, proving existence boils down to establishing that a solution to

z (p) = 0 exists given assumptions (A1) , (A2′) , (A3), and (A4). The aggre-

gate excess demand function inherits many of the properties of Marshallian

demand functions, as the next lemma illustrates.

Lemma 3. Suppose E satisfies (A1) , (A2′) , (A3),(A4), and Xi = RL+ for all

i. Then the aggregate excess demand function satisfies:

(i) z is continuous;

(ii) z is homogeneous of degree zero;

(iii) p · z (p) = 0 for all p (Walras’s Law);

(iv) there is some Z > 0 such that zl (p) > −Z for every l ∈ L and for

every p;

(v) if pn → p, where p 6= 0 and pl = 0 for some l, thenmax {z1 (pn) , . . . , zL (pn)} →

∞.

The first property is something that was assumed in Economics 2010a, but

it is straightforward to show that it follows from assumptions (A1)− (A4).4

The second property is straightforward, and we already proved the third

property in week 1. The fourth property follows directly from the assumption

that Xi = RL+.
4z is upper hemi-continuous from Berge’s maximum theorem, it is non-empty because

preferences are continuous, and it is convex-valued because preferences are convex. These
properties imply that z is a continuous correspondence.
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The last property bears some comment. It is saying that as some, but not

all, prices go to zero, there must be some consumer whose wealth is not going

to zero. Because she has strongly monotone preferences, she must demand

more of one of the commodities whose price is going to zero.

To gain intuition for the general existence proof, let us consider the case

where there are only two goods in the economy, and let us further assume that

consumer preferences are strictly concave, so that xi (p, p · ωi) is a singleton

for all p (we will allow for xi (p, p · ωi) to be a correspondence– for there to be

multiple optimal allocations for a given consumer at a given price vector–

when we prove the general theorem). Our goal is to find a price vector

p = (p1, p2) for which z (p) = 0. Because z (·) is homogeneous of degree zero,

we can normalize one of the prices, say p2, to one. This reduces our search

to price vectors of the form (p1, 1). Moreover, Walras’s Law implies that if

the market for commodity 1 clears, then so does the market for commodity

2, so it suffi ces to find a price p1 such that z1 (p1, 1) = 0.
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Figure 10: Existence of WE with two

commodities

The problem of finding a p1 such that z1 (p1, 1) = 0 is a one-dimensional

problem, so we can just graph it. Figure 10 plots z1 (p1, 1) as a function

of p1. The figure highlights three important properties of z1 (p1, 1). First,

it is continuous. Second, for p1 very small, z1 (p1, 1) > 0, and third, for p1

very large, z1 (p1, 1) < 0. Given these three properties, by the intermedi-

ate value theorem– the simplest of fixed-point theorems– there necessarily

exists some p∗ = (p∗1, 1) such that z1 (p∗) = 0, and a Walrasian equilibrium

therefore exists. The subtleties in making this argument are in establishing

that z1 (p1, 1) > 0 for p1 small and z1 (p1, 1) < 0 for p1 large. The first prop-

erty follows from condition (v) in the Lemma above. The second property

follows because if p1 → ∞, then each consumer’s demand for commodity
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1 will converge to something less than her endowment of commodity 1, as

continuity and monotonicity of preferences imply she would like to sell at

least some of commodity 1 for an unboundedly large amount of commodity

2.

Exercise 10 (Adapted from MWG 17.C.4). Consider a pure exchange
economy. The only novelty is that a progressive tax system is instituted
according to the following rule: individual wealth is no longer p ·ωi; instead,
anyone with wealth above the mean of the population must contribute half
of the excess over the mean into a fund, and those below the mean receive a
contribution from the fund in proportion to their deficiency below the mean.

(a) For a two-consumer society with endowments ω1 = (1, 2) and ω2 = (2, 1),
write the after-tax wealths of the two consumers as a function of prices.

(b) If the consumer preferences are continuous, strictly convex, and strongly
monotone, will the excess demand functions satisfy the conditions required
for existence stated in Lemma 3?

More General Existence Result

Before proving the main existence theorem, we will first remind ourselves

of a couple important mathematical theorems that we will be using in the

proof. The first is the Kakutani fixed-point theorem, which you used to prove

the existence of a Nash equilibrium in Economics 2010a. The second is the

maximum theorem or Berge’s maximum theorem.

Kakutani Fixed-Point Theorem. Suppose Z is a nonempty, compact,

convex subset of Rn and that f : Z ⇒ Z is a nonempty, convex-valued, and

upper hemi-continuous correspondence. Then f has a fixed point.
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Kakutani’s fixed-point theorem is a generalization of Brouwer’s fixed-

point theorem but for set-valued functions. The basic idea of the theorem is

that a fixed point is an intersection of the graph of f with the 45◦ line, and the

conditions for the theorem ensure that the graph of f cannot “jump”across

the 45◦ line. In the special case when n = 1 and when f is scalar-valued, this

theorem boils down to the intermediate-value theorem.

The proof of equilibrium existence is going to make use of the Kakutani

fixed-point theorem for an appropriately defined correspondence, and we will

need to be able to establish that the correspondence has the properties that

are required by the theorem. The following theorem will be useful for estab-

lishing these properties.

Berge’s Maximum Theorem. If f : X × Θ → R is a continuous func-

tion, and C : Θ ⇒ X is a continuous, compact-valued correspondence,

then V (θ) = max {f (x, θ) : x ∈ C (θ)} is continuous in θ, and X∗ (θ) =

argmax {f (x, θ) : x ∈ C (θ)} is non-empty, compact-valued, and upper hemi-

continuous.

The line of proof we will be following is to define a set Z and a corre-

spondence f : Z ⇒ Z that satisfies the conditions of Kakutani fixed-point

theorem and whose fixed points are Walrasian equilibria. There are therefore

three main questions we will need to answer:

1. What should Z and f be?

2. Why do the conditions of Kakutani’s fixed-point theorem hold?
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3. Why do the fixed points of f correspond to Walrasian equilibria?

Step 1: Define Z and f To define the set Z, it is convenient to first

normalize prices so that they sum to one. Define the normalized price sim-

plex∆ to be the set of associated price vectors: ∆ ≡
{
p ∈ RL+ :

∑
l∈L pl = 1

}
.

Next, for each consumer i, define a non-empty, compact, convex subset of her

consumption set that is bounded above by what she could consume if she pos-

sessed the entire aggregate endowment: Ti =
{
xi ∈ Xi : xi ≤ 2

∑
i∈I ωi

}
⊂

Xi. Since each Ti is a compact, so is the product set T =
∏

i∈I Ti. Define

Z ≡ T ×∆ to be the domain on which we will define the correspondence f .

The correspondence f : Z ⇒ Z will map an allocation (xi)i∈I and a price

vector p to the set of allocations (x′i)i∈I that are optimal for each consumer

given p and a new price vector p′ that raises the price of commodities that

were over-demanded and lowers the price of commodities that were under-

demanded under (xi)i∈I . The first part of this construction is straight-

forward. Let xTi (p, p · ωi) be consumer i’s optimal choice over Bi (p) ∩ Ti.

Marshallian demand correspondence at prices p:

xTi (p, p · ωi) = max
xi∈Bi(p)∩Ti

ui (xi) ,

where recall that Bi (p) is consumer i’s budget set given prices p:

Bi (p) = {xi ∈ Xi : p · xi ≤ p · ωi} .
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If we do this for each consumer, we get the product of correspondences∏
i∈I x

T
i (p, p · ωi) ⊂ T . This takes care of the first part of the construc-

tion.

For the second part of the construction, we introduce a fictitious “player”

called the Walrasian auctioneer (or the “price player”) who chooses a price

vector p ∈ RL+ and wants to maximize the value of aggregate excess demand.

Let

a∗ (x) = argmax
p̃∈∆

p̃ ·
(∑

i∈I
xi −

∑
i∈I

ωi

)
,

where “a∗” is a pneumonic for “auctioneer.”We are now in a position to

define the appropriate correspondence f : Z ⇒ Z by

f (x, p) =

(∏
i∈I

xTi (p, p · ωi)
)

︸ ︷︷ ︸
⊂T

× a∗ (x)︸ ︷︷ ︸
⊂∆

.

Step 2: Verify that Kakutani’s theorem can be applied Now that

we have defined the set Z and the correspondence f , we will verify that the

conditions of Kakutani’s fixed-point theorem hold, so it can be applied. The

first set of conditions that needs to be verified is that Z = T ×∆ is a non-

empty, compact, convex subset of Rn for some n. The second set of conditions

is on the correspondence f– we need to show that f is a non-empty, convex-

valued, and upper hemi-continuous correspondence. Note that the product

of non-empty, convex-valued, and upper hemi-continuous correspondences

is itself non-empty, convex-valued, and upper hemi-continuous, so this last
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part requires that we show that each of the correspondences xTi (p, p · ωi) and

a∗ (x) satisfy these conditions.

First, note that Z is a non-empty, compact, and convex subset of RI·L+L

because each Ti and ∆ are non-empty, compact, and convex subsets of RL.

Next, a∗ is non-empty and convex-valued because ∆ is non-empty, com-

pact, and convex, and the Walrasian auctioneer’s objective is linear in p and

hence continuous. It is upper hemi-continuous by Berge’s maximum theorem.

Finally, the function xTi is non-empty and convex-valued because Bi (p)∩

Ti is non-empty, compact, and convex, and ui is continuous (guaranteeing

x∗i is non-empty) and concave (guaranteeing x
∗
i is convex-valued). These

conditions alone are not enough to give us the upper hemi-continuity that

we require in order to apply Kakutani’s fixed-point theorem, however, be-

cause we still have to show that Bi (p) ∩ Ti is a continuous, compact-valued

correspondence.

It is apparent that Bi (p) ∩ Ti is compact-valued– the involved part is

showing that it is a continuous correspondence. To do so, we have to show

that it is both upper hemi-continuous in p and lower hemi-continuous in p.

Upper hemi-continuity is straightforward, since if pn → p and xni → xi with

xni ∈ Bi (pn)∩Ti for all n, then pn ·xni ≤ pn ·ωi and xni ≤
∑

i∈I ωi for all n and

therefore this condition holds in the limit as well. Showing that Bi (p) ∩ Ti

is lower hemi-continuous is more involved, and we leave this as an exercise

(this is the only part of the existence proof that makes use of assumption

(A4)).
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These arguments establish that Z and f satisfy the conditions of Kaku-

tani’s fixed-point theorem, and therefore f has a fixed point. We now need

to show that any such fixed point of f is a Walrasian equilibrium.

Step 3: Show that fixed points of f are Walrasian equilibria Sup-

pose (x∗, p∗) ∈ f (x∗, p∗)– that is, (x∗, p∗) is a fixed point of f . We need

to show that x∗i = xTi (p∗, p∗ · ωi) is consumer-optimal for each i ∈ I, and

markets clear at prices p∗.

For the first part, because xTi (p∗, p∗ · ωi) = maxxi∈Bi(p∗)∩Ti ui (xi), we

need to verify that the resulting solution also solves the relaxed problem

maxxi∈Bi(p∗) ui (xi), which is the problem the consumer actually faces. To do

this, first note that since consumers have monotonic preferences, it must be

the case that p∗ ·
(∑

i∈I x
∗
i

)
≤ p∗ ·

(∑
i∈I ωi

)
– if we did not have to worry

about xi ∈ Ti for each i, this inequality would hold with equality by Walras’s

Law. Next, since p∗ ∈ a∗ (x∗), we have

0 ≥ p∗ ·
(∑

i∈I
x∗i −

∑
i∈I

ωi

)
≥ p ·

(∑
i∈I

x∗i −
∑
i∈I

ωi

)
for all p ∈ ∆,

so that
∑

i∈I x
∗
i −

∑
i∈I ωi ≤ 0 and therefore x∗i ≤

∑
i∈I ωi for all i, so

that x∗i ∈ int (Ti). We therefore have that x∗i ∈ argmaxxi∈Bi(p∗) ui (xi) be-

cause if there were some x̂i ∈ Bi (p∗) with ui (x̂i) > ui (x
∗
i ), then for some

small λ, λx̂i + (1− λ)x∗i ∈ Bi (p∗) ∩ Ti and by (quasi-)concavity of ui,

ui (λx̂i + (1− λ)x∗i ) > ui (x
∗
i ), which is a contradiction.
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We now establish that the market-clearing condition is satisfied. Since x∗i

is consumer-optimal for each i, Walras’s Law tells us that p∗ ·
(∑

i∈I x
∗
i

)
=

p∗ ·
(∑

i∈I ωi
)
, and in particular, at p∗, the Walrasian auctioneer’s value

is zero (recall that the auctioneer maximizes p ·
(∑

i∈I xi −
∑

i∈I ωi
)
). If∑

i∈I x
∗
l,i −

∑
i∈I ωl,i were positive for any commodity l, then the auctioneer

could set pl = 1 and pl′ = 0 for all l′ 6= l and attain a positive value. This

implies that no commodity is over-demanded at the allocation x∗, that is,∑
i∈I x

∗
i ≤

∑
i∈I ωi.

It remains only to show that this inequality actually holds with equality.

By Walras’s law, we know that p∗ ·
(∑

i∈I x
∗
i

)
= p∗

(∑
i∈I ωi

)
. Since there

is no excess demand, this implies that commodity l can be in excess supply

only if its price is p∗l = 0. In that case, we can just modify the allocation

x∗ by giving the entire excess supply of commodity l to some consumer–

without loss of generality, let that be consumer 1. This is feasible, and it does

not affect consumer 1’s utility. Why doesn’t it affect her utility? Since her

preferences are monotone, giving her more of commodity l cannot decrease

her utility. It also cannot increase her utility, because otherwise, she would

have chosen the resulting consumption bundle rather than x∗i , and doing so

would have been affordable, because p∗l = 0.

To summarize, either (x∗, p∗) is a Walrasian equilibrium or the allocation

resulting from arbitrarily allocating any commodity in excess supply to con-

sumers (along with the price vector p∗) is a Walrasian equilibrium. In either

case, a Walrasian equilibrium exists.�
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1.5 Uniqueness, Stability, and Testability

We now provide an introduction to some of the most important positive

properties of general equilibrium theory. We will ask when a Walrasian equi-

librium is unique, whether it is stable in the sense that it can be reached by

a simple price adjustment process, and we will look at whether Walrasian

equilibrium imposes substantive restrictions on observable data.

This lecture will be less formal than previous lectures, mostly going

through each of these topics at a rather high level. We have already al-

luded to the answers to some of these questions: no, Walrasian equilibria

need not be unique, and no, it is not the case that a simple price adjust-

ment process will always converge to a Walrasian equilibrium. We will first

establish these results under general preferences. We will then focus on a

special class of economies in which consumer preferences satisfy the gross

substitutes property– when this property is satisfied, the model is particu-

larly well-behaved: there will be a unique Walrasian equilibrium, and there

will be a simple price-adjustment process that will always converge to it.

Uniqueness and Stability under Fairly General Prefer-

ences

Uniqueness We will first look at the question of whether there is a globally

unique Walrasian equilibrium. Recall from the previous lecture the definition

of the aggregate excess demand function z (p) =
∑

i∈I zi (p), where zi (p) =
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xi (p, p · ωi)− ωi.

Let us consider a two-commodity, two-consumer economy and normalize

p2 = 1. We argued informally last time that a Walrasian equilibrium exists

by claiming that z1 (p1, 1) is continuous in p1, z1 (p1, 1) > 0 for p1 small, and

z1 (p1, 1) < 0 for p1 large. By the intermediate-value theorem, there exists

a p∗1 such that z1 (p∗1, 1) = 0 and therefore (p∗1, 1) is a Walrasian equilibrium

price vector.

Is there any reason to think that there is only one p∗1 at which z1 (p∗1, 1) =

0? Yes, if z1 (p1, 1) is everywhere downward-sloping, and in some sense,

this is the natural case. It just says that there is less aggregate demand

for commodity 1 when p1 is higher, and we will show later that when the

economy satisfies the gross substitutes condition, this will always be the case.

But there certainly are situations where z1 (p1, 1) is not always downard-

sloping. There is the somewhat pathological case in which commodity 1 is a

Giffen good, so that x1,i (p, w) is increasing in p1 even holding w fixed. Even

if neither good is a Giffen good, however, x1,i (p, p · ω1) may be increasing

in p1 because consumer i’s wealth is increasing in p1, so an upward-sloping

region of z1 (p1, 1) is not particularly implausible.

In the first lecture, we discussed an example in the Edgeworth box in

which the two consumers’offer curves intersected at three equilibrium points,

and in the first problem set, you were asked to solve for the set of Walrasian

equilibria in a numerical example for which there were three equilibria. Recall

the example from the problem set. Consumers’preferences and endowments



1.5. UNIQUENESS, STABILITY, AND TESTABILITY 53

are:

u1 (x1,1, x2,1) =

(
x−2

1,1 +

(
12

37

)3

x−2
2,1

)−1/2

, ω1 = (1, 0) ,

u2 (x1,2, x2,2) =

((
12

37

)3

x−2
1,2 + x−2

2,2

)−1/2

, ω2 = (0, 1) .

If we normalize p2 = 1, consumers’Marshallian demands for commodity 1

are:

x1,1 ((p1, 1) , p1) =
p1

p1 + 12
37
p

1/3
1

, x1,2 ((p1, 1) , 1) =
1

p1 + 37
12
p

1/3
1

,

and the aggregate excess demand for commodity 1 is therefore

z1 (p1, 1) =
1

p1 + 37
12
p

1/3
1

−
12
37
p

1/3
1

p1 + 12
37
p

1/3
1

.

Figure 11 plots z1 (p1, 1) and shows that there are three solutions to

z1 (p1, 1) = 0. You might recall from the first problem set that for p∗1 ∈{
27
64
, 1, 64

27

}
, there is a Walrasian equilibrium with prices (p∗1, 1).

There are two additional general points that you can see illustrated in

both Figures 5(a) and 11. The first is that if you were to perturb the economy

slightly by changing consumers’preferences or endowments by a tiny amount,

this would not affect the fact that there are three Walrasian equilibria.
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Figure 11: Multiple Walrasian equilibria

The second general point that these examples illustrate is that even

though Walrasian equilibria may not be globally unique, they may be what

is referred to as locally unique in the sense that there is no other Walrasian

equilibrium price vector within a small enough range around the original

equilibrium price vector. Figure 12 illustrates an example for which this is

not the case. An equilibrium is not locally unique if its price vector p is the

limit of a sequence of other equilibrium price vectors. This example shows

that this can happen, but only if z1 (p1, 1) is flat and equal to zero over some

interval of prices [p∗1, p
∗∗
1 ]. The important point to note about this example

is that it is not generic: any small perturbation of z1 (·, 1) that would arise
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from, say, a change in endowments, would restore the property that there

are a finite number of equilibria.

Figure 12: Walrasian Equilibria need not be

locally unique

Exercise 11 (Adapted fromMWG 17.D.1). Consider an exchange econ-
omy with two commodities and two consumers. Both consumers have homo-
thetic preferences of the constant elasticity variety. Moreover, the elasticity
of substitution is the same for both consumers and is small (i.e., commodities
are close to perfect complements). Specifically,

u1 (x1,1, x2,1) =
(
2xρ1,1 + xρ2,1

)1/ρ
and u2 (x1,2, x2,2) =

(
xρ1,2 + 2xρ2,2

)1/ρ
,

and ρ = −4. The endowments are ω1 = (1, 0) and ω2 = (0, 1). Compute
the excess demand function of this economy and find the set of competitive
equilibria.
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Tatonnement Stability One important aspect of Walrasian equilibrium

that we have alluded to throughout the course but have not yet addressed

is: where do Walrasian equilibrium prices come from? General equilibrium

theory is quite weak on the kinds of price-adjustment processes that might

lead to Walrasian equilibrium outcomes.

Walras proposed a process he called “tatonnement”whereby a fictitious

Walrasian auctioneer gradually raises the price of commodities in excess de-

mand and reduces the prices of those in excess supply until markets clear.

This process is related to what the Walrasian auctioneer did in our proof of

existence from last time, but not quite the same. In particular, the process

last time adjusted prices discontinuously, but it was aimed at showing the

existence of a fixed point for a particular operator, not at showing that the

fixed point(s) of that operator could be found by iterating it from an arbitrary

starting point.

Formally, consider the following continuous-time price-adjustment process

p (t):
dp (t)

dt
= αz (p (t)) ,

for some constant α > 0. Given a starting price vector p (0), the process raises

prices for any commodities l for which zl (p (t)) > 0 (i.e., for which there is

excess demand), and it reduces prices for those for which zl (p (t)) < 0.

The stationary points of this process are prices p at which z (p) = 0: Wal-

rasian equilibrium prices. An equilibrium price vector p∗ is said to be locally
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stable if the price-adjustment process converges to p∗ from any “nearby”price

vectors, and it is globally stable if the process converges to p∗ from any initial

starting price vector. Does this process converge to a Walrasian equilibrium

price vector? When there are only two commodities, and the economy satis-

fies properties (A1), (A2′), (A3), and (A4), this process does in fact converge,

as Figure 13 highlights. Here, we can also see that p∗1 and p
∗∗∗
1 are locally

stable, and p∗∗1 is not, and none of the equilibrium price vectors is globally

stable.

Figure 13: Tatonnement process for two

commodities

This price-adjustment process gives us a way to study how equilibrium
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prices might be reached, but it has several drawbacks. First, the process itself

is a conceptual exercise rather than a practical one– the GE model predicts

that no one will trade at non-equilibrium prices. Second, if one were to try to

implement this process by asking consumers how much they would demand

at different price levels, then they would be unlikely to want to report their

demands truthfully. Finally, the main drawback with this procedure is that

it does not in general converge to an equilibrium price vector. In a famous

paper, Scarf (1960) provided several examples in which the process does not

converge when there are more than two commodities. We will show in the

next section, however, that there are classes of economies for which it does

converge.

Uniqueness and Stability under Gross Substitutes

In this section, we will show that economies that satisfy the gross substi-

tutes property have particularly nice properties: there is a unique Walrasian

equilibrium (up to a normalization), it is globally stable, and it has nice

comparative statics properties.

Recall from consumer theory that commodities k and l are gross substi-

tutes if an increase in pk increases the Marshallian demand for commodity l

(and vice versa), holding wealth fixed. The analogous definition in general

equilibrium is as follows.

Definition 4. A Marshallian demand function x (p, p · ω) satisfies gross
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substitutes at endowment ω if, for all prices p and p′ with p′k > pk and

p′l = pl for all l 6= k, we have xl (p′, p′ · ω) > xl (p, p · ω) for all l 6= k.

This definition of gross substitutes is more subtle than the definition you

saw from consumer theory, since increasing pk also increases the consumer’s

wealth. It is straightforward to show that if all commodities are gross substi-

tutes in the consumer-theory sense and they are also normal goods (so that

demand increases with wealth), then demand functions will satisfy the gross

substitutes property for all possible (non-negative) endowments. It is not

readily apparent from the definition of gross substitutes that the demand for

commodity l is decreasing in pl, but it is true: since demand is homogeneous

of degree 0 in p, increasing pl is the same as holding pl fixed and decreasing

all other prices. Since decreasing each of these other prices decreases demand

for commodity l, so does decreasing all of them.

If each consumer i’s demand function satisfies gross substitutes at ωi, then

so does aggregate demand
∑

i∈I xi (p, p · ωi). The property is restrictive, but

it is satisfied by many common functional forms such as CES preferences:

ui (xi) =
(∑

l∈L αlx
ρ
l,i

)1/ρ
for 0 < ρ < 1.

If aggregate demand satisfies the gross substitutes property, then there is

a unique Walrasian equilibrium, as the following result shows.

Proposition 1. If the aggregate excess demand function z (·) satisfies gross

substitutes, the economy has at most one Walrasian equilibrium (up to a

normalization).
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Proof of Proposition 1. We need to show that there is at most one

(normalized) price vector p such that z (p) = 0. To see why this is the case,

suppose z (p) = z (p′) = 0 for two price vectors p and p′ that are not collinear.

By homogeneity of degree zero, we can normalize the price vectors in such a

way that p′l ≥ pl for all l ∈ L and p′k = pk for some commodity k. Then, to

move from p to p′, we can think about doing this in L − 1 steps, increasing

the prices of each commodity l 6= k in turn. At each step where a component

of the price vector increases strictly, the aggregate demand for commodity k

must strictly increase, so that zk (p′) > zk (p) = 0. Moreover, there must be

at least one such k, since p is not collinear with p′, yielding a contradiction.�

When aggregate demand satisfies the gross substitutes property, not only

is there a uniqueWalrasian equilibrium, but the tatonnement price-adjustment

process we described above globally converges to it. To establish this result,

we will first prove a lemma.

Lemma 4. Suppose that the aggregate excess demand function z (·) satisfies

gross substitutes and that z (p∗) = 0. Then for any p not collinear with p∗,

p∗ · z (p) > 0.

Proof of Lemma 4. We will give the proof in the L = 2 case. Normalize

p2 = p∗2 = 1. Then

p∗ · z (p) = (p∗ − p) · (z (p)− z (p∗))

= (p∗1 − p1) (z1 (p)− z1 (p∗)) > 0.
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The first equality uses Walras’s Law (giving us that p ·z (p) = 0) and the fact

that p∗ is a Walrasian equilibrium (so that z (p∗) = 0). The second equality

uses the normalization p2 = p∗2 = 1. The inequality follows from the gross

substitutes property: p1 > p∗1 implies z1 (p) < z1 (p∗) and p1 < p∗1 implies

z1 (p) > z1 (p∗).�

With this Lemma, we can prove that the tatonnement process converges

to the unique (up to normalization) Walrasian equilibrium price vector p∗.

Proposition 2. Suppose that the aggregate excess demand function z (·) is

satisfies the gross substitutes property and that p∗ is a Walrasian equilibrium

price vector. Then the price-adjustment process p (t) defined by dp (t) /dt =

αz (p (t)), with α > 0, converges to p∗ for any initial condition p (0).

Proof of Proposition 2. To prove this result, we will show that the squared

distance between p (t) and p∗ decreases monotonically in t. Let D (p) =

1
2

∑
l∈L (pl − p∗l )

2 denote the distance between p and p∗. Then

dD (p (t))

dt
=

∑
l∈L

(pl (t)− p∗l )
dpl (t)

dt

= α
∑
l∈L

(pl (t)− p∗l ) zl (p (t))

= −αp∗ · z (p) ≤ 0,

where the third equality uses Walras’s law. By the previous lemma, the last

inequality is strict unless p is collinear with p∗. Since D (p (t)) is monotonic

and bounded, it must converge to some value δ ≥ 0. If δ = 0, we are done. If
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δ > 0, then there is a contradiction, because continuity of aggregate demand

implies that p∗ · z (p (t)) is bounded away from 0 for all p (t) bounded away

from p∗.�

Finally, economies with the gross substitutes property have nice compar-

ative statics. Any change that raises excess demand for commodity k will

increase its equilibrium price. As an example, suppose there are two com-

modities and normalize p2 = 1. Suppose also that commodity 1 is a normal

good for all consumers. Consider an increase in the aggregate endowment

for commodity 2. For any price p1, this will increase aggregate demand for

commodity 1 and hence increase z1 (·, 1).

Figure 14: Comparative statics
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Figure 14 compares the aggregate excess demand functions for two economies:

one (z1 (·, 1;L)) with a low aggregate endowment of commodity 2 and one

(z1 (·, 1;H)) with a high aggregate endowment of commodity 2. The curve

z1 (·, 1;H) lies above z1 (·, 1;L) and because it is continuous and crosses zero

once, the new equilibrium price vector must have a higher price for commod-

ity 1.

1.6 Empirical Content of GE

As we just saw, whether there is a unique Walrasian equilibrium and whether

Walrasian equilibria are stable depended critically on the structure of the

economy’s aggregate excess demand function z (·).

What do we know in general about the structure of aggregate excess de-

mand? We proved that under assumptions (A1), (A2′), (A3), and (A4) about

consumer preferences and endowments that z (·) is continuous, homogeneous

of degree zero in p, it satisfies Walras’s Law, and limp→0 z (p) → ∞. But,

as Sonnenschein (1973) showed for the case of two commodities, and Mantel

(1974) and Debreu (1974) showed more generally, the assumption of con-

sumer maximization alone imposes no further restrictions on z (·). This is

a very negative result, since it implies that even if we observe an economy

in a Walrasian equilibrium with price vector p, it is possible for the same

economy to have an arbitrary number of Walrasian equilibria with arbitrary

stability properties.
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Theorem 5 (Sonnenschein-Mantel-Debreu Theorem). For any closed

and bounded set of positive prices P ⊆ RL++ and any function f : P → RL

satisfying continuity, homogeneity of degree 0, and Walras’s Law, there exists

an exchange economy with L consumers with continuous, strictly convex, and

monotone preferences whose aggregate excess demand function coincides with

f on P.

We omit the proof here. See MWG Chapter 17.E for a proof in the L = 2

case and a discussion about the more general proof. Roughly speaking, the

structure of the proof begins with a candidate excess demand function f (p)

that is continuous, homogeneous of degree 0, and satisfies Walras’s Law and

reverse engineers a set of consumer preferences and endowments that gen-

erate f (p) as the aggregate excess demand function. The ability to do so

requires a lot of flexibility in specifying consumer preferences that feature

potentially strong income effects as well as the ability to specify consumers’

endowments. A common interpretation of this theorem is that “anything

goes”in general equilibrium theory. That is, without making strong assump-

tions on preferences: (i) pretty much any comparative statics result could be

obtained in a general equilibrium model, and (ii) general equilibrium theory

has essentially no empirical content. This is not quite right, though, as we

will now see.

Brown and Matzkin (1996) prove an important result showing that if an

economist is able to observe endowments as well as prices, then the Walrasian

model is in principle testable. That is, there are endowment and price pairs
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p, (ωi)i∈I

)
and

(
p′, (ω′i)i∈I

)
such that if p is a Walrasian equilibrium price

vector given a fixed set of consumers with endowments (ωi)i∈I , then if the

same set of consumers instead had endowments (ω′i)i∈I , p
′ could not be a

Walrasian equilibrium price vector.

Theorem 6 (Brown-Matzkin Theorem). There exists price-endowment

pairs
(
p, (ωi)i∈I

)
and

(
p′, (ω′i)i∈I

)
such that there do not exist monotone

preferences (ui)i∈I such that p is a Walrasian equilibrium price vector for the

exchange economy (ui, ωi)i∈I and p
′ is a Walrasian equilibrium price vector

for the exchange economy (ui, ω
′
i)i∈I .

Proof of Theorem 6. We can prove this theorem in the case of two con-

sumers and two commodities. Consider the two Edgeworth boxes in Figure

15. Because p is a Walrasian equilibrium price vector given endowment ω,

consumer 1 must weakly prefer some bundle on the segment A to any bundle

on the segment B. By monotonicity, for every point on the segment A′, there

is some point on B that consumer 1 strictly prefers. There is therefore some

bundle on A that is preferred by consumer 1 to every bundle on A′. If p′ is a

Walrasian equilibrium price vector given ω′, we have a contradiction: every

bundle on A is available to consumer 1 at prices p′, yet she chooses a bundle

on A′.�
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Figure 15: Brown-Matzkin theorem

The Brown-Matzkin theorem shows that, in order to construct the arbi-

trary excess demand functions that the proof of the Sonnenschein-Mantel-

Debreu theorem requires, you really need the flexibility in specifying arbi-

trary endowments in addition to flexibility in specifying preferences. It also

illustrates a more general point that, even if at its highest level, a theory

imposes little structure on endogenous variables, imposing more structure on

the theory typically imposes more structure on its implications.



Chapter 2

Foundations of General

Equilibrium Theory

When we talked about the normative properties of the GE model in the

first week of class– in particular, the first welfare theorem– we were focused

on questions about what is true in equilibrium. We did not really address

the question of why it is that Walrasian equilibrium allocations are Pareto

optimal, because in some sense, the framework itself is ill-equipped to answer

this question. In order to get a better sense for why Walrasian equilibrium

allocations are Pareto effi cient, and in order to get a better sense for when

the GE framework is an appopriate way of viewing the world, we will have

to take a step outside the model in order to provide some foundations for the

model itself.

We will ask two sets of questions. First, when might we expect Walrasian

67
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equilibrium allocations to arise? Second, when and why might we expect

Pareto-optimal allocations to arise? To address these questions, we will con-

sider two alternative foundations for Walrasian equilibrium, and in both, the

answer to this question will be: when individuals in the economy are “small.”

What is potentially problematic about Walrasian equilibrium as a de-

scription of the economy is that prices are endogenous variables, but they

are not the explicit choices of anyone in the economy. In reality, individuals

set prices– they bid in auctions, they post prices in their stores, they nego-

tiate prices with their suppliers. Setting prices are individual decisions. One

of the main premises of GE is that, when individuals are small relative to

the economy, “market forces”pin down the prices at which trade occurs, and

although it may be possible, it would be unwise for individuals to choose any

other prices or any other consumption bundles. The question is: what are

“market forces?”

Providing microfoundations for GE theory boils down to providing an

answer to the question, “Under what conditions do small individuals lack

market power, in the sense that they are forced to trade only at competitive

prices?”There are two main approaches we will consider here. The first is the

cooperative game theory approach in which the primitives of the model remain

the agents’endowments and preferences, and the process of price-setting and

trade is still specified only implicitly. Under this approach, however, the

solution concept we will be using does not directly involve prices. Yet as

the economy becomes large, consumers will receive the same allocations they
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would receive in a Walrasian equilibrium.

The second approach we will consider is the non-cooperative game theory

approach in which we will explicitly model price-setting and trade and think

about the (Nash) equilibria of the resulting trading processes. Consumers

will have actions that can directly affect the prices they and other consumers

pay for different commodities, and therefore equilibria will generically be

ineffi cient. In the limit as the economy becomes large, however, consumers’

actions will have little effect on prices, and equilibrium consumption choices

will converge to Walrasian equilibrium allocations.

A benefit of the non-cooperative approach relative to the cooperative

approach is that Pareto optimality will arise as a result rather than as a

maintained assumption. We will therefore be able to develop some deeper

intuition for why, exactly, Walrasian equilibrium allocations are Pareto op-

timal. We will then conclude this section with a brief discussion of who

gets what in equilibrium and how under the notion of competitive equilib-

rium in which consumers’impact on prices is miniscule, consumers receive

exactly what they contribute to the economy. A common theme in these

approaches is that while Walrasian equilibrium is not necessarily a good de-

scription of small-numbers interactions, it may be a reasonable description

of large-numbers interactions.
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2.1 The Cooperative Approach

Going back to his 1881 classic, Mathematical Psychics, Edgeworth proposed

that in economies with a small number of individuals, the outcome might

be “indeterminate.”We saw an example of this in the first week when we

looked at Edgeworth boxes– with two consumers, Edgeworth believed that

the only prediction we could reasonably make is that the final allocation

would lie on the contract curve: the set of Pareto optimal allocations that

are preferred by each consumer to her endowment. But he also conjectured

that as the number of consumers grows, the scope for contracting among

different consumers grows, and the resulting contract curve shrinks until it

reaches only the set of Walrasian equilibrium allocations.

In the 20th century, economists formalized a version of this argument in

what is known as the core convergence theorem. In order to describe what

the core convergence theorem is, we will first have to define what the core

is. The idea of the core is that it is the set of allocations for which no group

of consumers can get together and trade with each other and do strictly

better. Formally, consider a pure exchange economy E with I consumers

whose preferences are continuous, strictly convex, and strongly monotone.

We will define the core by defining what it is not. We will say that a coalition

S ⊆ I of consumers blocks an allocation if its members can all do strictly

better by trading among themselves. In the case of I = {1, 2} that we

considered in the Edgeworth box, any allocation that is not in the Pareto set
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is blocked by the coalition {1, 2}, and any allocation in the Pareto set but

not on the contract curve is blocked either by coalition {1} or by coalition

{2}.

Definition 5. A coalition S ⊆ I blocks the allocation x∗ = (x∗1, . . . , x
∗
I) ∈

RLI+ if there exists another allocation such that:

1. ui (xi) > ui (x
∗
i ) for all i ∈ S, and

2.
∑

i∈S xi ≤
∑

i∈S ωi.

The core is the set of feasible unblocked allocations.

Definition 6. A feasible allocation x∗ is in the core if it is not blocked by

any coalition. The core is therefore the set of unblocked feasible allocations.

In terms of the Edgeworth box example, the core corresponds to the con-

tract curve, since all other allocations are blocked by some coalition. The

core convergence theorem provides conditions under which, when the econ-

omy grows large, the set of core allocations coincides with the set ofWalrasian

equilibrium allocations. We will break this claim up into two parts. First, we

will show that any Walrasian equilibrium allocation is in the core. Then, we

will show that any allocation that remains in the core as the economy grows

large is a Walrasian equilibrium allocation.

Proposition 3. Any Walrasian equilibrium allocation is in the core.

Proof of Proposition 3. Let
(
p∗, (x∗i )i∈I

)
be a Walrasian equilibrium.

Suppose (x∗i )i∈I is not in the core. Then there is some coalition S ⊆ I that
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can block x∗ with some other feasible allocation x̂. Then p∗ · x̂i > p∗ · ωi for

all i ∈ S by consumer optimality. Since this holds for all i ∈ S, we must

also have p∗ ·
(∑

i∈S x̂i
)
> p∗ ·

(∑
i∈S ωi

)
. Since p∗ ≥ 0, this implies that∑

i∈S x̂l,i >
∑

i∈S ωl,i for some commodity l. But this means that x̂ was not

feasible to begin with.�

In order to establish the other direction of the core convergence theorem,

we will have to define formally what we mean when we say that an economy

grows large. As we know from the Edgeworth box example, when there are

only two consumers, not every core allocation is a Walrasian equilibrium

allocation. Whether this result remains true as we add more consumers to

the economy depends on how we add more consumers to the economy. For

example, if consumers 1 and 2 only care about their consumption of pens and

pencils, and they are endowed with pens and pencils and nothing else, then

if we add a bunch of other consumers who care only about their consumption

of paper clips and have an endowment of paper clips and nothing else, then

this will not do anything to make the terms of trade between consumers 1

and 2 more competitive.

If instead, we “grow the economy”by adding more consumers like con-

sumer 1 (i.e., consumers who have the same preferences and endowment as

consumer 1) and adding more consumers like consumer 2, then core alloca-

tions do begin to look more like Walrasian equilibrium allocations. Roughly

speaking, the reason why is that if any particular consumer is getting a “good

deal”from the rest of the consumers at a particular allocation, then the other
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consumers would prefer to cut her out of the deal and redistribute her net

trade among themselves. This may not work when there are only a couple

consumers in the economy because the excluded consumer may be hard to

replace.

In order to formalize this argument, suppose there are H types of con-

sumers h ∈ H = {1, . . . , H}. A type-h consumer has preferences uh and

endowment ωh. For each integer N > 0, we consider the N-replica econ-

omy, which is a pure exchange economy consisting of IN ≡ N ·H consumers,

N of each type. We will refer to an allocation in which consumers of the same

type consume the same consumption bundle as an equal-treatment allo-

cation. The next lemma establishes that any core allocation of the N -replica

economy is an equal-treatment allocation. Denote by xh,n the allocation of

the nth consumer of type h.

Lemma 5. Suppose x is in the core of the N -replica economy, for some

N > 0. Then all consumers of the same type receive the same allocation:

xh,n = xh,m for all n,m ≤ N and all types h ∈ H.

Proof of Lemma 5. We will proceed by way of contradiction. Suppose x is

in the core of the N -replica economy for some N > 0, but for some type of

consumer– without loss of generality, say type 1– not all consumers of that

type receive the same allocation. We will want to show that in fact, such an

allocation is not in the core. In particular, we will show that the coalition

consisting of the worst-off consumer of every type can block the allocation x.

To see why this is true, let x̂h = 1
N

∑
n xh,n denote the average allocation



74CHAPTER 2. FOUNDATIONSOFGENERAL EQUILIBRIUMTHEORY

of type-h consumers. Without loss of generality, suppose that it is consumer

number 1 of each type h who is worst off within type h. By strict convexity

of preferences, uh (x̂h) ≥ uh (xh,1) for all h, and u1 (x̂1) > u1 (x1,1). The

coalition {(1, 1) , . . . , (H, 1)} can attain consumption vector (x̂1, . . . , x̂H) for

its members, since feasibility implies

∑
h∈H

x̂h =
1

N

∑
h∈H

N∑
n=1

xh,n ≤
1

N

∑
h∈H

N∑
n=1

ωh =
∑
h∈H

ωh.

Finally, continuity and strong monotonicity of preferences imply that the con-

sumption vector (x̂1, . . . , x̂H) can be perturbed to satisfy uh (x̂h) > uh (xh,1)

for all h, so the strict inequalities required to apply the definition of blocking

are satisfied.�

This Lemma shows that any core allocation for an N -replica economy

takes the form of a type allocation (x1, . . . , xH) ∈ RLH+ , where each con-

sumer of type h receives allocation xh. Let CN ⊆ RLH+ be the set of core

allocations in the N -replica economy. Note that the set of core allocations

shrinks as we replicate the economy: CN+1 ⊆ CN for all N . This is be-

cause any type allocation that is blocked by some coalition in the N -replica

economy will be blocked by exactly the same coalition in the N + 1-replica

economy. At the same time, from Proposition 3, we know that the the set

of Walrasian equilibrium allocations is independent of N and is always con-

tained in CN . Debreu and Scarf (1963) proved that as N → ∞, the set CN

shrinks to exactly the set of Walrasian equilibrium allocations. The version
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of the theorem we will prove will rely on two additional assumptions about

preferences and endowments, although these assumptions can be relaxed.

Assumption A1’(continuous differentiability). For all consumers of

type h ∈ H, uh is continuously differentiable.

Assumption A4’(interiority). For each h ∈ H, ωh is strictly preferred

to any consumption bundle xh that is not strictly positive.

Theorem 7 (Core Convergence Theorem). Suppose E satisfies (A1′) , (A2′) , (A3) , (A4′).

If x ∈ CN for all N , then x is a Walrasian equilibrium allocation.

Proof of Theorem 7. At a high level, the proof of this theorem first argues

that if x ∈ CN for all N , then it is Pareto-optimal, which means that marginal

rates of substitutions are equal across consumers and proportional to a price

vector that will be used to construct a Walrasian equilibrium. It then argues

that if at this price vector, some type of consumer is getting a “good deal”in

that they consuming a bundle that is more expensive than their endowment,

then N − 1 consumers of this type along with all the other consumers in the

economy can form a blocking coalition. This means that no type of consumer

can be getting a good deal if x ∈ CN for all N . The proof concludes with an

argument that if no consumers are getting a good deal at x ∈ CN for all N ,

then x can be decentralized as a Walrasian equilibrium allocation.

Step 1. Pareto-optimal allocations equate marginal rates of substitution

across consumers and can be used to construct candidate prices.

Take an x∗ ∈ CN for all N . Since x∗ is in the core, it is a Pareto-optimal
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allocation. Assumptions (A1′) and (A4′) ensure that at x∗,

∂uh/∂xl,h
∂uh/∂xl′,h

=
∂uh′/∂xl,h′

∂uh′/∂xl′,h′
for all h, h′, l, l′.

Construct a price vector p∗ for which p∗1 = 1, and

p∗l =
∂uh/∂xl,h
∂uh/∂x1,h

for any h,

so that relative prices match relative marginal utilities. We will now argue

that (p∗, x∗) is a Walrasian equilibrium.

Step 2. No consumer types are getting a “good deal”at p∗.

Suppose that type-1 consumers are getting a “good deal” in the sense

that their consumption is worth more than their endowment at prices p∗:

p∗ · x∗1 > p∗ · ω1. We want to show that if this is the case, then x∗ is not, in

fact, in CN for all N . To see why this is the case, note the marginal utility

to any consumer type h of consuming an additional ε amount of consumer

1’s net trade, x∗1 − ω1, is, to first order,

ε
∑
l∈L

∂uh
∂xl,h

(xl,1 − ωl,1) .

Since p∗ · (x∗1 − ω1) > 0, and the vector (∂uh/∂x1,h, . . . , ∂uh/∂xL,h) is pro-

portional to p∗, this marginal utility is strictly positive. For ε > 0 suf-

ficiently small, therefore, each consumer type h strictly prefers consuming

x∗h + ε (x∗1 − ω1) to consuming x∗h.
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Now, consider allocation x∗ in the N -replica economy. Suppose the coali-

tion S consisting of everyone except a single type-1 consumer proposes an

allocation that gives each coalition member of type h consumption x̂h =

x∗h + 1
NH−1

(x∗1 − ω1). This allocation x̂ is feasible for the coalition (you can

check MWG, p. 658 for the argument for feasibility). Moreover, by the

argument in the previous paragraph, if N is suffi ciently large, x̂ is strictly

preferred to x∗ by every coalition member. The coalition S therefore blocks

the allocation x∗, so x∗ is not in CN for N suffi ciently large. This contradicts

the hypothesis that p∗ · x∗1 > p∗ ·ω1, so it must be the case that no consumer

types are getting a “good deal.”

Step 3: Show that (p∗, x∗) is a Walrasian equilibrium.

From the previous step, we know that x∗h is affordable for type h at prices

p∗ for all types h: p∗ · x∗h ≤ p∗ ·ωh for all h ∈ H. The bundle x∗h also satisfies

consumer optimality. This is because under our interiority, differentiability,

and convexity assumptions, each consumer type h will choose a consumption

bundle that equates ∂uh
∂xl,h

/p∗l across commodities and therefore will optimally

choose x∗h at prices p
∗.

Finally, since x∗ is Pareto-optimal, it must also be feasible: N
∑

h∈H x
∗
h ≤

N
∑

h∈H ωh. Since preferences are monotone, this inequality must hold with

equality, so the market-clearing condition is also satisfied. The vector (p∗, x∗)

is therefore a Walrasian equilibrium.�

The core convergence theorem is an important result that is probably

the best-known statement of the idea that large markets are approximately
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competitive. Note that there are no prices in the notion of the core. Yet what

the core convergence theorem is saying is that in a suffi ciently large economy,

any allocation in the core corresponds to exactly what consumers would

consume at equilibrium prices in a Walrasian equilibrium. The theorem

itself has a number of shortcomings, however.

First, the notion of a replica economy is extreme. We typically think of

each individual as being unique, yet the thought experiment the core con-

vergence theorem carries out requires that there are, in the limit, infinitely

many people who have exactly the same preferences and endowments as you.

Second, the theorem itself is not an approximation result– it does not say

that for any finite N , any allocation in the core is approximately a Wal-

rasian equilibrium allocation, since it does not say anything about distance.

There is a large literature at the intersection of cooperative game theory and

general equilibrium theory that tries to extend this result into something

that is more convincing. One branch (following Arrow and Hahn, 1971, and

others) relaxes the assumption of exact replication and tries to say some-

thing about core allocations in large but finite economies. Another branch

(following Aumann, 1964) instead looks directly at economies with a contin-

uum of consumers, for which the core convergence theorem provides an exact

equivalence between core allocations and Walrasian equilibrium allocations.
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2.2 The Non-Cooperative Approach

The cooperative approach imposes no structure on the underlying trading in-

stitutions and as a result, it has little to say about how prices are determined

and under what conditions they are likely to correspond to Walrasian equi-

librium prices. In contrast, under the non-cooperative approach, individual

consumers make decisions that “aggregate up”to determine prices.

Suppose there are I consumers, a set P ⊆ RL of possible price vectors,

and a set A of market actions. Each consumer i ∈ I has a set Ai ⊂ A and

an endowment vector ωi ∈ RL. For each ai ∈ Ai and p ∈ P, a trading rule

assigns a net trade vector g (ai; p) ∈ RL to consumer i, satisfying p·g (ai; p) =

0. Given a vector of market actions a = (a1, . . . , aI), a market-clearing

process generates a price vector p (a) ∈ P. Throughout, we will assume each

i has a utility function of the form ui (g (ai; p) + ωi). An equilibrium of the

resulting game is just a Nash equilibrium.

Definition 7. The profile a∗ = (a∗1, . . . , a
∗
I) of market actions is a trading

equilibrium if, for every consumer i ∈ I,

ui (g (a∗i ; p (a∗)) + ωi) ≥ ui
(
g
(
ai; p

(
ai, a

∗
−i
))

+ ωi
)
for all ai ∈ Ai.

We will consider a particular trading rule referred to as Shapley and Shu-

bik’s (1977) trading posts. It is not particularly realistic, but it does form

a complete general equilibrium model in which all consumers interact strate-

gically. Suppose there are I consumers and L commodities. Commodity L,



80CHAPTER 2. FOUNDATIONSOFGENERAL EQUILIBRIUMTHEORY

which we will call “money,”is treated differently from the other commodities,

and we normalize its price to 1. For each of the other L−1 commodities, there

is a trading post at which consumers can exchange money for the commodity.

At each trading post l ≤ L − 1, each consumer i places bids al,i =(
a′l,i, a

′′
l,i

)
∈ R2

+. The first value, a
′
l,i, is interpreted as the amount of com-

modity l that consumer i is willing to put up for sale in exchange for money.

The second value, a′′l,i is the amount of money that she puts up in ex-

change for commodity l. These bids must therefore satisfy a′l,i ≤ ωl,i, and∑
l≤L−1 a

′′
l,i ≤ ωL,i. Given the consumers’bids, the price of commodity l is

set to be equal to the total amount spent on commodity l divided by the

total quantity of commodity l supplied:

pl =

∑
i∈I a

′′
l,i∑

i∈I a
′
l,i

.

Each consumer i receives allocation xl,i = gl (ai; p) + ωl,i, where

gl (ai; p) =
a′′l,i
pl
− a′l,i

for all l ≤ L− 1 and xL,i = ωL −
∑L−1

l=1 a
′′
l,i.

If there is a large number of consumers trading each commodity, then each

consumer’s bids would have a negligible effect on prices, and each consumer’s
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allocation will be arbitrarily close to the solution to their problem

max
xi∈RL+

ui (xi) s.t. p · xi ≤ p · ωi.

Thus, even though prices are determined as the aggregation of individual

consumers’actions, when the economy is suffi ciently large, each individual

consumer’s actions have no effect on prices. Under this approach, price-

taking behavior is therefore a result rather than an assumption. We will

refer to the resulting equilibrium as a competitive equilibrium.

One important difference between the cooperative approach and the non-

cooperative approach to the foundations of GE theory is that under the

cooperative approach, the allocations we considered were always Pareto op-

timal. In contrast, under the non-cooperative approach, allocations are not

Pareto effi cient for any finite market size. When the size of the economy

grows does the set of equilibrium allocations become approximately Pareto

optimal. Only the non-cooperative approach can, therefore, really tell us

anything about why Walrasian equilibrium allocations are Pareto optimal.

2.3 Who Gets What? The No-Surplus Con-

dition

This section concludes our discussion of the competitive foundations of gen-

eral equilibrium theory. In particular, we will ask whether Walrasian equi-
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libria can be characterized by the idea that consumers get exactly what

they contribute to the welfare of society. To answer this question, we will

consider a special class of preferences in which the notion of the welfare of so-

ciety is well-defined. In particular, suppose there are H types of consumers,

h ∈ H = {1, . . . , H}, and each type of consumer is endowed with ωh and has

quasi-linear preferences.

Assumption QL (quasilinearity). For each type h ∈ H, there is a

concave, differentiable, strictly increasing function vh (x1,h, . . . , xL−1,h) such

that type h preferences are uh (xh) = vh (x1,h, . . . , xL−1,h) + xL,h, where

xh ∈ RL−1
+ × R.

When consumers have quasilinear preferences, commodity L is what is

referred to as the money commodity. It is a commodity for which all

consumers have the same marginal utility and which consumers can consume

any (positive or negative) amount of. The assumption of quasilinear prefer-

ences allows for cardinal measures of individuals’private rewards and their

contribution to social welfare.

An economy is defined by a profile (I1, . . . , IH) of consumers of the differ-

ent types, for a total of I =
∑

h∈H Ih consumers. For any economy, we can

define the social welfare, V (I1, . . . , IH), as the solution to the following

problem:

V (I1, . . . , IH) = max
(xh)h∈H

∑
h∈H

Ihuh (xh)

subject to feasibility:
∑

h∈H Ihxh ≤
∑

h∈H Ihωh and xl,h ≥ 0 for all l ∈
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{1, . . . , L− 1} and for all h. This function is homogeneous of degree one in

its arguments, so we can describe the economy in terms of its per-capita social

welfare V (I1/I, . . . , IH/I) = V (I1, . . . , IH) /I, and therefore if we extend the

model to one in which there are a continuum of consumers, with mass µh ≥ 0

of type h ∈ H with
∑

h∈H µh = 1, we can write µ = (µ1, . . . , µH) and

V (µ) = max
(xh)h∈H

∑
h∈H

µhuh (xh) (1)

subject to feasibility:
∑

h∈H µhxh ≤
∑

h∈H µhωh and xl,h ≥ 0 for all l ∈

{1, . . . , L− 1}.

Given a continuum population of consumers, we can define a consumer

of type h’s marginal contribution to social welfare as ∂V (µ) /∂µh. We

will say that a feasible allocation (x∗h)h∈H is a no-surplus allocation if

uh (x∗h) =
∂V (µ)

∂µh
for all h ∈ H.

In other words, at a no-surplus allocation, each consumer is receiving in

utility exactly what she contributes to social welfare. With this definition in

mind, we can state the no-surplus characterization of Walrasian equilibrium

(Ostroy, 1980, Makowski and Ostroy, 1995).

Theorem 8 (No-Surplus Characterization). For any continuum popu-

lation µ̄ = (µ̄1, . . . , µ̄H) >> 0, a feasible allocation (x∗1, . . . , x
∗
H) >> 0 is a

no-surplus allocation if and only if it is a Walrasian equilibrium allocation.
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Proof of Theorem 8. The structure of the proof is as follows. We will

show that if (x∗h)h∈H is a no-surplus allocation, then it solves (1). We will

then show that if (x∗h)h∈H solves (1), then (x∗h)h∈H is a Walrasian equilibrium

allocation for a suitable price vector p∗. Finally, we will show that if (x∗h)h∈H

is a Walrasian equilibrium allocation, then it is a no-surplus allocation.

Step 1: (x∗h)h∈H is no-surplus ⇒ (x∗h)h∈H solves (1).

Suppose (x∗h)h∈H is a no-surplus allocation. We know that the function

V (µ̄) is homogeneous of degree one in µ̄, so by Euler’s formula, we can write

V (µ̄) =
∑
h∈H

µ̄h
∂V (µ̄)

∂µh
=
∑
h∈H

µ̄huh (x∗h) ,

where the last equality used the fact that (x∗h)h∈H is a no-surplus allocation.

This implies that (x∗h)h∈H is a solution to the social welfare-maximization

problem for µ = µ̄.

Step 2: (x∗h)h∈H solves (1) ⇒ (x∗h)h∈H is a WE allocation.

Suppose now that (x∗h)h∈H is a feasible allocation that yields social welfare

V (µ̄). Denote by p∗l , l = 1, . . . , L, the values of the Lagrange multipliers for

commodity-l feasibility constraint,
∑

h∈H µ̄h (xl,h − ωl,h) ≤ 0, in the social-

welfare-maximization problem. Because uh (·) is quasilinear for all h ∈ H, we

will have p∗L = 1 and p∗l = ∂uh (x∗h) /∂xl,h for all l ∈ {1, . . . , L− 1} and for

all h ∈ H. It follows then that if we let p∗ = (p∗1, . . . , p
∗
L), then

(
p∗, (x∗h)h∈H

)
is a Walrasian equilibrium.

Step 3: (x∗h)h∈H is a WE allocation ⇒ (x∗h)h∈H is no-surplus.
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Finally, we can apply the envelope theorem to (1) to get

∂V (µ̄)

∂µh
= uh (x∗h) + p∗ · (ωh − x∗h) .

Since (x∗h)h∈H is consumer-optimal given prices p
∗, by Walras’s law, the sec-

ond term is zero. We therefore have that ∂V (µ̄) /∂µh = uh (x∗h), so (x∗h)h∈H

is a no-surplus allocation.�

Viewed in light of the no-surplus characterization of Walrasian equilib-

rium, we can finally develop some intuition for the first welfare theorem result

that Walrasian equilibrium allocations are Pareto optimal. If, at the margin,

each consumer is receiving exactly what she contributes to society’s welfare,

then in some sense, the rest of society is indifferent to her presence. Since

each consumer is not affecting the welfare of the rest of society, of course each

consumer doing the best she can– which she is, by the consumer optimality

condition of Walrasian equilibrium– is going to lead to a result that is best

for society.

It is important to realize that when there are a finite number of individuals

in society, there generically do not exist any no-surplus allocations. The

reason for this is that it is typically impossible to give each consumer the

full extent of her marginal contribution while maintaining feasibility. For

example, when there are only two consumers in the economy, each consumer’s

contribution to social welfare is equal to the utility she would get if she

consumes her endowment plus the entire gains from trade, and we cannot
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simultaneously give both consumers the entire gains from trade. This means

that in smaller economies, Walrasian equilibrium allocations generically are

not no-surplus allocations.



Chapter 3

Extensions of the GE

Framework

3.1 Firms and Production in General Equi-

librium

So far in this class, we have focused on pure exchange economies. In doing so,

we have assumed that all the commodities in the economy come essentially

from nowhere. In other words, we have completely abstracted away from the

supply side of the economy. The GE framework can be readily extended to

allow for firms and productions as long as two conditions are satisfied: (1)

firms’production technologies do not exhibit increasing returns to scale, and

(2) firms are price-takers. In this section, we will describe how to extend

the GE framework to allow for production and we will show that versions of

87
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the welfare theorems and the existence theorem hold. We will then consider

some simple examples and conclude with a result that shows that in this

framework, we can think of the entire supply side of the economy as a single

firm.

The Model There are I consumers i ∈ I with utility functions (ui)i∈I

defined over the consumption of L commodities l ∈ L, and there are J firms

j ∈ J . Each firm possesses a production set Yj ∈ RL. The production set Yj

describes a set of feasible production plans: if yj = (y1,j, . . . , yL,j) ∈ Yj,

then yl,k < 0 means that commodity l is being used as an input, and

yl,k > 0 means that commodity l is being produced as an output. The

firms are owned by the households. Consumer i’s ownership share of

firm j is a θi,j ∈ [0, 1]. A production economy is then a collection

E =
((
ui, ωi, (θi,j)j∈J

)
i∈I

, (Yj)j∈J
)
of consumer preferences, consumer en-

dowments, ownership shares, and production sets. Firm j takes prices p ∈ RL

as given and chooses a production plan yj ∈ Yj to maximize its profits:

max
yj∈Yj

p · yj.

Our definition of Walrasian equilibrium extends naturally to production

economies.

Definition 8. AWalrasian equilibrium for the production economy E is

a vector
(
p∗, (x∗i )i∈I ,

(
y∗j
)
j∈J

)
that satisfies:
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1. Firm profit maximization: for all j ∈ J ,

y∗j ∈ argmax
yj∈Yj

p · yj,

2. Consumer optimization: for all consumers i ∈ I,

x∗i ∈ argmax
xi∈Xi

ui (xi)

subject to

p · xi ≤ p · ωi +
∑
j∈J

θi,jp · y∗j ,

3. Market-clearing: for all commodities l ∈ L

∑
i∈I

x∗l,i =
∑
i∈I

ωl,i +
∑
j∈J

y∗l,j.

Assumptions on Production Sets Just as we made a number of as-

sumptions on consumer preferences and endowments, we will make several

assumptions on production sets to ensure that a Walrasian equilibrium exists

in a production economy. The simplest such assumption would be that Yj is

a convex and compact set for all firms j ∈ J , but assuming that a production

set is bounded is stronger than we need.

Assumption A5 (closed and convex): For all firms j ∈ J , Yj is closed

and convex.
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Assumption A6 (no production is feasible and free disposal): For

all firms j ∈ J , 0 ∈ Yj, and for all yj ∈ Yj, {yj}+ RL− − ⊂ Yj.

These two assumptions rule out increasing returns to scale. To see why,

note that if y ∈ Yl, then since 0 ∈ Yl, so is αyl for any 0 < α < 1, so it is

always possible to scale down production or break it up into arbitrarily small

productive units.

We will also need to make one further assumption on aggregate production

to ensure that the supply side of the economy as a whole cannot produce

something with nothing. We want to rule out, for example, situations where

one firm can turn one pound of coffee beans into one cup of coffee, while

another firm can turn one cup of coffee into two pounds of coffee beans.

Define the aggregate production set to be the Minkowski sum of all the

firms’production sets:

Y =
∑
j∈J
Yj =

{
y : there exist y1 ∈ Y1, . . . , yJ ∈ YJ such that y =

∑
j∈J

yj

}
.

The following assumption is suffi cient to rule out the implausible situations

described above.

Assumption A7 (irreversibility): Y ∩ −Y = {0}.

It is worth spending some time thinking about why assumptions (A6)

and (A7) rule out the situations I just described.
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Welfare Theorems and Existence of Walrasian Equilibrium The de-

finitions of feasibility and Pareto effi ciency are easily extended to production

economies.

Definition 9. An allocation and production plan
(

(xi)i∈I , (yj)j∈J

)
is fea-

sible if ∑
i∈I

xl,i ≤
∑
i∈I

ωl,i +
∑
j∈J

yl,j for all l ∈ L.

A feasible allocation and production plan
(

(xi)i∈I , (yj)j∈J

)
is Pareto opti-

mal if there is no other feasible allocation and production plan
(

(x̂i)i∈I , (ŷj)j∈J

)
satisfying ui (x̂i) ≥ ui (xi) for all i, with strict inequality for at least one i′.

We can now state the extensions of the two welfare theorems.

Theorem 9 (First Welfare Theorem). Suppose
(
p∗, (x∗i )i∈I ,

(
y∗j
)
j∈J

)
is

a Walrasian equilibrium for production economy E . Then if (A2) holds, the

allocation and production
(

(x∗i )i∈I ,
(
y∗j
)
j∈J

)
is Pareto optimal.

The proof of the first welfare theorem for production economies is essen-

tially the same as the proof for pure exchange economies. It is worth trying

to extend each of the steps from our previous proof to allow for production.

The second welfare theorem can be similarly extended.

Theorem 10 (Second Welfare Theorem). Let E be a production econ-

omy that satisfies (A1)−(A6). Suppose
(

(xi)i∈I , (yj)j∈J

)
is Pareto optimal,

and suppose xi >> 0 for all i ∈ I. Then there is a price vector p, ownership

shares (θi,j)i∈I,j∈J , and endowments (ωi)i∈I such that
(
p, (xi)i∈I , (yj)j∈J

)
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is a Walrasian equilibrium given these endowments and ownership shares.

The proof of the second welfare theorem again relies on the separating

hyperplane theorem. Whereas the separating hyperplane in the earlier proof

separated the aggregate demand set (i.e., the set of points preferred to the

endowment) from the endowment, the proof in production economies requires

separation between the aggregate demand set and a suitably constructed

aggregate supply set (i.e., the endowment plus the set of feasible aggregate

production plans). Convexity of production sets is required in order to invoke

the separating hyperplane theorem.

Finally, we can also show that if we impose all the assumptions (A1) −

(A7), then a Walrasian equilibrium exists.

Theorem 11 (Existence of Equilibrium). Let E be a production econ-

omy that satisfies (A1)− (A7). Then there exists a Walrasian equilibrium of

E .

Exercise 12. Consider an economy with two consumers and two commodi-
ties. Consumer 1’s endowment vector is (λ, 0) and consumer 2’s is (µ, 0).
Each consumer’s utility is the sum of their consumption of the two com-
modities. Consumer 1 owns a technology for transforming commodity 1 into
commodity 2. The production function is Y = X2, where X is the input of
commodity 1.

(a) Does this economy have a Walrasian equilibrium?

(b) What allocation would a planner choose to maximize the sum of utilities?
[Be careful about second-order conditions.]

(c) What is the core of this economy?

Exercise 13 (Adapted from MWG, 16.F.2-4). In the first week, we dis-
cussed the first-order conditions for Pareto optimality in exchange economies.
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This exercise asks you to extend these conditions to production economies
with I consumers and J firms. Define the utility possibility set:

U =
{

(u1, . . . , uI) ∈ RI : ∃ feasible (xi)i∈I , (yj)j∈J with ui (xi) ≥ ui for all i
}
.

Assume the production set for firm j takes the form Yj =
{
y ∈ RL : Fj (y) ≤ 0

}
,

where Fj (y) = 0 defines firm j’s transformation frontier, and Fj : RL → R
is twice continuously differentiable with Fj (0) ≤ 0 and ∇Fj (yj) >> 0 for all
yj ∈ RL.
(a) Show that if Fj is a convex function, then Yj is a convex set.
(b) [Optional] Show that if, for all i ∈ I, Xi is convex and ui is concave, and
for all j ∈ J , Fj is convex, then U is a convex set.
(c) Suppose λ ≥ 0 is a non-zero vector of Pareto weights, and consider the
Pareto problem

max
u∈U

λ · u.

Show that the optimality conditions for an interior solution (i.e. xi >> 0
for all i) for this problem satisfy

∂ui/∂xl,i
∂ui/∂xl′,i

=
∂ui′/∂xl,i′

∂ui′/∂xl′,i′
for all i, i′, l, l′ (1)

∂Fj/∂yl,j
∂Fj/∂yl′,j

=
∂Fj′/∂yl,j′

∂Fj′/∂yl′,j′
for all j, j′, l, l′ (2)

∂ui/∂xl,i
∂ui/∂xl′,i

=
∂Fj/∂yl,j
∂Fj/∂yl′,j

for all i, j, l, l′. (3)

(d) Consider the aggregate problem of maximizing the production of com-
modity 1 subject to minimum production levels (ȳ2, . . . , ȳL) for the other
commodities.

max
(y1,...,yJ )

∑
j∈J

y1,j

subject to ∑
j∈J

yl,j ≥ ȳl for all l = 2, . . . , L

and
Fj (yj) ≤ 0 for all j = 1, . . . , J .



94 CHAPTER 3. EXTENSIONS OF THE GE FRAMEWORK

Show that the optimality conditions for this problem satisfy (2). What does
these conditions imply about how production is carried out across firms in a
Pareto optimal allocation?

A Constant Returns-to-Scale Example

For a production economy, we have to specify not only consumers’preferences

but also firms’production sets. A simple class of production sets that satisfy

assumptions (A5) − (A7) are linear production sets. Such production sets

are convex cones spanned by finitely many rays.1 There is a single firm that

has access to M linear activities am ∈ M = {1, . . . ,M}, and it can operate

each activity at some level γm. Its production set Y is the convex hull of

these activities:

Y =

{
y ∈ RL : y =

M∑
m=1

γmam for some γ ∈ RM+

}
.

Assumption (A5) is satisfied, and the free disposal part of assumption

(A6) is satisfied if the vectors

(−1, 0, . . . , 0) , (0,−1, 0, . . . , 0) , . . . , (0, . . . , 0,−1)

1Let X ⊂ RN be a set that contains {0}. Take two vectors x, y ∈ X. We will say that
a vector w = αx+ βy, where α ≥ 0, β ≥ 0 is a conic combination of the vectors x and
y. If the set X contains all conic combinations of its elements, we say that X is a convex
cone. The way to think about a convex cone is to imagine a convex set A located some
distance from the origin. The convex cone generated by the set A is the set of all points
that lie on a ray from the origin that goes through any point in A. If A is a disk, then
the convex cone generated by A is what you would normally think of as a cone.
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are all inM.

Figure 14: Linear Production Set

Figure 14 illustrates a linear production set in the special case of M = 4

and L = 2. There are two productive activities: activity 1 allows 2 units

of commodity 2 to be converted into 1 unit of commodity 1. Activity 2

allows 3 units of commodity 1 to be converted into commodity 2. Activities

3 and 4 are the activities I described above that ensure that the free disposal

assumption is satisfied. In this case,

M = {(1,−2) , (−3, 1) , (0,−1) , (−1, 0)} .
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Note that the production set Y generated byM is the same production set

that would be generated by activities {(1,−2) , (−3, 1)} because 3
5

(1,−2) +

1
5

(−3, 1) = (0,−1) and 1
5

(1,−2) + 3
5

(−3, 1) = (−1, 0).

Given a price vector p, a profit-maximizing plan exists if and only if

p ·am ≤ 0 for all m = 1, . . . ,M . If this were not the case, the firm’s potential

profits would be unbounded: if p · am > 0 for some m, the firm could choose

a sequence of production vectors γmam with γm →∞, and its profits would

increase without bound along that sequence. If p · am < 0 for some m, then

it is clear that γm = 0.

When production sets are convex cones, as in this example, market clear-

ing implies that equilibrium prices are pinned down by zero-profit conditions.

This specification of production sets is not as much of a special case as it

first appears– it is satisfied by any constant returns to scale production tech-

nology, including the Cobb-Douglas production functions you have probably

used in macroeconomics.

The Representative Firm Theorem When production sets are convex

cones, firms do not really play much of a role in the economy– they earn

zero profits in equilibrium, and it is actually irrelevant whether there is a

single firm that possesses the entire set of activitiesM or a collection of M

firms that each possess only a activity am (plus the free disposal activities).

The result that it is without loss of generality to focus on a single firm

that possesses the sum of firms’production technologies is actually a much
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more general result than this example illustrates, as the following theorem

(Acemoglu, 2009) highlights.

Theorem 12 (Representative Firm Theorem). Consider a competitive

production economy with L commodities and J firms, each with production-

possibilities set Yj ⊂ RL. Let p ∈ RL+ be the price vector in this economy and

denote the set of profit-maximizing net supplies of firm j ∈ J by Ỹj (p) ⊂ Yj

(so that for any ỹj ∈ Ỹj (p), we have p · ỹj ≥ p · yj for all yj ∈ Yj). Then

there exists a representative firm with production possibilities set Y ⊂ RL

and a set of profit-maximizing net supplies Ỹ (p) such that for any p ∈ RL+,

ỹ ∈ Ỹ (p) if and only if ỹ =
∑

j∈J ỹj for some ỹj ∈ Ỹj (p) for each j ∈ J .

This theorem shows us that we can “aggregate” the production side of

the economy. Exercise 13 asks you to prove this result. The rough idea of

the theorem is that the analog of the conditions required for aggregation of

consumer preferences is always satisfied for firms.

Exercise 14. This exercise asks you to prove the representative firm theo-
rem.

(a) Fix p and construct ỹ =
∑

j∈J ỹj for some ỹj ∈ Ỹj (p) for each j ∈ J .
Prove that we must have ỹ ∈ Ỹ (p).

(b) Let ỹ ∈ Ỹ (p) be a profit-maximizing choice for the representative firm.
Show that if ỹ =

∑
j∈J yj for some yj ∈ Yj for each j ∈ J , then yj ∈ Ỹj (p)

for each j ∈ J .
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3.2 Uncertainty and Time in General Equi-

librium

Another, and perhaps the most important, extension to the general equi-

librium framework is to allow for both time and uncertainty. Introducing

time into the framework is straightforward: we can think of a consumption

good today as a different commodity than a consumption good tomorrow.

Adding uncertainty turns out also to be straightforward due to an important

modeling device of Arrow (1953/1964): states of the world. A state of the

world is a complete description of a date-event. Everyone agrees on the set

of possible states and what state of the world is realized, although they need

not necessarily agree on the probabilities of those states occurring. This way

of thinking about uncertainty makes it very easy to extend the general equi-

librium framework. In fact, Debreu’s (1959) Theory of Value devotes only

a short chapter to general equilibrium under uncertainty, and in some sense

the first paragraph of that chapter tells us the main idea.

“The analysis is extended in this chapter to the case where

uncertain events determine the consumption sets, the production

sets, and the resources of the economy. A contract for the transfer

of a commodity now specifies, in addition to its physical proper-

ties, its location and its date, an event on the occurrence of which

the transfer is conditional. This new definition of a commodity

allows one to obtain a theory of uncertainty free from any proba-
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bility concept and formally identical with the theory of certainty

developed in the preceding chapters.”(Debreu, 1959)

Arrow-Debreu Model

We will consider a parsimonious model of GE with uncertainty, although

the framework can accommodate much more general specifications. Sup-

pose there are I consumers i ∈ I, L consumption goods l ∈ L, and two

periods, t ∈ {0, 1}. There are S possible states of the world that can oc-

cur at t = 1, s ∈ S = {1, . . . , S}. A consumption bundle for consumer

i is an xi = (x0,i, x1,i, . . . , xS,i), where x0,i = (x1,0,i, . . . , xL,0,i) is consumer

i’s consumption of the L goods at t = 0, and xs,i = (x1,s,i, . . . , xL,s,i) is

her consumption of the L goods at t = 1 and in state s. Her consumption

set is Xi = RL(S+1)
+ , and her preferences are given by her utility function

Ui : RL(S+1)
+ → R. She has endowment ωi = (ω0,i, ω1,i, . . . , ωS,i), where

ω0,i = (ω1,0,i, . . . , ωL,0,i) is her endowment of the L goods at t = 0, and

ωs,i = (ω1,s,i, . . . , ωL,s,i) is her endowment of the L goods at t = 1 in state s.

Since there is uncertainty, we also have to specify consumers’ beliefs.

Suppose, at t = 0, consumer i believes that state s ∈ S will occur with

probability πs,i ≥ 0, where
∑

s∈S πs,i = 1 for all i. Typically, we will think

about consumers having the same beliefs, so that πs,i = πs for all i, but the

framework allows for subjective beliefs. We will also typically assume that

consumers are expected utility maximizers with additively separable time



100 CHAPTER 3. EXTENSIONS OF THE GE FRAMEWORK

preferences, so that we can write

Ui (xi) = u0,i (x0,i) +
∑
s∈S

πs,ius,i (xs,i) ,

with u0,i and each of the us,i functions concave.

In line with Debreu’s description, we will think of each consumption

good in each state of the world as being a separate commodity. To spec-

ify prices, therefore, we will have to specify p = (p0, p1, . . . , pS), where p0 =

(p1,0, . . . , pL,0) ∈ RL is the price vector at t = 0, and ps = (p1,s, . . . , pL,s) ∈ RL

is the price vector at t = 1 in state s ∈ S. That is, for a price pl,s, consumers

can buy and sell consumption of good l in state s.

There are three important assumptions that allow us to make use of all

of the results we have derived so far in this course. The first assumption is

that all trade occurs at time t = 0. So, at time t = 0, consumers buy and sell

t = 0 commodities, and they also buy future claims to each commodity in

each state of the world, and there is no opportunity for them to buy or sell at

t = 1. The second important assumption is that the trading contracts that

each consumer “writes”at t = 0 over t = 1 consumer are faithfully executed

at t = 1. In the background, we are implicitly assuming the existence of

an infallible third-party court system that perfectly compels consumers to

execute their t = 0 contracts. This assumption, in turn, means that the

third party can costlessly verify what state of the world was actually realized

at t = 1. The third important assumption is that there is a market for each
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of the L (S + 1) state-contingent commodities.

Given prices p, consumer i solves

max
xi∈RL(S+1)+

Ui (xi) s.t. xi ∈ Bi (p) ,

where consumer i’s budget set is given by

Bi (p) =

{
xi : p0 · x0,i +

∑
s∈S

ps · xs,i ≤ p0 · ω0,i +
∑
s∈S

ps · ωs,i

}
.

We will denote her Marshallian demand correspondence by xi (p, p · xi). A

pure-exchange economy with uncertainty is therefore summarized by

E = (ui, ωi)i∈I .

We are now in a position to define a Walrasian equilibrium in this context.

For historical reasons, Walrasian equilibria in this model are referred to as

Arrow-Debreu equilibria.

Definition 10. An Arrow-Debreu equilibrium for pure-exchange econ-

omy with uncertainty E is a vector
(
p∗, (x∗i )i∈I

)
that satisfies:

1. Consumer optimization: for all consumers i ∈ I,

x∗i ∈ argmax
xi∈Bi(p∗)

Ui (xi) ,
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2. Market-clearing: for all commodities l ∈ L and all s ∈ {0, 1, . . . , S},

∑
i∈I

x∗l,s,i =
∑
i∈I

ωl,s,i.

This model is an elegant way of incorporating time and uncertainty into

the basic framework because it allows us to apply all the results we have de-

veloped so far. For example, if (A1)−(A4) hold, then aWalrasian equilibrium

exists, and the welfare theorems hold.

The model does have some issues, though. One natural concern is that

it seems unrealistic to think of all trading over future state-contingent com-

modities taking place at the beginning of time. Instead, we might expect

that there would be different financial securities that are traded at poten-

tially different times and these securities pay out when certain events occur.

For example, car insurance pays out when your car is stolen, stocks pay

dividends when a company is doing well, and so on.

Exercise 15. Consider a two date exchange economy with consumption at
dates 0 and 1. There is a single consumer, one consumption good at each
date, and there are S states of the world (realized at date 1).
The consumer’s utility function is

U = u (x0) + δ

S∑
s=1

πsu (xs) ,

where x0 is date 0 consumption, xs is date 1 consumption in state s, u
is “well-behaved,” and δ ∈ (0, 1). The consumer has initial endowment
(ω0, ω1, . . . , ωS) ∈ RS+1

+ .
Write down the Arrow-Debreu equilibrium for this economy (normalize

the price of date-0 consumption to be 1). Interpret the Arrow-Debreu relative
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prices: what factors determine whether they are high or low?

Sequential Trade and Arrow Equilibrium

Arrow later reformulated the model to allow for sequential trade in the fol-

lowing way. As before, there are two dates, t ∈ {0, 1}, and at date t = 1, a

state of the world s ∈ S is realized. Suppose that consumption occurs only

at t = 1, so that all consumers are endowed with ωl,0,i = 0 for all l ∈ L,

and x0,i ∈ {0} for all i. Moreover, suppose consumer i is an expected utility

maximizer, so that Ui (xi) =
∑

s∈S πs,ius,i (xs,i).

At date t = 0, consumers cannot directly trade all L · S state-contingent

commodities. They can, however, trade securities that pay off different

amounts in different states at t = 1. In particular, they can trade S dif-

ferent Arrow securities, where at t = 1, Arrow security s pays $1 if state

s is realized, and it pays 0 otherwise. Each consumer is endowed with 0

of each Arrow security, but they can have positive or negative holdings of

them after trade occurs at t = 0. Denote by zi = (z1,i, . . . , zS,i) consumer

i’s holdings of the S Arrow securities, and denote the price vector for the

Arrow securities by q = (q1, . . . , qS). To anticipate how we will think of more

general securities in the next section, denote the dividends vector for se-

curity k by rk = (r1,k, . . . , rS,k) ∈ RS+, where rs,k is the amount that security

k pays in state s. The dividends vector for Arrow security 1 is therefore

rA1 ≡ (1, 0, . . . , 0), and for Arrow security k is rAk ≡ (0, . . . , 0, 1, 0, . . . , 0),

where the kth element is 1 and all others are 0.
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At t = 1, the state of the world s is realized, and then markets for each

of the L goods open, consumers trade at prices ps = (ps,1, . . . , ps,L), and then

they consume.

Under this specification, given Arrow security prices q and goods prices

p, consumer i solves the following problem:

max
(zi,xi)

∑
s∈S

πs,ius,i (xs,i) s.t. (zi, xi) ∈ Bi (q, p) ,

where her budget set is now given by

Bi (q, p) = {(zi, xi) : q · zi ≤ 0, ps · xs,i ≤ ps · ωs,i + zs,i for all s ∈ S} .

The first inequality in the definition of the budget set reflects the assumption

that the consumer is not endowed with any Arrow securities, so that the net

value of the Arrow securities she holds after t = 0 trade has to be nonpositive.

The second set of inequalities reflects her budget set at t = 1 in state s. Her

wealth in state s is the sum of the wealth from her endowment, ps · ωs,i,

and the wealth she obtains from her Arrow securities, zs,i, which can be

positive or negative. Note that, since we are assuming that xi ∈ RL·S+ , we

are implicitly imposing the constraint that each consumer has nonnegative

wealth at t = 1: zs,i ≥ −ps · ωs,i.

The idea behind this alternative setup of the model is that consumers will

trade multiple times, and their wealth each time they trade is determined

by their endowment in the “spot market”as well as how much they loaned
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and borrowed. Consumers correctly anticipate spot-market prices in each

state at t = 0, even though they cannot trade in those markets until t = 1,

and they buy and sell Arrow securities to transfer their wealth from one

state to the next so they can buy the commodities they would like to buy

in those states. We will refer to the economy as a sequential-exchange

economy with a complete set of Arrow securities and denote it by

ESE =
(

(ui, ωi)i∈I ,
(
rAk
)
k∈S

)
, where rAk is the returns vector for the kth

Arrow security.

We can now define our notion of Walrasian equilibrium in this setting.

Definition 11. An Arrow equilibrium for a sequential-exchange economy

with a complete set of Arrow securities, ESE, is a vector
(
q∗, p∗, (z∗i , x

∗
i )i∈I

)
of Arrow security prices and state-contingent consumption-good prices and

Arrow security positions and consumption bundles for each consumer i ∈ I

that satisfies:

1. Consumer optimization: for all consumers i ∈ I,

(z∗i , x
∗
i ) ∈ argmax

(zi,xi)∈Bi(q,p)

∑
s∈S

πs,ius,i (xs,i) ,

2. Market-clearing:
∑

i∈I z
∗
i = 0 and, for all commodities l ∈ L and all

s ∈ S, ∑
i∈I

x∗l,s,i =
∑
i∈I

ωl,s,i.

Given this definition of equilibrium, we can now describe the main re-
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sult of this section, which links the set of allocations that can arise in an

Arrow-Debreu equilibrium in a pure-exchange economy with uncertainty,

E = (ui, ωi)i∈I to the set of allocations that can arise in an Arrow equilibrium

in a sequential-exchange economy with a complete set of Arrow securities,

ESE =
(

(ui, ωi)i∈I ,
(
rAk
)
k∈S

)
.

Theorem 13 (Equivalence of Arrow and Arrow-Debreu equilib-

rium). Given economies E and ESE with the same consumer preferences

and endowments, (x∗i )i∈I is an Arrow-Debreu equilibrium allocation for E if

and only if, for some (z∗i )i∈I , (z∗i , x
∗
i )i∈I is an Arrow equilibrium allocation

for ESE.

Proof of Theorem 13. Take an Arrow equilibrium
(
q∗, p∗, (z∗i , x

∗
i )i∈I

)
for

economy ESE. By monotonicity of preferences, we will have that for each

consumer i ∈ I, q∗ · z∗i (q∗, p∗) = 0 and z∗s,i (q
∗, p∗) = p∗s ·x∗s,i (q∗, p∗)− p∗s ·ωs,i.

We can combine these two equations to get

∑
s∈S

q∗s
(
p∗s · x∗s,i − p∗s · ωs,i

)
= 0.

The consumption bundle x∗s,i therefore solves the problem:

max
xi

∑
s∈S

πs,ius,i (xs,i)

subject to ∑
s∈S

(q∗sp
∗
s) · xs,i ≤

∑
s∈S

(q∗sp
∗
s) · ωs,i.
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Define state-dependent prices p̂∗s ∈ RL for s ∈ S with p̂∗s ≡ q∗sp
∗
s. Then,(

p̂∗, (x∗i )i∈I
)
is an Arrow-Debreu equilibrium for economy E .

Going the other direction, suppose
(
p∗, (x∗i )i∈I

)
is an Arrow-Debreu equi-

librium for E . Then
(
q∗, p̂∗, (z∗i , x

∗
i )i∈I

)
, where q∗s = 1, p̂∗ = p∗, and

z∗s,i = p∗s · x∗s,i − p∗s · ωs,i

is an Arrow equilibrium for economy ESE.�

This theorem establishes an equivalence between the notion of Arrow-

Debreu equilibrium in which trade in all L · S markets occurs ex ante and

the notion of Arrow equilibrium, in which trade occurs in only S markets

at t = 0 and in L markets at t = 1. One disadvantage of the notion of

Arrow equilibrium is that even though trading seems less complicated, in

a sense, consumers still must form consistent expectations about what the

equilibrium goods prices will be at t = 1 when they are trading securities

at t = 0. That said, one of the big advantages of the sequential exchange

framework is that it allows us to investigate what happens when the t = 0

securities market does not have a complete set of Arrow securities. That is,

what happens if markets are incomplete? We will turn to this question now.

Exercise 16. There are two farmers, named Octavia and Seema, who can
trade only with each other. In years when there is no flood, both farms yield
10 units of corn; in years when there is a flood, Octavia’s farm yields 10 units
of corn, and Seema’s farm yields 5 units of corn. The probability of a flood is
given by π = 1/2, which is common knowledge to the farmers. The farmers
have identical utility functions given by u (x) = ln (x), where x is the units
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of corn consumed.

(a) Suppose that Octavia and Seema set up an exchange market to securitize
corn at the beginning of the year (before knowing the realization of the state
of the world). Compute the equilibrium prices and allocations.

Suppose that Seema has the option of building a greenhouse at a cost
before realizing the state of the world. If she builds a greenhouse, Seema’s
farm will produce 10 units of corn in all states of the world.

(b) Using the equilibrium results computed above, how much would each
farmer be willing to pay for the greenhouse? Assume that each considers
paying for the greenhouse entirely by herself. In this context, should we
consider the possibility of “negative”willingness-to-pay? That is, might one
farmer be willing to pay the other not to build the greenhouse?

(c) Would your above answer change if Octavia and Seema were unable to
trade ex post (after the state of the world is realized)? If so, how? Would
your answer change if they were unable to trade ex ante (there is no exchange
market to securitize corn at the beginning of the year)?

Incomplete Markets

When we talked about sequential exchange economies in the previous sec-

tion, we assumed that there was a complete set of Arrow securities that

could be traded at t = 0. One important implication of this assumption

that we did not emphasize is that it allowed consumers to insure themselves

against the state of the world by transferring wealth from states in which

their marginal utility of income is low (either because they do not especially

value consumption in such states or because their endowment in such states

is high) to states in which their marginal utility of income is high. In an Ar-

row equilibrium, the resulting risk-sharing is effi cient, since the first welfare
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theorem applies in that setting.2 In contrast, when markets are incomplete,

risk sharing in the economy will generally be ineffi cient. This will imply that

Walrasian equilibrium allocations in such economies are not Pareto optimal.

Suppose there areK securities k ∈ K = {1, . . . , K}, where security k has

dividends vector rk = (r1,k, . . . , rS,k) ∈ RS+. We can think of each security

as a share in a company that pays out dividends rs,k in state s. If consumer

i owns portfolio zi = (z1,i, . . . , zK,i), then in state s, her wealth will be

ps·ωs,i+
∑

k∈K zk,irs,k. If we denote the dividends matrix R =
(
rT1 , . . . , r

T
K

)
,

where rTk is the transpose of rk, then we will say that the securities market

is incomplete if rank (R) < S. Otherwise, we will say that the securities

market is complete. If there is a complete set of Arrow securities, then R

is the S × S identity matrix, and the securities market is complete.

As in the previous subsection, given security prices q = (q1, . . . , qK) and

goods prices p, consumer i ∈ I solves the following problem:

max
(zi,xi)

∑
s∈S

πs,ius,i (xs,i) s.t. (zi, xi) ∈ Bi (q, p) ,

where her budget set is now given by

Bi (q, p) =

{
(zi, xi) : q · zi ≤ 0, ps · xs,i ≤ ps · ωs,i +

∑
k∈K

zk,irs,k for all s ∈ S
}
.

2More precisely, define vs,i (zs,i) = maxxs,i us,i (xs,i) subject to ps ·xs,i ≤ ps ·ωs,i+ zs,i
to be consumer i’s indirect utility in state s when she has zs,i units of Arrow security s.
If we assume vs,i is concave and differentiable, then Pareto optimality ensures that for all
i, i′, πs,i∂vs,i/∂zs,i

πs,i′∂vs,i′/∂zs,i′
= λi

λi′
for all s. That is, the ratio of marginal utilities of income are

equalized across sttaes for any two consumers. By the first welfare theorem, any Arrow
equilibrium allocation satisfies these properties.
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As before, consumers maximize their expected utility subject to a t = 0

budget constraint and a t = 1 budget constraint for each state s ∈ S. The

first inequality in the definition of the budget set again reflects the assumption

that the consumer is not endowed with any securities.

A sequential-exchange economy with securitiesK is summarized by

a vector ESE =
(
(ui, ωi)i∈I , R

)
. We can now define our notion of Walrasian

equilibrium for such an economy.

Definition 12. An incomplete-markets equilibrium (or Radner equi-

librium) for a sequential-exchange economy with securities K is a vector(
q∗, p∗, (z∗i , x

∗
i )i∈I

)
of security prices and state-contingent consumption-good

prices and security positions and consumption bundles for each consumer

i ∈ I that satisfies:

1. Consumer optimization: for all consumers i ∈ I,

(z∗i , x
∗
i ) ∈ argmax

(zi,xi)∈Bi(q,p)

∑
s∈S

πs,ius,i (xs,i) ,

2. Market-clearing:
∑

i∈I z
∗
k,i = 0 for all k ∈ K, and, for all commodities

l ∈ L and all s ∈ S, ∑
i∈I

x∗l,s,i =
∑
i∈I

ωl,s,i.

In general, when markets are incomplete, a Radner equilibrium need not

exist, and even if it does exist, the resulting allocation will typically not be

Pareto optimal. If, however, L = 1, so there is only a single consumption
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good, then a Radner equilibrium exists, and it does have some optimality

properties.

For L = 1, Diamond (1967) showed that a Radner equilibrium exists

by showing that the consumer optimization problem boils down to a more

familiar problem. In particular, at any solution to consumer i’s problem, we

must have q · zi = 0 and xs,i = ωs,i +
∑

k∈K zk,irs,k. We can substitute this

second constraint into the consumer’s problem, which then becomes

max
zi

∑
s∈S

πs,ius,i

(
ωs,i +

∑
k∈K

zk,irs,k

)
︸ ︷︷ ︸

≡ũi(zi)

subject to q·zi ≤ 0. Diamond pointed out that such an economy is equivalent,

in some sense, to an economy in which consumer preferences are given by

ũi (zi) and there are K “commodities”– one corresponding to each of the

securities. So as long as ũi satisfies (A1) − (A3), then a WE exists. The

interior endowments assumption (A4) is not necessary for the existence result

because consumers are allowed to “consume”negative quantities of zi.

Such equilibria need not yield Pareto-optimal allocations. To see why,

consider an example in which L = 1, K = 1, and S = 2. The security pays

1 in each state of the world. There are two consumers with endowments

ω1 = (2, 1) and ω2 = (1, 2), so that consumer 1 is endowed with one unit

of the consumption good in state 1 and 2 units in state 2. Both consumers
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have identical preferences given by

ui (x1,i, x2,i) =
1

2
log x1,i +

1

2
log x2,i.

As an exercise, it is worth verifying that there is a unique Radner equilibrium

of this economy. In this equilibrium, there will be no trade in the security at

t = 0, and consumers will consume their endowments at t = 1. This alloca-

tion is Pareto dominated by the feasible allocation x1 = x2 = (3/2, 3/2).

The first welfare theorem fails in this situation because the set of existing

securities does not allow the consumers to insure themselves against states in

which they will have a low endowment. Nevertheless, there is still a sense in

which the resulting allocation exhausts the gains from trade and is therefore

what we refer to as constrained effi cient.

Definition 13. Given endowments (ωi)i∈I and securities K, an allocation

(xi)i∈I is constrained effi cient if
∑

i∈I xi ≤
∑

i∈I ωi, and for all i, there

exists zi ∈ RK such that xi = ωi + Rzi, and there exists no alternative

allocation (x̂i)i∈I that Pareto dominates (xi)i∈I and also satisfies
∑

i∈I x̂i ≤∑
i∈I ωi and x̂i = ωi +Rzi for some zi ∈ RK for all i.

When there is only a single consumption good and consumers have monotone

preferences, Radner equilibrium allocations are always constrained effi cient,

as the following theorem illustrates.

Theorem 14. If ESE has L = 1 and satisfies (A2), then if
(
q∗, p∗, (z∗i , x

∗
i )i∈I

)
is a Radner equilibrium, (x∗i )i∈I is constrained effi cient.
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We will conclude this section with a few comments on the generality of

this theorem. As Hart (1975) illustrated, when L = 2, there may exist Radner

equilibria that are not constrained effi cient (see, for instance, MWG Example

19.F.2). Also, when markets are incomplete, weird things can happen. For

example, adding another security that is linearly independent of existing

securities can actually make all consumers strictly worse off(see, for instance,

MWG Exercise 19.F.3). Finally, when markets are incomplete, Geanakoplos

and Polemarchakis (1986) show that it is generically true that a social planner

can improve effi ciency by introducing a small tax or subsidy. This is an

illustration of the “general theory of the second-best”(Lipsey and Lancaster,

1956): when there is an unresolvable market failure (market incompleteness,

in this case), it is generically the case that there exists a further distortion

that a social planner could conceivably put in place that leads to a more

effi cient allocation.
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The Visible Hand
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Chapter 4

Contract Theory

One of the important issues that we touched on briefly in our discussion

of general equilibrium theory is the idea of market incompleteness and its

consequences. When markets are incomplete– either in the sense that we

talked about last time or in the sense that consumption involves unpriceable

externalities– equilibrium allocations may not be constrained-effi cient, open-

ing up scope for some sort of third-party intervention. It may be government

intervention via a system of taxation or rules, or it may be private inter-

vention by an entrepreneur who sets up governance institutions. We were

able to make some high-level claims last time about what happens when

there are these “market failures,”but without imposing more structure on

the problem, it is diffi cult to make specific claims about how they should be

managed.

For the last three weeks of the class, we will zoom in and study micro

117
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situations in which it could be said that markets are incomplete. We will

focus on what is referred to as the Principal—Agent problem in which there

are two players, a Principal P and an Agent A. The Principal needs the

Agent to do something that she cannot do herself, so she hires the Agent and

writes a contract that governs how the Agent will be paid. We can think

of the Principal being an employer and the Agent an employee, where the

Principal lacks the time or expertise to engage in production. We can think

of the Principal being a patient and the Agent a doctor, where the doctor

takes some actions that the patient does not know or understand. We can

think of the Principal being a client and the Agent being a lawyer acting on

the client’s behalf. And so on.

When equilibrium outcomes arising from the Principal—Agent interaction

are Pareto ineffi cient, we will say that there is a moral hazard problem, which

is a term that originated in the insurance industry to describe situations

in which someone increases their exposure to risk in response to buying in-

surance. Fundamentally, the moral hazard problem is a just an externality

problem. Now, when we make a claim like “there are externalities, so out-

comes will be ineffi cient”it is important to have in mind that whether or not

externalities “matter”in the sense that they lead to Pareto ineffi cient equi-

librium outcomes depends critically on the set of instruments parties have for

managing those externalities: it depends on the contracting space. Over the

next couple lectures, we will look at several different sources of contractual

frictions that prevent the Principal and Agent from writing contracts with
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each other that result in Pareto optimal outcomes.

The first situation we will look at will occur when individual actions

chosen by the Agent are not observed by the Principal but determine the

distribution of a verifiable performance measure that can be written into a

contract. The Agent may be more risk-averse than the Principal, so writing a

high-powered contract on that noisy performance measure transfers risk onto

the Agent and therefore leads to an ineffi cient allocation of risk between the

two parties. As a result, there is a trade-off between incentive provision (and

therefore what the Agent chooses to do) and ineffi cient risk allocation. This

is the celebrated risk—incentives trade-off .

The second contracting friction that might arise is that an Agent is ei-

ther liquidity-constrained or is subject to a limited-liability constraint. As

a result, the Principal is unable to extract all the surplus the Agent gener-

ates and must therefore provide the Agent with incentive rents in order to

motivate him. That is, offering the Agent a higher-powered contract induces

him to work harder and therefore increases the total size of the pie, but it

also leaves the Agent with a larger share of that pie. The Principal then, in

choosing a contract, chooses one that trades off the creation of surplus with

her ability to extract that surplus. This is the motivation—rent extraction

trade-off .

A third contracting friction that might arise is that the Principal’s ob-

jective simply cannot be written into a formal contract. Instead, the Prin-

cipal has to rely on imperfectly aligned performance measures. Increasing
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the strength of a formal contract that is based on imperfectly aligned perfor-

mance measures may motivate the Agent to work hard toward the Principal’s

objectives, but it may also motivate him to work hard toward objectives that

either hurt the Principal or at least do not help her. This is known as the

multi-task problem (Holmström and Milgrom, 1991), and failure to account

for the effects of using distorted performance measures is sometimes referred

to as the folly of rewarding A while hoping for B (Kerr, 1975).

Finally, there may be multiple Agents who work together to produce

something for the Principal. Their individual contributions may not be ob-

servable, so contracts may only be able to be written on the final output.

This inability to distinguish individual contributions is what is referred to as

the moral hazard in teams problem (Holmström, 1982).

All of these sources of contractual frictions lead to similar results– under

the optimal contract, the Agent (or Agents) chooses an action that is not

jointly optimal from his and the Principal’s perspective. But in different

applied settings, different assumptions regarding what is contractible and

what is not are more or less plausible. As a result, it is useful to master at

least elementary versions of models capturing these four sources of frictions,

so that you are well-equipped to use them as building blocks.
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4.1 The Risk-Incentives Trade-off

I will begin with a pretty general description of the standard principal-agent

model, but I will shortly afterwards specialize the model quite a bit in order

to focus on a single point– the risk—incentives trade-off.

The Model There is a risk-neutral Principal (P ) and a risk-averse Agent

(A). The Agent chooses an effort level e ∈ E ⊂ R+ and incurs a cost of

c (e), where c : R+ → R+ is strictly increasing and strictly convex. If E is an

interval, we will say that effort is continuous, and if E consists of a finite

number of points, we will say that effort is discrete. We will assume 0 ∈ E ,

and c (0) = 0. The effort level affects the distribution over output y ∈ Y,

with y distributed according to CDF F ( ·| e). This output can be sold on the

product market at price p, and the revenues py accrue to the Principal.

The Principal does not have any direct control over the Agent, but what

she can do is write a contract that influences what the Agent will do. In

particular, she can write a contract w ∈ W ⊂ {w : Y × E → R}, where W

is the contracting space. The contract determines a transfer w (y, e) that

she is compelled to pay the Agent if output y is realized, and he chose effort

e. If W does not allow for functions that depend directly on effort, we will

say that effort is noncontractible, and abusing notation slightly, we will

write the contractual payment the Principal is compelled to pay the Agent

if output y is realized as w (y, e) = w (y) for all e ∈ E . We will be assuming

throughout that effort is noncontractible, but I wanted to highlight that it is
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a real restriction on the contracting space, and it is one that we will impose

as a primitive of the model.

The Agent can decline to work for the Principal and reject her contract,

pursuing his outside option instead. This outside option provides utility ū

to the Agent and π̄ to the Principal. If the Agent accepts the contract, the

Principal’s and Agent’s preferences are, respectively,

Π (w, e) =

∫
y∈Y

(py − w (y)) dF (y| e) = Ey [py − w| e]

U (w, e) =

∫
y∈Y

u (w (y)− c (e)) dF (y| e) = Ey [u (w − c (e))| e] ,

where u is increasing and weakly concave.

We have described the players, what they can do, and what their prefer-

ences are. We still need to describe the timing of the game that the players

play, as well as the solution concept. Explicitly describing the timing of the

model is essential to remove any ambiguity about what players know when

they make their decisions. In this model, the timing of the game is:

1. P offers A a contract w ∈ W. w is commonly observed.

2. A accepts the contract (d = 1) or rejects it (d = 0), in which case he

receives ū, and the game ends. d is commonly observed.

3. If A accepts the contract, A chooses effort level e and incurs cost c (e).

e is privately observed by A.
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4. Output y is drawn from distribution with CDF F ( ·| e). y is commonly

observed.

5. P pays A an amount w (y). The payment is commonly observed.

A couple remarks are in order at this point. First, behind the scenes,

there is an implicit assumption that there is a third-party contract enforcer

(a judge or arbitrator) who can costlessly detect when agreements have been

broken and costlessly exact harsh punishments on the offender.

Second, much of the literature assumes that the Agent’s effort level is

privately observed by the Agent and therefore refers to this model as the

“hidden action”model. Ultimately, though, the underlying source of the

moral-hazard problem is that contracts cannot be conditioned on relevant

variables, not that the relevant variables are unobserved by the Principal.

Many papers assume effort is unobservable to justify it being noncontractible.

While this is a compelling justification, in our framework, the contracting

space itself is a primitive of the model. Later in the course, we will talk a

bit about the microfoundations for different assumptions on the contracting

space.

Finally, let us describe the solution concept. A pure-strategy subgame-

perfect equilibrium is a contract w∗ ∈ W, an acceptance decision

d∗ : W → {0, 1}, and an effort choice e∗ : W × {0, 1} → E such that,

given the contract w∗, the Agent optimally chooses d∗ and e∗, and given

d∗ and e∗, the Principal optimally offers contract w∗. We will say that the
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optimal contract induces effort e∗.

First-Best Benchmark If we want to talk about the ineffi ciencies that

arise in equilibrium in this model, it will be useful first to establish a bench-

mark against which to compare outcomes. In this model, a feasible out-

come is a distribution over payments from the Principal to the Agent as

well as an effort level e ∈ E . We will say that a feasible outcome is Pareto

optimal if there is no other feasible outcome that both players weakly prefer

and one player strictly prefers. If an effort level e is part of a Pareto optimal

outcome, we will say that it is a first-best effort level, and we will denote it

by eFB.

Lemma 6. The first-best effort level satisfies

eFB ∈ argmax
e∈E

Ey [py| e]− c (e) .

Proof of Lemma 6. In any Pareto-optimal outcome, payments to the

agent are deterministic. Since the Agent is risk averse, given an outcome

involving stochastic payments to the Agent, there is another outcome in

which the Agent chooses the same effort level and receives the certainty

equivalent wage instead. This outcome yields the same utility for the Agent,

and since the Agent is risk averse, the certainty equivalent payment is smaller

in expectation, so the Principal is strictly better off. Next, given constant
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deterministic wages, any Pareto-optimal outcome must solve

max
w∈R,e∈E

Ey [py| e]− w

subject to

u (w − c (e)) ≥ ū,

for some ū. In any solution to this problem, the constraint must bind, since

u is increasing. Moreover, since u is increasing, it is invertible, so we can

write

w = u−1 (ū) + c (e) ,

and therefore the first-best effort level must solve the problem specified in

the Lemma.�

This Lemma shows that the first-best effort level maximizes expected

revenues net of effort costs. If effort is fully contractible, so that the Principal

could offer any contract w that depended nontrivially on e, then the first-best

effort would be implemented in equilibrium. In particular, the Principal could

offer a contract that pays the Agent u−1 (ū) + c
(
eFB

)
if he choose eFB, and

pays him a large negative amount if he chooses any e 6= eFB. That the first-

best effort level can be implemented in equilibrium if effort is contractible is

an illustration of a version of the Coase Theorem: if the contracting space is

suffi ciently rich, equilibrium outcomes will be Pareto optimal.

If effort is noncontractible, and eFB > 0, then equilibrium will not involve
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Pareto optimal outcomes. For an outcome to be Pareto optimal, it has to

involve a deterministic wage payment to the Agent. But if the Agent’s wage

is independent of output, then it must also be independent of his effort level.

He will therefore receive no benefit from choosing a costly effort level, and so

he will choose e = 0 < eFB. The question to which we will now turn is: what

effort will be implemented in equilibrium when effort is noncontractible?

Analysis Since the Agent’s effort choice affects the Principal’s payoffs, the

Principal would ideally like to directly choose the Agent’s effort. But, she has

only indirect control: she can offer different contracts, and different contracts

may get the Agent to optimally choose different effort levels. We can think

of the Principal’s problem as choosing an effort level e as well as a contract

for which e is incentive compatible for the Agent to choose and for which

it is individually rational for the Agent to accept. As a loose analogy, we

can connect the Principal’s problem to the social planner’s problem from

general equilibrium theory. We can think of e as analogous to an allocation

the Principal would like to induce, and the choice of a contract as analogous

to setting “prices”so as to decentralize e as an equilibrium allocation.

Formally, the Principal offers a contract w ∈ W and “proposes”an effort

level e in order to solve

max
w∈W,e∈E

∫
y∈Y

(py − w (y)) dF (y| e)

subject to two constraints. The first constraint is that the agent actually
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prefers to choose effort level e rather than any other effort level ê. This is

the incentive-compatibility constraint:

e ∈ argmax
ê∈E

∫
y∈Y

u (w (y)− c (ê)) dF (y| ê) .

The second constraint ensures that, given that the agent knows he will choose

e if he accepts the contract, he prefers to accept the contract rather than to

reject it and receive his outside utility ū. This is the individual-rationality

constraint or participation constraint:

∫
y∈Y

u (w (y)− c (e)) dF (y| e) ≥ ū.

At this level of generality, the model is not very tractable. We will need

to impose more structure on it in order to highlight some its key trade-offs

and properties.

CARA-Normal Case with Affi ne Contracts In order to highlight one

of the key trade-offs that arise in this class of models, we will make a number

of strong simplifying assumptions.

Assumption A1 (CARA). The Agent has CARA preferences over wealth

and effort costs, which are quadratic:

u (w (y)− c (e)) = − exp
{
−r
(
w (y)− c

2
e2
)}
,
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and his outside option yields utility − exp {−rū}.

Assumption A2 (Normal Output). Effort shifts the mean of a normally

distributed random variable. That is, y ∼ N (e, σ2).

Assumption A3 (Affi ne Contracts). W = {w : Y → R, w (y) = s+ by}.

That is, the contract space permits only affi ne contracts.

Assumption A4 (Continuous Effort). Effort is continuous and satisfies

E = R+.

In principle, we should not impose exogenous restrictions on the func-

tional form of w (y). There is an important class of applications, however,

that restrict attention to affi ne contracts, w (y) = s+by, and a lot of the basic

intuition that people have for the comparative statics of optimal contracts

come from imposing this restriction.

In many environments, an optimal contract does not exist if the con-

tracting space is suffi ciently rich, and situations in which the agent chooses

the first-best level of effort, and the principal receives all the surplus can be

arbitrarily approximated with a sequence of suffi ciently perverse contracts

(Mirrlees, 1974; Moroni and Swinkels, 2014). In contrast, the optimal affi ne

contract often results in an effort choice that is lower than the first-best effort

level, and the principal receives a lower payoff.

There are then at least three ways to view the exercise of solving for the

optimal affi ne contract.

1. From an applied perspective, many pay-for-performance contracts in
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the world are affi ne in the relevant performance measure– franchisees

pay a franchise fee and receive a constant fraction of the revenues their

store generates, windshield installers receive a base wage and a constant

piece rate, fruit pickers are paid per kilogram of fruit they pick. And

so given that many practitioners seem to restrict attention to this class

of contracts, why not just make sure they are doing what they do

optimally? Put differently, we can brush aside global optimality on

purely pragmatic grounds.

2. Many pay-for-performance contracts in the world are affi ne in the rel-

evant performance measure. Our models are either too rich or not rich

enough in a certain sense and therefore generate optimal contracts that

are inconsistent with those we see in the world. Maybe the aspects that,

in the world, lead practitioners to use affi ne contracts are orthogonal

to the considerations we are focusing on, so that by restricting atten-

tion to the optimal affi ne contract, we can still say something about

how real-world contracts ought to vary with changes in the underlying

environment. This view presumes a more positive (as opposed to nor-

mative) role for the modeler and hopes that the theoretical analogue

of the omitted variables bias is not too severe.

3. Who cares about second-best when first-best can be attained? If our

models are pushing us toward complicated, non-linear contracts, then

maybe our models are wrong. Instead, we should focus on writing



130 CHAPTER 4. CONTRACT THEORY

down models that generate affi ne contracts as the optimal contract, and

therefore we should think harder about what gives rise to them. (And

indeed, steps have been made in this direction– see Holmström and

Milgrom (1987), Diamond (1998) and, more recently, Carroll (2015)

and Barron, Georgiadis, and Swinkels (2017)) This perspective will

come back later in the course when we discuss the Property Rights

Theory of firm boundaries.

Given Assumptions (A1) − (A3), for any contract w (y) = s + by, the

income stream the agent receives is normally distributed with mean s+be and

variance b2σ2. His expected utility over monetary compensation is therefore

a moment-generating function for a normally distributed random variable,

(recall that if X ∼ N (µ, σ2), then E [exp {tX}] = exp
{
µt+ 1

2
σ2t2

}
), so his

preferences can be written as

E [− exp {−r (w (y)− c (e))}] = − exp
{
−r
(
s+ be− r

2
b2σ2 − c

2
e2
)}
.

We can take a monotonic transformation of his utility function (f (x) =

−1
r

log (−x)) and represent his preferences as:

U (e, w) = E [w (y)]− r

2
V ar (w (y))− c

2
e2

= s+ be− r

2
b2σ2 − c

2
e2.
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The Principal’s program is then

max
s,b,e

pe− (s+ be)

subject to incentive-compatibility

e ∈ argmax
ê

bê− c

2
ê2

and individual-rationality

s+ be− r

2
b2σ2 − c

2
e2 ≥ ū.

Solving this problem is then relatively straightforward. Given an affi ne

contract s + be, the Agent will choose an effort level e (b) that satisfies his

first-order conditions

e (b) =
b

c
,

and the Principal will choose the value s to ensure that the Agent’s individual-

rationality constraint holds with equality. If it did not hold with equality,

the Principal could reduce s, making herself better off without affecting the

Agent’s incentive-compatibility constraint, while still respecting the Agent’s

individual-rationality constraint. That is,

s+ be (b) =
c

2
e (b)2 +

r

2
b2σ2 + ū.
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In other words, the Principal has to ensure that the Agent’s total expected

monetary compensation, s+be (b), fully compensates him for his effort costs,

the risk costs he has to bear if he accepts this contract, and his opportunity

cost. Indirectly, then, the Principal bears these costs when designing an

optimal contract.

The Principal’s remaining problem is to choose the incentive slope b to

solve

max
b
pe (b)− c

2
e (b)2 − r

2
b2σ2 − ū.

This is now an unconstrained problem with proper convexity assumptions,

so the Principal’s optimal choice of incentive slope solves her first-order con-

dition

0 = pe′ (b∗)︸ ︷︷ ︸
1/c

− ce∗ (b∗)︸ ︷︷ ︸
b∗/c

e′ (b∗)︸ ︷︷ ︸
1/c

− rb∗σ2,

and therefore the optimal incentive slope satisfies

b∗ =
p

1 + rcσ2
.

Moreover, given b∗ and the individual-rationality constraint, we can back

out s∗.

s∗ = ū+
1

2

(
rcσ2 − 1

) (b∗)2

c
.

Depending on the parameters, it may be the case that s∗ < 0. That is, the

Agent would have to pay the Principal if he accepts the job and does not

produce anything.
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Now, how does the effort that is induced in this optimal affi ne contract

compare to the first-best effort? Using the result from Lemma 1, we know

that first-best effort in this setting solves

max
e∈R+

pe− c

2
e2,

and therefore eFB = p/c.

Even if effort is noncontractible, the Principal could in principle imple-

ment exactly this same level of effort by writing a contract only on output.

To do so, she would choose b = p, since this would get the Agent to choose

e (p) = p/c. Why, in this setting, does the Principal not choose such a con-

tract? Let us go back to the Principal’s problem of choosing the incentive

slope b.

max
b
pe (b)− c

2
e (b)2 − r

2
b2σ2 − ū

Often, when an economic model can be solved in closed form, we jump

right to the solution. Only when a model cannot be solved in closed form do

we typically stop to think carefully about what economic properties its solu-

tion must possess. I want to spend a couple minutes partially characterizing

this model’s solution, even though we already completely characterized it

above, just to highlight how this kind of reasoning can be helpful in develop-

ing intuition that might generalize beyond the present setting. In particular,

many fundamental features of models can be seen as a comparison of first-

order losses or gains against second-order gains or losses, so it is worth going
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through this first-order—second-order logic. Suppose the Principal chooses

b = p, and consider a marginal reduction in b away from this value. The

change in the Principal’s profits would be

d

db

(
pe (b)− c

2
e (b)2 − r

2
b2σ2

)∣∣∣∣
b=p

=
d

db

(
pe (b)− c

2
e (b)2

)∣∣∣
b=p︸ ︷︷ ︸

=0

− rpσ2 < 0.

This first term is zero, because b = p in fact maximizes pe (b) − c
2
e (b)2,

since it induces the first-best level of effort. This is just an application of the

envelope theorem you learned in Ec 2010a. The second term in this expression

is strictly negative. This implies that, relative to the contract that induces

first-best effort, a reduction in the slope of the incentive contract yields a

first-order gain to the Principal resulting from a decrease in the risk costs

the Agent bears, while it yields a second-order loss in terms of profits resulting

from moving away from the effort level that maximizes revenues minus effort

costs. The optimal contract balances the incentive benefits of higher-powered

incentives with these risk costs, and these risk costs are higher if the Agent

is more risk averse and if output is noisier.

This trade-off seems first-order in some settings (e.g., insurance contracts

in health care markets, some types of sales contracts in industries in which

individual sales are infrequent, large, and unpredictable) and for certain

types of output. There are many other environments in which contracts
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provide less-than-first-best incentives, but the first-order reasons for these

low-powered contracts seem completely different, and we will turn to these

environments next week.

Exercise 18 (Adapted from MWG 14.B.4). Suppose there are three
possible effort levels, E = {e1, e2, e3}, and two possible output levels, Y =
{0, 10}, and the output price is p = 1. The probability that y = 10 condi-
tional on each of the effort levels is given by the probability mass function
f (10| e1) = 2/3, f (10| e2) = 1/2, and f (10| e3) = 1/3. The Agent’s effort
cost function satisfies c (e1) = 5/3, c (e2) = 8/5, and c (e3) = 4/3. Finally,
the Agent’s utility function is given by u (w) =

√
w, and his outside option

yields utility ū = 0.

(a)What is the optimal contract for the Principal when effort is contractible?

(b) Show that if effort is noncontractible, andW = {w : Y → R}, then there
is no contract w for which the Agent will choose e2. For what levels of c (e2)
would there exist a contract w under which the Agent would choose e2?

(c) What is the optimal contract when effort is noncontractible, and W =
{w : Y → R}?
(d) Suppose instead that c (e1) =

√
8, and let f (10| e1) = x ∈ (0, 1). If effort

is noncontractible, and W = {w : Y → R}, what is the optimal contract for
the Principal as x approaches 1? Is the level of effort implemented higher or
lower than when effort is contractible?

Exercise 19. Suppose the Agent can allocate time to two different tasks.
Let ei be the amount of time spent on task i ∈ {1, 2}. The Principal cares
only about task 1 and obtains payoff y = e1 + ε, where ε ∼ N (0, σ2). The
Agent, however, derives a benefit v (e2) from spending time on task 2. The
Agent has CARA preferences with utility function

u (w, e1, e2) = − exp {−r [w − c (e1 + e2) + v (e2)]} ,

where c (e1 + e2) is the cost of time, with c′ (·) > 0, c′′ (·) > 0, and c (0) = 0.
Assume also that v′ (·) > 0, v′′ (·) < 0, and v (0) = 0, and that optimization
with respect to (e1, e2) results in an interior solution. Let w̄ denote the wage
the Agent receives from his outside option, so ū = − exp {−rw̄}.
(a) What is the first-best outcome in this setting?
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(b) Suppose effort e1 is noncontractible, and the Principal can write a contract
that is an affi ne function of output and can also allow the Agent to engage
in task 2 or not. Under these assumptions, what is the contracting space?

(c) Suppose the Principal must pay the Agent s = 1 if y = 0. Will the
Principal allow the Agent to engage in task 2? Compare this to your answer
in part (a). What if s < 1 is set exogenously? Find the difference in the
Principal’s utility under the two policies, as a function of s.

Exercise 20. This exercise goes through a two-period version of Holmström
and Milgrom’s (1987) linear contracts argument. In each of two periods,
t ∈ {1, 2}, the Agent chooses whether to “work”or to “shirk”: et ∈ {0, 1} at
cost cet with c > 0. Output is binary, so that yt ∈ {0, 1}, and the price of
output is normalized to 1. Effort increases the probability that yt = 1:

1 > Pr [yt = 1| et = 1] = pH > pL = Pr [yt = 1| et = 0] > 0.

The Agent’s Bernoulli utility function is

u (w, e1, e2) = − exp {−r (w − ce1 − ce2)} ,

and his outside option yields utility − exp {−r · 0}. The Agent can observe
the realization of y1 before choosing y2.

The Principal’s payoff is y1 + y2 − w, and the payment w can depend on
each period’s output and is paid at the end of period 2 (i.e., after both real-
izations of output). Assume it is optimal to induce the Agent to work hard
in both periods. Show that a least-cost (optimal) contract that implements
e1 = e2 = 1 has the form

w (y1, y2) = s+ b (y1 + y2) .

Guide:

(a) Define wy1,y2 to be the wage conditional on y1 in period 1 and y2 in period
2. Then, using the (IC) constraints for period 2, show that

erc
[
1 + pH

{
exp {−rw0,1}
exp {−rw0,0}

− 1

}]
= 1 + pL

{
exp {−rw0,1}
exp {−rw0,0}

− 1

}
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and

erc
[
1 + pH

{
exp {−rw1,1}
exp {−rw1,0}

− 1

}]
= 1 + pL

{
exp {−rw1,1}
exp {−rw1,0}

− 1

}
.

This implies there exists

b = w0,1 − w0,0 = w1,1 − w1,0.

Why did CARA utility matter for this argument?

(b) Now, using the (IC) constraint for period 1, show that we have

erc
[
1 + pH

{
u1

u0

− 1

}]
= 1 + pL

{
u1

u0

− 1

}
,

where ui is the expected utility conditional on success in the first period
(i = 1) or failure (i = 0).

(c) Note that

exp {r (c− wy,1)} = exp {−rb} exp {r (c− wy,0)}

for each y ∈ {0, 1}. Now show that
u1

u0

= exp {−r (w1,0 − w0,0)} = exp {−r (w1,1 − w0,1)} .

Therefore, we must have b = w0,1 − w0,0 = w1,0 − w0,0 = w1,1 − w0,1.

The First-Order Approach

Last time, we imposed a lot of structure on the Principal-Agent problem and

solved for optimal affi ne contracts. One of the problems we identified with

that approach was that there was not a particularly compelling reason for

restricting attention to affi ne contracts. Moreover, in that particular setting,

if we allowed the contracts to take more general functional forms, there in
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fact was no optimal contract.

Today, we will return to a slightly modified version of the more general

setup of the problem and consider an alternative approach to characteriz-

ing optimal contracts without imposing any assumptions on the functional

forms they might take. One change we will be making is that the Agent’s

preferences are now given by

U (w, e) =

∫
y∈Y

[u (w (y))− c (e)] dF (y| e) = Ey [u (w)| e]− c (e) ,

where u is strictly increasing and strictly concave, and the utility the Agent

receives from money is additively separable from his effort costs.

Recall from last time that the Principal’s problem is to choose an output-

contingent contract w ∈ W ⊂ {w : Y → R} and to “propose”an effort level

e to solve:

max
w∈W,e∈E

∫
y∈Y

(py − w (y)) dF (y| e)

subject to an incentive-compatibility constraint

e ∈ argmax
ê∈E

∫
y∈Y

u (w (y)) dF (y| ê)− c (ê)

and an individual-rationality constraint

∫
y∈Y

u (w (y)) dF (y| e)− c (e) ≥ ū.
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One of the problems with solving this problem at this level of generality

is that the incentive-compatibility constraint is quite a complicated set of

conditions. The contract has to ensure that, of all the effort levels the Agent

could potentially choose, he prefers to choose e. In other words, the contract

has to deter the Agent from choosing any other effort level ê: for all ê ∈ E ,

we must have

∫
y∈Y

[u (w (y))− c (e)] dF (y| e) ≥
∫
y∈Y

[u (w (y))− c (ê)] dF (y| ê) .

When effort is continuous, the incentive-compatibility constraint is ac-

tually a continuum of constraints of this form. It seems like it should be

the case that if we impose more structure on the problem, we can safely

ignore most of these constraints. This turns out to be true. If we impose

some relatively stringent but somewhat sensible assumptions on the prob-

lem, then if it is the case that the Agent does not want to deviate locally

to another ê, then he also does not want to deviate to an ê that is farther

away. When local constraints are suffi cient, we will in fact be able to replace

the Agent’s incentive-compatibility constraint with the first-order condition

to his problem.

Throughout, we will be focusing on models that satisfy the following

assumptions.

Assumption A1 (Continuous Effort and Continuous Output). Effort

is continuous and satisfies E = R+. Output is continuous, with Y = R, and
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for each e ∈ E , F ( ·| e) has support
[
y, ȳ
]
and has density f ( ·| e), where

f ( ·| e) is differentiable in e.

Assumption A2 (First-Order Stochastic Dominance– FOSD). The

output distribution function satisfies Fe (y| e) ≤ 0 for all e ∈ E and all y with

strict inequality for some y for each e.

Assumption (A2) roughly says that higher effort levels make lower out-

put realizations less likely and higher output realizations more likely. This

assumption provides suffi cient conditions under which higher effort increases

total expected surplus, ignoring effort costs.

We will first explore the implications of being able to replace the incentive-

compatibility constraint with the Agent’s first-order condition, and then we

will provide some suffi cient conditions under which doing so is without loss

of generality. Under Assumption (A1), if we replace the Agent’s incentive-

compatibility constraint with his first-order condition, the Principal’s prob-

lem becomes:

max
w∈W,e∈E

∫ ȳ

y

(py − w (y)) f (y| e) dy

subject to the local incentive-compatibility constraint

c′ (e) =

∫ ȳ

y

u (w (y)) fe (y| e) dy
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and the individual-rationality constraint

∫ ȳ

y

u (w (y)) f (y| e) dy − c (e) ≥ ū.

This problem is referred to as thefirst-order approach to characterizing

second-best incentive contracts. It is now just a constrained-optimization

problem with an equality constraint and an inequality constraint. We can

therefore write the Lagrangian for this problem as

L =

∫ ȳ

y

(py − w (y)) f (y| e) dy + λ

(∫ ȳ

y

u (w (y)) f (y| e) dy − c (e)− ū
)

+µ

(∫ ȳ

y

u (w (y)) fe (y| e) dy − c′ (e)
)
,

where λ is the Lagrange multiplier on the individual-rationality constraint,

and µ is the Lagrange multiplier on the local incentive-compatibility con-

straint. We can derive the conditions for the optimal contract w∗ (y) induc-

ing optimal effort e∗ by taking first-order conditions, point-by-point, with

respect to w (y). These conditions are:

1

u′ (w∗ (y))
= λ+ µ

fe (y| e∗)
f (y| e∗) .

Contracts satisfying these conditions are referred to as Holmström-Mirrlees

contracts (or (λ, µ) contracts as one of my colleagues calls them). There are

several points to notice here. First, the left-hand side is increasing in w (y),
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since u is concave. Second, if µ = 0, then this condition would correspond to

the conditions for an optimal risk-sharing rule between the Principal and the

Agent. Under a Pareto-optimal risk allocation, the Borch Rule states that

the ratio of the Principal’s marginal utility to the Agent’s marginal utility is

equalized across states. In this case, the Principal’s marginal utility is one.

Any optimal-risk sharing rule will equalize the Agent’s marginal utility of

income across states and therefore give the Agent a constant wage.

Third, Holmström (1979) shows that under Assumption (A2), µ > 0, so

that the right-hand side of this equation is increasing in fe (y| e∗) /f (y| e∗).

You might remember from econometrics that this ratio is called the score–

it tells us how an increase in e changes the log likelihood of e given output

realization y. To prevent the Agent from choosing effort level e instead of

e∗, the contract has to pay the Agent more for outputs that are more likely

under e∗ than under e. Since by assumption, we are looking at only local

incentive constraints, the contract will pay the Agent more for outputs that

are more likely under e∗ than under effort levels arbitrarily close to e∗.

Together, these observations imply that the optimal contract w∗ (y) is

increasing in the score. Just because an optimal contract is increasing in the

score does not mean that it is increasing in output. The following assumption

guarantees that the score is increasing in y, and therefore optimal contracts

are increasing in output.

Assumption A3 (Monotone Likelihood Ratio Property–MLRP).

Given any two effort levels e, e′ ∈ E with e > e′, the ratio f (y| e) /f (y| e′) is
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increasing in y.

MLRP guarantees, roughly speaking, that higher levels of output are

more indicative of higher effort levels.1 Under Assumption (A1), MLRP is

equivalent to the condition that fe (y| e) /f (y| e) is increasing in y. We can

therefore interpret the optimality condition as telling us that the optimal

contract is increasing in output precisely when higher output levels are more

indicative of higher effort levels. Put differently, the optimal contract “wants”

to reward informative output, not necessarily high output.

The two statistical properties, FOSD and MLRP, that we have assumed

come up a lot in different settings, and it is easy to lose track of what they

each imply. To recap, the FOSD property tells us that higher effort makes

higher output more likely, and it guarantees that there is always a benefit

of higher effort levels, gross of effort costs. The MLRP property tells us

that higher output is more indicative of higher effort, and it guarantees that

optimal contracts are increasing in output. These two properties are related:

MLRP implies FOSD, but not the reverse.

Informativeness Principle

Before we provide conditions under which the first-order approach is valid,

we will go over what I view as the most important result to come out of this

1The property can also be interpreted in terms of statistical hypothesis testing. Suppose
the null hypothesis is that the Agent chose effort level e′, and the alternative hypothesis
is that the Agent chose effort level e > e′. If, given output realization y, a likelihood ratio
test would reject the null hypothesis of lower effort, the same test would also reject the
null hypothesis for any higher output realization.
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model. Suppose there is another contractible performance measure m ∈M,

where y and m have joint density function f (y,m| e), and the contracting

space is W = {w : Y ×M→ R}. Under what conditions will an optimal

contract w (y,m) depend nontrivially on m? The answer is: whenever m

provides additional information about e. To make this argument precise, we

will introduce the following definition.

Definition 14. Given two random variables Y and M , Y is suffi cient for

(Y,M) with respect to e ∈ E if and only if the joint density function

f (y,m| e) is multiplicatively separable in m and e:

f (y,m| e) = g (m| e)h (y,m) .

We will say that M is informative about e ∈ E if Y is not suffi cient for

(Y,M) with respect to e ∈ E .

We argued above that optimal contracts pay the Agent more for outputs

that are more indicative of high effort. This same argument also extends

to other performance measures, as long as they are informative about effort.

This result is known as the informativeness principle and was first established

by Holmström (1979) and Shavell (1979).

Theorem 15 (Informativeness Principle). Assume the first-order ap-

proach is valid. Let w (y) be the optimal contract whenm is noncontractible.

If m is contractible, there exist a contract w (y,m) that Pareto dominates

w (y) if and only if m is informative about e ∈ E .
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Proof of Theorem 15. In both cases, the optimal contract gives the Agent

ū, so we just need to show that the Principal can be made strictly better off

if m is contractible.

If the first-order approach is valid, the optimality conditions for the Prin-

cipal’s problem when both y and m are contractible are given by

1

u′ (w∗ (y,m))
= λ+ µ

fe (y,m| e∗)
f (y,m| e∗) .

The optimal contract w∗ (y,m) is independent ofm if and only if y is suffi cient

for (y,m) with respect to e∗.

This result seems like it should be obvious: optimal contracts clearly

should make use of all available information. But it is not ex ante obvious this

would be the case. In particular, one could easily have imagined that optimal

contracts should only depend on performance measures that are “suffi ciently”

informative about effort– after all, basing a contract on another performance

measure could introduce additional noise as well. Or one could have imagined

that optimal contracts should only depend on performance measures that are

directly affected by the Agent’s effort choice. The informativeness principle

says that optimal contracts should depend on every performance measure

that is even slightly informative.

This result has both positive and negative implications. On the positive

and practical side, it says that optimal contracts should make use of bench-

marks: a fund manager should be evaluated for her performance relative to
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a market index, CEOs should be rewarded for firm performance relative to

other firms in their industry, and employees should be evaluated relative to

their peers. On the negative side, the result shows that optimal contracts

are highly sensitive to the fine details of the environment. This implication

is, in a real sense, a weakness of the theory: it is the reason why the theory

often predicts contracts that bear little resemblance to what we actually see

in practice.

The informativeness principle was derived under the assumption that the

first-order approach was valid. When the first-order approach is not valid,

the informativeness principle does not necessarily hold. The reason for this

is that when the first-order approach does not hold, there may be multiple

binding incentive-compatibility constraints at the optimum, and just because

an informative performance measure helps relax one of those constraints, if

it does not help relax the other binding constraints, it need not strictly

increase the firm’s profits. Chaigneau, Edmans, and Gottlieb (forthcoming)

generalizes the informativeness principle to settings in which the first-order

approach is not valid.

Validity of the First-Order Approach

Finally, we will briefly talk about some suffi cient conditions ensuring the

first-order approach is valid. Assumption (A4), along with the following

assumption, are suffi cient.

Assumption A4 (Convexity of the Distribution Function Condition–
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CDFC). F ( ·| e) is twice differentiable, and Fee ( ·| e) ≥ 0 for all e.

CDFC is a strong assumption. There is a fairly standard class of distri-

butions that are often used in contract theory that satisfy it, but it is not

satisfied by other well-known families of distributions. Let FH (y) and FL (y)

be two distribution functions that have density functions fH (y) and fL (y)

for which fH (y) /fL (y) is increasing in y, and suppose

F (y| e) = eFH (y) + (1− e)FL (y) .

Then F (y| e) satisfies both MLRP and CDFC. In other words, MLRP and

CDFC are satisfied if output is drawn from a mixture of a “high”and a “low”

distribution, and higher effort increases the probability that output is drawn

from the high distribution.

Theorem 16. Suppose (A1) − (A4) are satisfied. If the local incentive-

compatibility constraint is satisfied, the incentive-compatibility constraint is

satisfied.

Proof sketch of Theorem 16. The high-level idea of the proof is to show

that MLRP and CDFC imply that the Agent’s effort-choice problem is glob-

ally concave for any contract the Principal offers him. Using integration by
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parts, we can rewrite the Agent’s expected utility as follows.

∫ ȳ

y

u (w (y)) f (y| e) dy − c (e) = u (w (y)) F (y| e)|ȳy

−
∫ ȳ

y

u′ (w (y))
dw (y)

dy
F (y| e) dy − c (e)

= u (w (ȳ))−
∫ ȳ

y

u′ (w (y))
dw (y)

dy
F (y| e) dy − c (e) .

Now, suppose w (y) is increasing and differentiable. Differentiating the ex-

pression above with respect to e twice yields

−
∫ ȳ

y

u′ (w (y))
dw (y)

dy
Fee (y| e) dy − c′′ (e) < 0

for every e ∈ E , since Fee > 0. Thus, the Agent’s second-order condition is

globally satisfied, so if the local incentive constraint is satisfied, the incentive

constraint is satisfied.�

I labeled this proof as a sketch, because while it follows Mirrlees’s (1976)

argument, the full proof (due to Rogerson (1985)) requires showing that w (y)

is in fact increasing and differentiable when MLRP is satisfied. We cannot

use our argument above for why MLRP implies increasing contracts, because

that argument presumed the first-order approach was valid, which is exactly

what we are trying to prove here. The MLRP and CDFC conditions are

known as the Mirrlees-Rogerson conditions.

There are other suffi cient conditions for the first-order approach to be
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valid that do not require such strong distributional assumptions (see, for ex-

ample, Jewitt (1988)). And there are other approaches to solving the moral

hazard problem that do not rely on the first-order approach. These include

Grossman and Hart (1983), which decomposes the Principal’s problem into

two steps: the first step solves for the cost-minimizing contract that imple-

ments a given effort level, and the second step solves for the optimal effort

level. We will take this approach when we think about optimal contracts

under limited liability in the next section.

4.2 Limited Liability and Incentive Rents

We saw in the previous model that the optimal contract sometimes involved

up-front payments from the Agent to the Principal. To the extent that

the Agent is unable to afford such payments (or legal restrictions such as

minimum wage laws prohibit such payments), the Principal will not be able

to extract all the surplus that the Agent creates. Further, in order to extract

surplus from the Agent, the Principal may have to put in place contracts that

reduce the total surplus created. In equilibrium, the Principal may therefore

offer a contract that induces effort below the first-best.

The Model Again, there is a risk-neutral Principal (P ). There is also a

risk-neutral Agent (A). The Agent chooses an effort level e ∈ E ⊂ R+ at a

cost of c (e), where c : R+ → R+, with c′′, c′ > 0, and this effort level affects
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the distribution over outputs y ∈ Y, with y distributed according to CDF

F ( ·| e). These outputs can be sold on the product market for price p. The

Principal can write a contract w ∈ W ⊂ {w : Y → R, w (y) ≥ w for all y}

that determines a transfer w (y) that she is compelled to pay the Agent if

output y is realized. The Agent has an outside option that provides utility

ū to the Agent and π̄ to the Principal. If the outside option is not exercised,

the Principal’s and Agent’s preferences are, respectively,

Π (w, e) =

∫
y∈Y

(py − w (y)) dF (y| e) = Ey [py − w| e]

U (w, e) =

∫
y∈Y

(w (y)− c (e)) dF (y| e) = Ey [w − c (e)| e] .

There are two differences between this model and the previous model.

The first difference is that the Agent is risk-neutral (so that absent any

other changes, the equilibrium contract would induce first-best effort). The

second difference is that the wage payment from the Principal to the Agent

has to exceed, for each realization of output, a value w. Depending on the

setting, this constraint is described as a liquidity constraint or a limited-

liability constraint. In repeated settings, it is more naturally thought of as

the latter– due to legal restrictions, the Agent cannot be legally compelled to

make a transfer (larger than −w) to the Principal. In static settings, either

interpretation may be sensible depending on the particular application– if

the Agent is a fruit picker, for instance, he may not have much liquid wealth

that he can use to pay the Principal.
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Timing The timing of the game is exactly the same as before.

1. P offers A a contract w (y), which is commonly observed.

2. A accepts the contract (d = 1) or rejects it (d = 0) and receives ū, and

the game ends. This decision is commonly observed.

3. If A accepts the contract, A chooses effort level e and incurs cost c (e).

e is only observed by A.

4. Output y is drawn from distribution with cdf F ( ·| e). y is commonly

observed.

5. P pays A an amount w (y). This payment is commonly observed.

Equilibrium The solution concept is the same as before. A pure-strategy

subgame-perfect equilibrium is a contract w∗ ∈ W, an acceptance de-

cision d∗ : W → {0, 1}, and an effort choice e∗ : W × {0, 1} → R+ such

that given the contract w∗, the Agent optimally chooses d∗ and e∗, and given

d∗ and e∗, the Principal optimally offers contract w∗. We will say that the

optimal contract induces effort e∗.

The Program The Principal offers a contract w ∈ W and proposes an

effort level e in order to solve

max
w∈W,e∈E

∫
y∈Y

(py − w (y)) dF (y| e)
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subject to three constraints: the incentive-compatibility constraint

e ∈ argmax
ê∈E

∫
y∈Y

(w (y)− c (ê)) dF (y| ê) ,

the individual-rationality constraint

∫
y∈Y

(w (y)− c (e)) dF (y| e) ≥ ū,

and the limited-liability constraint

w (y) ≥ w for all y ∈ Y.

Binary-Output Case We will impose much more structure on the prob-

lem to illustrate the main trade-off in this class of models. Innes (1990) and

Jewitt, Kadan, and Swinkels (2008) explore a much more general analysis.

Assumption A1 (Binary Output). Output is y ∈ {0, 1}, and given effort

e, its distribution satisfies Pr [y = 1| e] = e.

Assumption A2 (Well-behaved Cost). The Agent’s costs have a non-

negative third derivative: c′′′ ≥ 0, and they satisfy conditions that ensure

an interior solution: c′ (0) = 0 and c′ (1) = +∞. Or for comparison across

models in this module, c (e) = c
2
e2, where p ≤ c to ensure that eFB < 1.
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Finally, we can restrict attention to affi ne, nondecreasing contracts

W = {w (y) = (1− y)w0 + yw1, w1 ≥ w0 ≥ 0}

= {w (y) = s+ by, s ≥ w, b ≥ 0} .

When output is binary, this restriction to affi ne contracts is without loss of

generality. Also, the restriction to nondecreasing contracts is not restrictive

(i.e., any optimal contract of a relaxed problem in which we do not impose

that contracts are nondecreasing will also be the solution to the full problem).

This result is something that needs to be shown and is not in general true,

but in this case, it is straightforward.

As Grossman and Hart (1983) highlight, in Principal—Agent models, it is

often useful to break the problem down into two steps. The first step takes

a target effort level, e, as given and solves for the set of cost-minimizing

contracts implementing effort level e. Any cost-minimizing contract imple-

menting effort level e results in an expected cost of C (e) to the principal.

The second step takes the function C (·) as given and solves for the optimal

effort choice.

In general, the cost-minimization problem tends to be a well-behaved

convex-optimization problem, since (even if the agent is risk-averse) the ob-

jective function is weakly concave, and the constraint set is a convex set

(since given an effort level e, the individual-rationality constraint and the

limited-liability constraint define convex sets, and each incentive constraint
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ruling out effort level ê 6= e also defines a convex set, and the intersection of

convex sets is itself a convex set). The resulting cost function C (·) need not

have nice properties, however, so the second step of the optimization prob-

lem is only well-behaved under restrictive assumptions. In the present case,

Assumptions (A1) and (A2) ensure that the second step of the optimization

problem is well-behaved.

Cost-Minimization Problem Given an effort level e, the cost-minimization

problem is given by

C (e, ū, w) = min
s,b

s+ be

subject to the Agent’s incentive-compatibility constraint

e ∈ argmax
ê
{s+ bê− c (ê)} ,

his individual-rationality constraint

s+ be− c (e) ≥ ū,

and the limited-liability constraint

s ≥ w.

I will denote a cost-minimizing contract implementing effort level e

by (s∗e, b
∗
e).
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The first step in solving this problem is to notice that the Agent’s incentive-

compatibility constraint implies that any cost-minimizing contract imple-

menting effort level e must have b∗e = c′ (e).

If there were no limited-liability constraint, the Principal would choose

s∗e to extract the Agent’s surplus. That is, given b = b∗e, s would solve

s+ b∗ee = ū+ c (e) .

That is, s would ensure that the Agent’s expected compensation exactly

equals his expected effort costs plus his opportunity cost. The resulting s,

however, may not satisfy the limited-liability constraint. The question then

is: given ū and w, for what effort levels e is the Principal able to extract all the

agent’s surplus (i.e., for what effort levels does the limited-liability constraint

not bind at the cost-minimizing contract?), and for what effort levels is she

unable to do so? Figure 15 below shows cost-minimizing contracts for effort

levels e1 and e2. Any contract can be represented as a line in this figure,

where the line represents the expected pay the Agent will receive given an

effort level e. The cost-minimizing contract for effort level e1 is tangent to

the ū + c (e) curve at e1 and its intercept is s∗e1 . Similarly for e2. Both

s∗e1 and s
∗
e2
are greater than w, which implies that for such effort levels, the
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limited-liability constraint is not binding.

Figure 15: Cost-minimizing contracts

For effort suffi ciently high, the limited-liability constraint will be binding

in a cost-minimizing contract, and it will be binding for all higher effort

levels. Define the threshold ē (ū, w) to be the effort level such that for all

e ≥ ē (ū, w), s∗e = w. Figure 16 illustrates that ē (ū, w) is the effort level at

which the contract tangent to the ū + c (e) curve at ē (ū, w) intersects the

vertical axis at exactly w. That is, ē (ū, w) solves

c′ (ē (ū, w)) =
ū+ c (ē (ū, w))− w

ē (ū, w)
.

Figure 2 also illustrates that for all effort levels e > ē (ū, w), the cost-
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minimizing contract involves giving the Agent strictly positive surplus. That

is, the cost to the Principal of getting the agent to choose effort e > ē (ū, w)

is equal to the Agent’s opportunity costs ū plus his effort costs c (e) plus

incentive costs IC (e, ū, w).

Figure 16: Incentive Costs for High Effort Levels

The incentive costs IC (e, ū, w) are equal to the Agent’s expected compen-

sation given effort choice e and cost-minimizing contract (s∗e, b
∗
e) minus his

costs:

IC (e, ū, w) =

 0

w + c′ (e) e− c (e)− ū

e ≤ ē (ū, w)

e ≥ ē (ū, w)

= max {0, w + c′ (e) e− c (e)− ū}
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where I used the fact that for e ≥ ē (ū, w), s∗e = w and b∗e = c′ (e). This

incentive-cost function IC (·, ū, w) is the key object that captures the main

contracting friction in this model. I will sometimes refer to IC (e, ū, w) as the

incentive rents required to get the Agent to choose effort level e. Putting

these results together, we see that

C (e, ū, w) = ū+ c (e) + IC (e, ū, w) .

That is, the Principal’s total costs of implementing effort level e are the sum

of the Agent’s costs plus the incentive rents required to get the Agent to

choose effort level e.

Since IC (e, ū, w) is the main object of interest in this model, I will de-

scribe some of its properties. First, it is continuous in e (including, in partic-

ular, at e = ē (ū, w)). Next, ē (ū, w) and IC (e, ū, w) depend on (ū, w) only

inasmuch as (ū, w) determines ū−w, so I will abuse notation and write these

expressions as ē (ū− w) and IC (e, ū− w). Also, given that c′′ > 0, IC is

increasing in e (since w+ c′ (e) e− c (e)−u is strictly increasing in e, and IC

is just the max of this expression and zero). Further, given that c′′′ ≥ 0, IC

is convex in e. For e ≥ ē (ū− w), this property follows, because

∂2

∂e2
IC = c′′ (e) + c′′′ (e) e ≥ 0.

And again, since IC is the max of two convex functions, it is also a convex

function. Finally, since IC (·, ū− w) is flat when e ≤ ē (ū− w) and it is
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strictly increasing (with slope independent of ū−w) when e ≥ ē (ū− w), the

slope of IC with respect to e is (weakly) decreasing in ū−w, since ē (ū− w)

is increasing in ū− w. That is, IC (e, ū− w) satisfies decreasing differences

in (e, ū− w).

Motivation-Rent Extraction Trade-off The second step of the opti-

mization problem takes as given the function

C (e, ū− w) = ū+ c (e) + IC (e, ū− w)

and solves the Principal’s problem for the optimal effort level:

max
e
pe− C (e, ū− w)

= max
e
pe− ū− c (e)− IC (e, ū− w) .

Note that total surplus is given by pe − ū − c (e), which is therefore maxi-

mized at e = eFB (which, if c (e) = ce2/2, then eFB = p/c). Figure 17 below

depicts the Principal’s expected benefit line pe, and her expected costs of im-

plementing effort e at minimum cost, C (e, ū− w). The first-best effort level,

eFB maximizes the difference between pe and ū+ c (e), while the equilibrium

effort level e∗ maximizes the difference between pe and C (e, ū− w).



160 CHAPTER 4. CONTRACT THEORY

Figure 17: Optimal Effort Choice

If c (e) = ce2/2, we can solve explicitly for ē (ū− w) and for IC (e, ū− w)

when e > ē (ū− w). In particular,

ē (ū− w) =

(
2 (ū− w)

c

)1/2

and when e > ē (ū− w),

IC (e, ū− w) = w +
1

2
ce2 − ū.

If w < 0 and p is suffi ciently small, we can have e∗ = eFB (i.e., these are
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the conditions required to ensure that the limited-liability constraint is not

binding for the cost-minimizing contract implementing e = eFB). If p is

suffi ciently large relative to ū − w, we will have e∗ = 1
2
p
c

= 1
2
eFB. For p

somewhere in between, we will have e∗ = ē (ū− w) < eFB. In particular,

C (e, ū− w) is kinked at this point.

As in the risk—incentives model, we can illustrate through a partial char-

acterization why (and when) effort is less-than first-best. Since we know that

eFB maximizes pe− ū− c (e), we therefore have that

d

de
[pe− ū− c (e)− IC (e, ū− w)]e=eFB = − ∂

∂e
IC
(
eFB, ū− w

)
≤ 0,

with strict inequality if the limited-liability constraint binds at the cost-

minimizing contract implementing eFB. This means that, even though eFB

maximizes total surplus, if the Principal has to provide the agent with rents

at the margin, she may choose to implement a lower effort level. Reducing

the effort level away from eFB leads to second-order losses in terms of total

surplus, but it leads to first-order gains in profits for the Principal. In this

model, there is a tension between total-surplus creation and rent extraction,

which yields less-than-first-best effort in equilibrium.

In my view, liquidity constraints are extremely important and are prob-

ably one of the main reasons for why many jobs do not involve first-best

incentives. The logic that first-best efforts can be implemented if the firm

transfers the entire profit stream to each of its members in exchange for a
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large up-front payment seems simultaneously compelling, trivial, and obvi-

ously impracticable. In for-profit firms, in order to make it worthwhile to

transfer a large enough share of the profit stream to an individual worker

to significantly affect his incentives, the firm would require a large up-front

transfer that most workers cannot afford to pay. It is therefore not surpris-

ing that we do not see most workers’compensation tied directly to the firm’s

overall profits in a meaningful way. One implication of this logic is that firms

have to find alternative instruments to use as performance measures, which

we will turn to next. In principle, models in which firms do not motivate

their workers by writing contracts directly on profits should include assump-

tions under which the firm optimally chooses not to write contracts directly

on profits, but they almost never do.

Exercise 21. This exercise goes through a version of Diamond’s (1998) and
Barron, Georgiadis, and Swinkels’s (2018) argument for why linear contracts
are optimal when the Agent is able to “take on risk.”Suppose the Principal
and the Agent are both risk neutral, and let Y = [0, ȳ] and E = R+. There is a
limited-liability constraint, and the contracting space isW = {w : Y → R+}.
After the Agent chooses an effort level e, he can then choose any distribution
function F (y) over output that satisfies e =

∫ ȳ
0
ydF (y). In other words,

his effort level determines his average output, but he can then add mean-
preserving noise to his output. Given a contract w, effort e, and distribution
F , the Agent’s expected utility is∫ ȳ

0

w (y) dF (y)− c (e) ,

where c is strictly increasing and strictly convex. The Principal’s expected
profits are

∫ ȳ
0

(y − w (y)) dF (y). The Agent’s outside option gives both par-
ties a payoff of zero.

(a) Show that a linear contract of the form w (y) = by maximizes the Princi-
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pal’s expected profits. To do so, you will want to argue that given any con-
tract w (y) that implements effort level e, there is a linear contract that also
implements effort level e but at a weakly lower cost to the Principal. [Hint:
instead of thinking about all the possible distribution functions the Agent can
choose among, it may be useful to just look at distributions that put weight
on two levels of output, 0 ≤ yL < yH ≤ ȳ satisfying e = (1− q) yL + qyH .]

(b) Are there other contracts that maximize the Principal’s expected profits?
If so, how are they related to the optimal linear contract? If not, provide an
intuition for why linear contracts are uniquely optimal.

4.3 Misaligned Performance Measures

In the previous two models, the Principal cared about output, and output,

though a noisy measure of effort, was perfectly measurable. This assumption

seems sensible when we think about overall firm profits (ignoring basically

everything that accountants think about every day), but as we alluded to in

the previous discussion, overall firm profits are too blunt of an instrument

to use to motivate individual workers within the firm if they are liquidity-

constrained. As a result, firms often try to motivate workers using more

specific performance measures, but while these performance measures are

informative about what actions workers are taking, they may be less useful

as a description of how the workers’actions affect the objectives the firm

cares about. And paying workers for what is measured may not get them to

take actions that the firm cares about. This observation underpins the title

of the famous 1975 paper by Steve Kerr called “On the Folly of Rewarding

A, While Hoping for B.”
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As an example, think of a retail firm that hires an employee both to

make sales and to provide customer service. It can be diffi cult to measure

the quality of customer service that a particular employee provides, but it is

easy to measure that employee’s sales. Writing a contract that provides the

employee with high-powered incentives directly on sales will get him to put

a lot of effort into sales and very little effort into customer service. And in

fact, he might only be able to put a lot of effort into sales by intentionally

neglecting customer service. If the firm cares equally about both dimensions,

it might be optimal not to offer high-powered incentives to begin with. This

is what Holmström and Milgrom (1991) refers to as the “multitask problem.”

We will look at a model that captures some of this intuition, although not

as directly as Holmström and Milgrom’s model. The model we will look at

builds upon Baker (1992, 2002) and Feltham and Xie (1994).

Description Again, there is a risk-neutral Principal (P ) and a risk-neutral

Agent (A). The Agent chooses an effort vector e = (e1, e2) ∈ E ⊂ R2
+ at

a cost of c
2

(e2
1 + e2

2). This effort vector affects the distribution of output

y ∈ Y = {0, 1} and a performance measure m ∈M = {0, 1} as follows:

Pr [y = 1| e] = f1e1 + f2e2

Pr [m = 1| e] = g1e1 + g2e2,
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where it may be the case that f = (f1, f2) 6= (g1, g2) = g. Assume that f 2
1 +

f 2
2 = g2

1 +g2
2 = 1 (i.e., the norms of the f and g vectors are unity). The output

can be sold on the product market for price p. Output is noncontractible,

but the performance measure is contractible. The Principal can write a

contract w ∈ W ⊂ {w :M→ R} that determines a transfer w (m) that she

is compelled to pay the Agent if performance measure m is realized. Since

the performance measure is binary, contracts take the form w = s+ bm. The

Agent has an outside option that provides utility ū to the Agent and π̄ to the

Principal. If the outside option is not exercised, the Principal’s and Agent’s

preferences are, respectively,

Π (w, e) = f1e1 + f2e2 − s− b (g1e1 + g2e2)

U (w, e) = s+ b (g1e1 + g2e2)− c

2

(
e2

1 + e2
2

)
.

Timing The timing of the game is exactly the same as before.

1. P offers A a contract w, which is commonly observed.

2. A accepts the contract (d = 1) or rejects it (d = 0) and receives ū and

the game ends. This decision is commonly observed.

3. If A accepts the contract, A chooses effort vector e. e is only observed

by A.

4. Performance measure m and output y are drawn from the distributions

described above. m is commonly observed.
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5. P pays A an amount w (m). This payment is commonly observed.

Equilibrium The solution concept is the same as before. A pure-strategy

subgame-perfect equilibrium is a contract w∗ ∈ W, an acceptance de-

cision d∗ : W → {0, 1}, and an effort choice e∗ : W × {0, 1} → R2
+ such

that given the contract w∗, the Agent optimally chooses d∗ and e∗, and given

d∗ and e∗, the Principal optimally offers contract w∗. We will say that the

optimal contract induces effort e∗.

The Program The principal offers a contract w and proposes an effort

level e to solve

max
s,b,e

p (f1e1 + f2e2)− (s+ b (g1e1 + g2e2))

subject to the incentive-compatibility constraint

e ∈ argmax
ê∈R2+

s+ b (g1ê1 + g2ê2)− c

2

(
ê2

1 + ê2
2

)
and the individual-rationality constraint

s+ b (g1e1 + g2e2)− c

2

(
e2

1 + e2
2

)
≥ ū.
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Equilibrium Contracts and Effort Given a contract s+ bm, the Agent

will choose

e∗1 (b) =
b

c
g1; e∗2 (b) =

b

c
g2.

The Principal will choose s so that the individual-rationality constraint holds

with equality

s+ b (g1e
∗
1 (b) + g2e

∗
2 (b)) = ū+

c

2

(
e∗1 (b)2 + e∗2 (b)2) .

Since contracts send the Agent off in the “wrong direction”relative to what

maximizes total surplus, providing the Agent with higher-powered incentives

by increasing b sends the agent farther off in the wrong direction. This

is costly for the Principal because in order to get the Agent to accept the

contract, she has to compensate him for his effort costs, even if they are in

the wrong direction.

The Principal’s unconstrained problem is therefore

max
b
p (f1e

∗
1 (b) + f2e

∗
2 (b))− c

2

(
e∗1 (b)2 + e∗2 (b)2)− ū.

Taking first-order conditions,

pf1
∂e∗1
∂b︸︷︷︸
g1/c

+ pf2
∂e∗2
∂b︸︷︷︸
g2/c

= ce∗1 (b∗)︸ ︷︷ ︸
b∗g1/c

∂e∗1
∂b︸︷︷︸
g1/c

+ ce∗2 (b∗)︸ ︷︷ ︸
b∗g2/c

∂e∗2
∂b︸︷︷︸
g2/c

,
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or

b∗ = p
f1g1 + f2g2

g2
1 + g2

2

= p
f · g
g · g = p

||f ||
||g|| cos θ = p cos θ,

where cos θ is the angle between the vectors f and g. That is, the optimal

incentive slope depends on the relative magnitudes of the f and g vectors

(which in this model were assumed to be the same, but in a richer model this

need not be the case) as well as how well-aligned they are. If m is a perfect

measure of what the firm cares about, then g is a linear transformation of f

and therefore the angle between f and g would be zero, so that cos θ = 1. If

m is completely uninformative about what the firm cares about, then f and

g are orthogonal, and therefore cos θ = 0. As a result, this model is often

referred to as the “cosine of theta model.”(Gibbons, 2010)

It can be useful to view this problem geometrically. Since formal con-

tracts allow for unrestricted lump-sum transfers between the Principal and

the Agent, the Principal would optimally like efforts to be chosen in such a

way that they maximize total surplus:

max
e
p (f1e1 + f2e2)− c

2

(
e2

1 + e2
2

)
,

which has the same solution as

max
e
−
(
e1 −

p

c
f1

)2

−
(
e2 −

p

c
f2

)2

.

That is, the Principal would like to choose an effort vector that is collinear
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with the vector f : (
eFB1 , eFB2

)
=
p

c
· (f1, f2) .

This effort vector would coincide with the first-best effort vector, since it

maximizes total surplus, and the players have quasilinear preferences.

Since contracts can only depend onm and not directly on y, the Principal

has only limited control over the actions that the Agent chooses. That is,

given a contract specifying incentive slope b, the Agent chooses e∗1 (b) = b
c
g1

and e∗2 (b) = b
c
g2. Therefore, the Principal can only indirectly “choose”an

effort vector that is collinear with the vector g:

(e∗1 (b) , e∗2 (b)) =
b

c
· (g1, g2) .

The question is then: which such vector maximizes total surplus, which the

Principal will extract with an ex ante lump-sum transfer? That is, which

point along the k · (g1, g2) ray minimizes the mean-squared error distance to

p
c
· (f1, f2)?

The following figure illustrates the first-best effort vector eFB and the

equilibrium effort vector e∗. The concentric rings around eFB are the Prin-

cipal’s iso-profit curves. The rings that are closer to eFB represent higher

profit levels. The optimal contract induces effort vector e∗, which also coin-
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cides with the orthogonal projection of eFB onto the ray k · (g1, g2).

Figure 18: Optimal Effort Vector

This is a more explicit “incomplete contracts”model of motivation. That

is, we are explicitly restricting the set of contracts that the Principal can

offer the Agent in a way that directly determines a subset of the effort space

that the Principal can induce the Agent to choose among. And it is founded

not on the idea that certain measures (in particular, y) are unobservable, but

rather that they simply cannot be contracted upon.

One observation that is immediate is that it may sometimes be optimal

to offer incentive contracts that provide no incentives for the Agent to choose

positive effort levels (i.e., b∗ = 0). This was essentially never the case in the

model in which the Agent chose only a one-dimensional effort level, yet we



4.3. MISALIGNED PERFORMANCE MEASURES 171

often see that many employees are on contracts that look like they offer no

performance-based payments. As this model highlights, this may be optimal

precisely when the set of available performance measures are quite bad. As

an example, suppose

Pr [y = 1| e] = α + f1e1 + f2e2,

where α > 0 and f2 < 0, so that higher choices of e2 reduce the probability

of high output. And suppose the performance measure is again satisfies

Pr [m = 1| e] = g1e1 + g2e2,

with g1, g2 > 0.

We can think of y = 1 as representing whether a particular customer buys

something that he does not later return, which depends on how well he was

treated when he went to the store. We can think of m = 1 as representing

whether the Agent made a sale but not whether the item was later returned.

In order to increase the probability of making a sale, the Agent can exert

“earnest”sales effort e1 and “shady”sales effort e2. Both are good for sales,

but the latter increases the probability the item is returned. If the vectors f

and g are suffi ciently poorly aligned (i.e., if it is really easy to make sales by

being shady), it may be better for the firm to offer a contract with b∗ = 0,
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as the following figure illustrates.

Figure 19: Sometimes Zero Effort is Optimal

This example illustrates that paying the Agent for sales can be a bad

idea when what the Principal wants is sales that are not returned. The Kerr

(1975) article is filled with many colorful examples of this problem. One

such example concerns the incentives offered to the managers of orphanages.

Their budgets and prestige were determined largely by the number of chil-

dren they enrolled and not by whether they managed to place their children

with suitable families. The claim made in the article is that the managers of-

ten denied adoption applications for inappropriate reasons: they were being

rewarded for large orphanages, while the state hoped for good placements.
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Limits on Activities

Firms have many instruments to help address the problems that arise in mul-

titasking situations. We will describe two of them here in a small extension

to the model. Suppose now that the Principal can put some restrictions on

the types of actions the Agent is able to undertake. In particular, in addi-

tion to writing a contract on the performance measure m, she can write a

contract on the dummy variables 1e1>0 and 1e2>0. In other words, while she

cannot directly contract upon, say, e2, she can write a contract that heavily

penalizes any positive level of it. The first question we will ask here is: when

does the Principal want to exclude the Agent from engaging in task 2?

We can answer this question using the graphical intuition we just devel-

oped above. The following figure illustrates this intuition. If the Principal

does not exclude task 2, then she can induce the Agent to choose any effort

vector of the form k · (g1, g2). If she does exclude task 2, then she can induce

the Agent to choose any effort vector of the form k ·(g1, 0). In the former case,

the equilibrium effort vector will be e∗, which corresponds to the orthogonal

projection of eFB onto the ray k · (g1, g2). In the latter case, the equilibrium

effort will be e∗∗, which corresponds to the orthogonal projection of eFB onto

the ray k · (g1, 0).
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Figure 20: Excluding Task 2

This figure shows that for the particular vectors f and g it illustrates, it

will be optimal for the Principal to exclude e2: e∗∗ lies on a higher iso-profit

curve than e∗ does. This will in fact be the case whenever the angle between

vector f and g is larger than the angle between f and (g1, 0)– if by excluding

task 2, the performance measure m acts as if it is more closely aligned with

f , then task 2 should be excluded.

Job Design

Finally, we will briefly touch upon what is referred to as job design. Suppose

f and g are such that it is not optimal to exclude either task on its own.

The firm may nevertheless want to hire two Agents who each specialize in a
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single task. For the first Agent, the Principal could exclude task 2, and for the

second Agent, the Principal could exclude task 1. The Principal could then

offer a contract that gets the first Agent to choose
(
eFB1 , 0

)
and the second

agent to choose
(
0, eFB2

)
. The following figure illustrates this possibility.

Figure 21: Job Design

When is it optimal for the firm to hire two Agents who each specialize

in a single task? It depends on the Agents’opportunity cost. Total surplus

under a single Agent under the optimal contract will be

pf · e∗ − c

2
e∗ · e∗ − ū,
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and total surplus with two specialized agents under optimal contracts will be

pf · eFB − c

2
eFB · eFB − 2ū.

Adding an additional Agent in this case is tantamount to adding an addi-

tional performance measure, which allows the Principal to choose induce any

e ∈ R2
+, including the first-best effort vector. She gains from being able to

do this, but to do so, she has to cover the additional Agent’s opportunity

cost ū.

4.4 Indistinguishable Individual Contributions

So far, we have discussed three contracting frictions that give rise to equilib-

rium contracts that induce effort that is not first-best. We will now discuss

a final contracting friction that arises when multiple individuals contribute

to a single project, and while team output is contractible, individual contri-

butions to the team output are not. This indistinguishability gives rise to

Holmström’s (1982) classic “moral hazard in teams”problem.

The Model There are I ≥ 2 risk-neutral Agents i ∈ I = {1, . . . , I}

who each choose efforts ei ∈ Ei = R+ at cost ci (ei), which is increas-

ing, convex, differentiable, and satisfies c′i (0) = 0. The vector of efforts

e = (e1, . . . , eI) determine team output y ∈ Y = R+ according to a function

y (e) which is increasing in each ei, concave in e, differentiable, and satisfies
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limei→0 ∂y/∂ei =∞. Note that output is not stochastic, although the model

can be easily extended to allow for stochastic output. Output is contractible,

and each Agent i is subject to a contract wi ∈ W = {wi : Y → R}. We will

say that the vector of contracts w = (w1, . . . , wI) is a sharing rule if

∑
i∈I

wi (y) = y

for each output level y. Each Agent i’s preferences are given by

Ui (w, e) = wi (y (e))− ci (ei) .

Each Agent i takes the contracts as given and chooses an effort level.

Output is realized and each agent receives payment wi (y). The solution

concept is Nash equilibrium, and we will say that w induces e∗ if e∗ is a

Nash equilibrium effort profile given the vector of contracts w.

Sharing Rules and the Impossibility of First-Best Effort Since the

Agents have quasilinear preferences, any Pareto-optimal outcome under a

sharing rule w will involve an effort level that maximizes total surplus, so

that

eFB ∈ argmax
e∈RI+

y (e)−
∑
i∈I

ci (ei) .
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Under our assumptions, there is a unique first-best effort vector, and it sat-

isfies
∂y
(
eFB

)
∂ei

= c′i
(
eFBi

)
for all i ∈ I.

First-best effort equates the social marginal benefit of each agent’s effort level

with its social marginal cost. We will denote the first-best output level

y
(
eFB

)
by yFB.

We will give an informal argument for why no sharing rule w induces eFB,

and then we will make that argument more precise. Suppose w is a sharing

rule for which wi (y) is weakly concave and differentiable in y for all i ∈ I.

For any Nash equilibrium effort vector e∗, it must be the case that

w′i (y) · ∂y (e∗)

∂ei
= c′i (e

∗
i ) for all i ∈ I.

In order for e∗ to be equal to eFB, it has to be the case that these equilib-

rium conditions coincide with the Pareto-optimality conditions. This is only

possible if w′i (y) = 1 for all i, but because w is a sharing rule, we must have

that ∑
i∈I

w′i (y) = 1 for all y.

Equilibrium effort e∗ therefore cannot be first-best. This argument highlights

the idea that getting each Agent to choose first-best effort requires that he

be given the entire social marginal benefit of his effort, but it is not possible

(at least under a sharing rule) for all the Agents simultaneously to receive
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the entire social marginal benefit of their efforts.

This argument is not a full argument for the impossibility of attaining

first-best effort under sharing rules because it does not rule out the possibility

of non-differentiable sharing rules inducing first-best effort. It turns out that

there is no sharing rule, even a non-differentiable one, that induces first-best

effort.

Theorem 16 (Moral Hazard in Teams). If w is a sharing rule, w does

not induce eFB.

Proof of Theorem 17. This proof is due to Stole (2001). Take an arbitrary

sharing rule w, and suppose e∗ is an equilibrium effort profile under w. For

any i, j ∈ I, define ej (ei) by the relation y
(
e∗−j, ej (ei)

)
= y

(
e∗−i, ei

)
. Since y

is continuous and increasing, a unique value of ej (ei) exists for ei suffi ciently

close to e∗i . Take such an ei. For e
∗ to be a Nash equilibrium, it must be the

case that

wj (y (e∗))− cj
(
e∗j
)
≥ wj

(
y
(
e∗−j, ej (ei)

))
− cj (ej (ej)) ,

since this inequality has to hold for all ej 6= e∗j . Rewriting this inequality,

and summing up over j ∈ I, we have

∑
j∈I

(
wj (y (e∗))− wj

(
y
(
e∗−i, ei

)))
≥
∑
j∈I

(
cj
(
e∗j
)
− cj (ej (ei))

)
.

Since w is a sharing rule, the left-hand side of this expression is just y (e∗)−
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y
(
e∗−i, ei

)
, so this inequality can be written

y (e∗)− y
(
e∗−i, ei

)
≥
∑
j∈I

cj
(
e∗j
)
− cj (ej (ei)) .

Since this must hold for all ei close to e∗i , we can divide by e
∗
i − ei and take

the limit as ei → e∗i to obtain

∂y (e∗)

∂ei
≥
∑
j∈J

c′j
(
e∗j
) ∂y (e∗) /∂ei
∂y (e∗) /∂ej

.

Now suppose that e∗ = eFB. Then c′j
(
e∗j
)

= ∂y (e∗) /∂ej, so this inequal-

ity becomes
∂y (e∗)

∂ei
≥ I

∂y (e∗)

∂ei
,

which is a contradiction because y is increasing in ei.�

Joint Punishments and Budget Breakers Under a sharing rule, first-

best effort cannot be implemented because in order to deter an Agent from

choosing some ei < eFBi , it is necessary to punish him. But because contracts

can only be written on team output, the only way to deter each agent from

choosing ei < eFBi is to simultaneously punish all the Agents when output is

less than y
(
eFB

)
. But punishing all the Agents simultaneously requires that

they throw output away, which is impossible under a sharing rule. It turns

out, though, that if we allow for contracts w that allow formoney burning,
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in the sense that it allows for

∑
i∈I

wi (y) < y

for some output levels y ∈ Y, first-best effort can in fact be implemented, and

it can be implemented with a contract that does not actually burn money in

equilibrium.

Proposition 4. There exist a vector of contracts w that induces eFB for

which
∑

i∈I wi
(
yFB

)
= yFB.

Proof of Proposition 4. For all i, set wi (y) = 0 for all y 6= yFB, and let

wi
(
yFB

)
> ci

(
eFBi

)
for all i so that

∑
i∈I wi

(
yFB

)
= yFB. Such a vector of

contracts is feasible, because yFB >
∑

i∈I ci
(
eFBi

)
. Finally, under w, eFB is

a Nash equilibrium effort profile because if all other Agents choose eFB−i , then

if Agent i chooses ei 6= eFBi , he receives −ci (ei), if he chooses ei = eFBi , he

receives wi
(
yFB

)
− ci

(
eFBi

)
> 0.�

Proposition 4 shows that in order to induce first-best effort, the Agents

have to subject themselves to costly joint punishments in the event that one

of them deviates and chooses ei 6= eFBi . A concern with such contracts is that

in the event that the Agents are required by the contract to burn money, they

could all be made better off by renegotiating their contract and not burning

money. If we insist, therefore, that w is renegotiation-proof, then w must be

a sharing rule and therefore cannot induce eFB.

This is no longer the case if we introduce an additional party, which we
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will call a Principal, who does not take any actions that affect output. In

particular, if we denote the Principal as Agent 0, then the following sharing

rule induces eFB:

wi (y) = y − k for all i = 1, . . . , I

w0 (y) = Ik − (I − 1) y,

where k satisfies

k =
I − 1

I
yFB.

This vector of contracts is a sharing rule, since for all y ∈ Y,

I∑
i=0

wi (y) = Iy − (I − 1) y = y.

This vector of contracts induces eFB because it satisfies ∂wi
(
yFB

)
/∂ei =

1 for all i = 1, . . . , I, and if we imagine the Principal having an outside

option of 0, this choice of k ensures that in equilibrium, she will in fact

receive 0. In this case, the Principal’s role is to serve as a budget breaker.

Her presence allows the Agents to “break the margins budget,”allowing for∑I
i=1w

′
i (y) = I > 1, while still allowing for renegotiation-proof contracts.

Under these contracts, the Principal essentially “sells the firm”to each

agent for an amount k. Then, since each Agent earns the firm’s entire output

at the margin, each Agent’s interests are aligned with society’s interest. One

limitation of this approach is that while each Agent earns the entire marginal



4.4. INDISTINGUISHABLE INDIVIDUAL CONTRIBUTIONS 183

benefit of his efforts, the Principal loses I − 1 times the marginal benefit of

each Agent’s efforts. The Principal has strong incentives to collude with one

of the Agents– while the players are jointly better off if Agent i chooses eFBi

than any ei < eFBi , Agent i and the Principal together are jointly better off

if Agent i chose ei = 0.
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Chapter 5

The Theory of the Firm

The central question in this part of the literature goes back to Ronald Coase

(1937): if markets are so great at coordinating productive activity, why is

productive activity carried out within firms rather than by self-employed

individuals who transact on a spot market? And indeed it is, as Herbert

Simon (1991) vividly illustrated:

A mythical visitor from Mars... approaches Earth from space,

equipped with a telescope that reveals social structures. The

firms reveal themselves, say, as solid green areas with faint in-

terior contours marking out divisions and departments. Market

transactions show as red lines connecting firms, forming a net-

work in the spaces between them. Within firms (and perhaps

even between them) the approaching visitor also sees pale blue

lines, the lines of authority connecting bosses with various lev-

185
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els of workers... No matter whether our visitor approached the

United States or the Soviet Union, urban China or the Euro-

pean Community, the greater part of the space below it would be

within the green areas, for almost all inhabitants would be em-

ployees, hence inside the firm boundaries. Organizations would

be the dominant feature of the landscape. A message sent back

home, describing the scene, would speak of “large green areas in-

terconnected by red lines.”It would not likely speak of “a network

of red lines connecting green spots.”...When our visitor came to

know that the green masses were organizations and the red lines

connecting them were market transactions, it might be surprised

to hear the structure called a market economy. “Wouldn’t ‘or-

ganizational economy’be the more appropriate term?”it might

ask. (pp. 27-28)

It is obviously diffi cult to put actual numbers on the relative importance of

trade within and between firms, since, I would venture to say, most transac-

tions within firms are not recorded. From dropping by a colleague’s offi ce to

ask for help finding a reference, transferring a shaped piece of glass down the

assembly line for installation into a mirror, getting an order of fries from the

fry cook to deliver to the customer, most economic transactions are diffi cult

even to define as such, let alone track. But we do have some numbers. The

first sentence of Antràs (2003) provides a lower bound: “Roughly one-third

of world trade is intrafirm trade.”
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Of course, it could conceivably be the case that boundaries don’t really

matter– that the nature of a particular transaction and the overall volume

of transactions is the same whether boundaries are in place or not. And

indeed, this would exactly be the case if there were no costs of carrying out

transactions: Coase’s (1960) eponymous theorem suggests, roughly, that in

such a situation, outcomes would be the same no matter how transactions

were organized. But clearly this is not the case– in 1997, to pick a random

year, the volume of corporate mergers and acquisitions was $1.7 trillion dol-

lars (Holmström and Roberts, 1998). It is implausible that this would be the

case if boundaries were irrelevant, as even the associated legal fees have to

ring up in the billions of dollars.

And so, in a sense, the premise of the Coase Theorem’s contrapositive is

clearly true. Therefore, there must be transaction costs. And understanding

the nature of these transaction costs will hopefully shed some light on the

patterns we see. Moreover, as D.H. Robertson vividly illustrated, there are

indeed patterns to what we see. Firms are “islands of conscious power in

this ocean of unconscious co-operation like lumps of butter coagulating in

a pail of buttermilk.”So the question becomes: what transaction costs are

important, and how are they important? How, in a sense, can they help

make sense out of the pattern of butter and buttermilk?

The field was basically dormant for the next forty years until the early

1970s, largely because “transaction costs” came to represent essentially “a

name for the residual”– any pattern in the data could trivially be attributed
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to some story about transaction costs. The empirical content of the theory

was therefore essentially zero.

Williamson (1971, 1975, 1979, 1985) put structure on the theory by iden-

tifying specific factors that composed these transaction costs. And impor-

tantly, the specific factors he identified had implications about economic

objects that at least could, in principle, be contained in a data set. There-

fore his causal claims could be, and were, tested. (As a conceptual matter,

it is important to note that even if Williamson’s causal claims were refuted,

this would not invalidate the underlying claim that “transaction costs are

important,”since as discussed earlier, this more general claim is essentially

untestable, because it is impossible to measure, or even conceive of, all trans-

action costs associated with all different forms of organization.)

The gist of Williamson’s Transaction Cost Economics (TCE) theory is

that when contracts are incomplete, and parties have disagreements, they

may waste resources “haggling”over the appropriate course of action if they

transact in a market, whereas if they transact within a firm, these disagree-

ments can be settled by authority or by “fiat.”Integration is therefore more

appealing than the market when haggling costs are higher, which is the case

in situations in which contracts are relatively more incomplete and parties

disagree more.

As a classic example (due to Joskow (1985)), think about the relationship

between an underground coal mine and a coal fired power plant. It is much

more effi cient for the power plant to be located close to the coal mine, but
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the power plant is unlikely to do so absent contractual safeguards. Maybe

the parties then end up signing a 20-year contract detailing the type of coal

that the mine will send to the power plant and at what price. But after a few

years, there may be a regulatory change preventing the use of that particular

type of coal. Since such a change is diffi cult to foresee, the parties may not

have specified what to do in this event, and they will have to renegotiate

the contract, and these renegotiations may be costly. One way to avoid the

problems associated with such renegotiations is vertical integration: the elec-

tricity company could buy the coal mine instead of entering into a contract

with it. And in the event of a regulatory change, the electricity company

just orders the coal mine to produce a different type of coal.

But there was a sense in which TCE theory (and the related work by

Klein, Crawford, and Alchian (1978)) was silent on many foundational ques-

tions. After all, why does moving the transaction from the market into

the firm imply that parties no longer haggle– that is, what is integration?

Further, if settling transactions by fiat is more effi cient than by haggling,

why aren’t all transactions carried out within a single firm? Williamson’s

and others’response was that there are bureaucratic costs (“accounting con-

trivances,”“weakened incentives,”and others) associated with putting more

transactions within the firm. But surely those costs are also higher when

contracts are more incomplete and when there is more disagreement between

parties. Put differently, Williamson identified particular costs associated

with transacting in the market and other costs associated with transacting
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within the firm and made assertions about the rates at which these costs vary

with the underlying environment. The resulting empirical implications were

consistent with evidence, but the theory still lacked convincing foundations,

because it treated these latter costs as essentially exogenous and orthogonal.

The Property Rights Theory (PRT), initiated by Grossman and Hart

(1986) and expanded upon in Hart and Moore (1990), proposed a theory

which (a) explicitly answered the question of “what is integration?”and (b)

treated the costs and benefits of integration symmetrically. Related to the

first point is an observation by Alchian and Demsetz that

It is common to see the firm characterized by the power to settle

issues by fiat, by authority, or by disciplinary action superior

to that available in the conventional market. This is delusion.

The firm does not own all its inputs. It has no power of fiat,

no authority, no disciplinary action any different in the slightest

degree from ordinary market contracting between any two people.

I can “punish” you only by withholding future business or by

seeking redress in the courts for any failure to honor our exchange

agreement. This is exactly all that any employer can do. He can

fire or sue, just as I can fire my grocer by stopping purchases from

him or sue him for delivering faulty products. (1972, p. 777)

What, then, is the difference between me “telling my grocer what to do”and

me “telling my employee what to do?”In either case, refusal would poten-
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tially cause the relationship to break down. The key difference, according to

Grossman and Hart’s theory, is in what happens after the relationship breaks

down. If I stop buying goods from my grocer, I no longer have access to his

store and all its associated benefits. He simply loses access to a particular

customer. If I stop employing a worker, on the other hand, the worker loses

access to all the assets associated with my firm. I simply lose access to that

particular worker.

Grossman and Hart’s (1986) key insight is that property rights determine

who can do what in the event that a relationship breaks down– property

rights determine what they refer to as the residual rights of control. And

allocating these property rights to one party or another may change their

incentives to take actions that affect the value of this particular relation-

ship. This logic leads to what is often interpreted as Grossman and Hart’s

main result: property rights (which define whether a particular transaction

is carried out “within” a firm or “between” firms) should be allocated to

whichever party is responsible for making more important investments in the

relationship.

From a theoretical foundations perspective, Grossman and Hart (1986)

was a huge step forward– the theory treats the costs of integration and the

costs of non-integration symmetrically and systematically analyzes how dif-

ferent factors drive these two costs in a single unified framework. From a con-

ceptual perspective, however, all the action in the theory is related to how

organization affects parties’ incentives to make relationship-specific invest-
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ments. As we will see, the theory assumes that conditional on relationship-

specific investments, transactions are always carried out effi ciently. A man-

ager never wastes time and resources arguing with an employee. An employee

never wastes time and resources trying to convince the boss to let him do a

different, more desirable task.

Even the Property Rights Theory does not stand on fully firm theoretical

grounds, since the theory considers only a limited set of institutions the

players can put in place to manage their relationship. That is, PRT focuses

only on the allocation of control, ignoring the possibility that individuals

may write contracts or put in place other types of mechanisms that could

potentially do better. In particular, it rules out revelation mechanisms that,

in principle, should induce first-best investment. We will briefly talk about

this after we talk about the model.

5.1 Property Rights Theory

Essentially the main result of TCE is the observation that when haggling

costs are high under non-integration, then integration is optimal. This result

is unsatisfying in at least two senses. First, TCE does not tell us what exactly

is the mechanism through which haggling costs are reduced under integration,

and second, it does not tell us what the associated costs of integration are,

and it therefore does not tell us when we would expect such costs to be high.

In principle, in environments in which haggling costs are high under non-



5.1. PROPERTY RIGHTS THEORY 193

integration, then the within-firm equivalent of haggling costs should also be

high.

Grossman and Hart (1986) and Hart and Moore (1990) set aside the

“make or buy”question and instead begin with the more fundamental ques-

tion, “What is a firm?” In some sense, nothing short of an answer to this

question will consistently provide an answer to the questions that TCE leaves

unanswered. Framing the question slightly differently, what do I get if I buy

a firm from someone else? The answer is typically that I become the owner

of the firm’s non-human assets.

Why, though, does it matter who owns non-human assets? If contracts

are complete, it does not matter. The parties to a transaction will, ex ante,

specify a detailed action plan. One such action plan will be optimal. That

action plan will be optimal regardless of who owns the assets that support

the transaction, and it will be feasible regardless of who owns the assets.

If contracts are incomplete, however, not all contingencies will be specified.

The key insight of the PRT is that ownership endows the asset’s owner with

the right to decide what to do with the assets in these contingencies. That is,

ownership confers residual control rights. When unprogrammed adapta-

tions become necessary, the party with residual control rights has power in

the relationship and is protected from expropriation by the other party. That

is, control over non-human assets leads to control over human assets, since

they provide leverage over the person who lacks the assets. Since she cannot

be expropriated, she therefore has incentives to make investments that are
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specific to the relationship.

Firm boundaries are tantamount to asset ownership, so detailing the costs

and benefits of different ownership arrangements provides a complete account

of the costs and benefits of different firm-boundary arrangements. Asset

ownership, and therefore firm boundaries, determine who possesses power in a

relationship, and power determines investment incentives. Under integration,

I have all the residual control rights over non-human assets and therefore

possess strong investment incentives. Non-integration splits apart residual

control rights, and therefore provides me with weaker investment incentives

and you with stronger investment incentives. If I own an asset, you do not.

Power is scarce and therefore should be allocated optimally.

Methodologically, PRTmakes significant advances over the preceding the-

ory. PRT’s conceptual exercise is to hold technology, preferences, informa-

tion, and the legal environment constant across prospective governance struc-

tures and ask, for a given transaction with given characteristics, whether the

transaction is best carried out within a firm or between firms. That is, prior

theories associated “make”with some vector (α1, α2, . . . ) of characteristics

and “buy”with some other vector (β1, β2, . . . ) of characteristics. “Make”

is preferred to “buy” if the vector (α1, α2, . . . ) is preferred to the vector

(β1, β2, . . . ). In contrast, PRT focuses on a single aspect: α1 versus β1.

Further differences may arise between “make”and “buy,”but to the extent

that they are also choice variables, they will arise optimally rather than by

assumption.
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The Model There is a risk-neutral upstream manager U , a risk-neutral

downstream manager D, and two assets a1 and a2. Managers U and D make

investments eU ∈ EU = R+ and eD ∈ ED = R+ at private cost cU (eU) and

cD (eD). These investments determine the value that each manager receives

if trade occurs, VU (eU , eD) and VD (eU , eD). There is a state of the world,

s ∈ S = SC ∪SNC , with SC ∩SNC = ∅ and Pr [s ∈ SNC ] = µ. In state s, the

identity of the ideal good to be traded is s– if the managers trade good s,

they receive VU (eU , eD) and VD (eU , eD). If the managers trade good s′ 6= s,

they both receive −∞. The managers choose an asset allocation, denoted

by g, from a set G = {UI,DI,NI,RNI}. Under g = UI, U owns both

assets. Under g = DI, D owns both assets. Under g = NI, U owns asset a1

and D owns asset a2. Under g = RNI, D owns asset a1, and U owns asset

a2. In addition to determining an asset allocation, manager U also offers an

incomplete contract w ∈ W = {w : SC → R} to D. The contract specifies

a transfer w (s) to be paid from D to U if they trade good s ∈ SC . If the

players want to trade a good s ∈ SNC , they do so in the following way. With

probability 1
2
, U makes a take-it-or-leave-it offer wU (s) toD, specifying trade

and a price. With probability 1
2
, D makes a take-it-or-leave-it offer wD (s)

to U specifying trade and a price. If trade does not occur, then manager

U receives payoff vU (eU , eD; g) and manager D receives payoff vD (eU , eD; g),

which depends on the asset allocation.

Timing There are five periods:
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1. U offers D an asset allocation g ∈ G and a contract w ∈ W. Both g

and w are commonly observed.

2. U and D simultaneously choose investment levels eU and eD at private

cost c (eU) and c (eD). These investment levels are commonly observed

by eU and eD.

3. The state of the world, s ∈ S is realized.

4. If s ∈ SC , D buys good s at price specified by w. If s ∈ SNC , U and D

engage in 50-50 take-it-or-leave-it bargaining.

5. Payoffs are realized.

Equilibrium A subgame-perfect equilibrium is an asset allocation g∗,

a contract w∗, investment strategies e∗U : G×W → R+ and e∗D : G×W → R+,

and a pair of offer rules w∗U : ED × EU × SNC → R and w∗D : ED × EU ×

SNC → R such that given e∗U (g∗, w∗) and e∗D (g∗, w∗), the managers optimally

make offers w∗U (e∗U , e
∗
D) and w∗D (e∗U , e

∗
D) in states s ∈ SNC ; given g∗ and w∗,

managers optimally choose e∗U (g∗, w∗) and e∗D (g∗, w∗); and U optimally offers

asset allocation g∗ and contract w∗.

Assumptions We will assume cU (eU) = 1
2
e2
U and cD (eD) = 1

2
e2
D. We will

also assume that µ = 1, so that the probability that an ex ante specifiable
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good is optimal to trade ex post is zero. Let

VU (eU , eD) = fUUeU + fUDeD

VD (eU , eD) = fDUeU + fDDeD

vU (eU , eD; g) = hgUUeU + hgUDeD

vD (eU , eD; g) = hgDUeU + hgDDeD,

and define FU = fUU + fDU and FD = fUD + fDD. Finally, outside options

are more sensitive to one’s own investments the more assets one owns:

hUIUU ≥ hNIUU ≥ hDIUU , h
UI
UU ≥ hRNIUU ≥ hDIUU

hDIDD ≥ hNIDD ≥ hUIDD, h
DI
DD ≥ hRNIDD ≥ hUIDD.

The Program We solve backwards. For all s ∈ SNC , with probabil-

ity 1
2
, U will offer price wU (eU , eD). D will accept this offer as long as

VD (eU , eD) − wU (eU , eD) ≥ vD (eU , eD; g). U’s offer will ensure that this

holds with equality (or else U could increase wU a bit and increase his profits

while still having his offer accepted), so that πU = VU+VD−vD and πD = vD.

Similarly, with probability 1
2
, D will offer price wD (eU , eD). U will accept

this offer as long as VU (eU , eD) + wD (eU , eD) ≥ vU (eU , eD; g). D’s offer will

ensure that this holds with equality (or else D could decrease wD a bit and

increase her profits while still having her offer accepted), so that πU = vU

and πD = VU + VD − vU .
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In period 2, manager U will conjecture eD and solve

max
êU

1

2
(VU (êU , eD) + VD (êU , eD)− vD (êU , eD; g)) +

1

2
vU (êU , eD; g)− c (êU)

and manager D will conjecture eU and solve

max
êD

1

2
vD (eU , êD; g) +

1

2
(VU (eU , êD) + VD (eU , êD)− vU (eU , êD; g))− c (êD) .

Given our functional form assumptions, these are well-behaved objective

functions, and in each one, there are no interactions between the managers’

investment levels, so each manager has a dominant strategy. We can therefore

solve for the associated equilibrium investment levels by taking first-order

conditions:

e∗gU =
1

2
FU +

1

2
(hgUU − h

g
DU)

e∗gD =
1

2
FD +

1

2
(hgDD − h

g
UD)

Each manager’s incentives to invest are derived from two sources: (1) the

marginal impact of investment on total surplus and (2) the marginal impact

of investment on the “threat-point differential.” The latter point is worth

expanding on. If U increases his investment, his outside option goes up by

hgUU , which increases the price that D will have to offer him when she makes

her take-it-or-leave-it offer, which increases U’s ex-post payoff if hgUU > 0.

Further, D’s outside option goes up by hgDU , which increases the price that
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U has to offer D when he makes his take-it-or-leave-it-offer, which decreases

U’s ex-post payoff if hgDU > 0.

Contrasting these equilibrium conditions with the conditions satisfied by

first-best effort levels is informative. First-best effort levels satisfy eFBU = FU

and eFBD = FD. In contrast, when parties can use renegotiation opportuni-

ties to their own advantage, (1) they have weaker incentives to make value-

increasing investments that are specific to the relationship, and (2) they may

have excessive incentives to make strategic investments in their own outside

options or in reducing the outside option of the other party.

Ex ante, players’equilibrium payoffs are:

Π∗gU =
1

2
(FUe

∗g
U + FDe

∗g
D ) +

1

2
((hgUU − h

g
DU) e∗gU + (hgUD − h

g
DD) e∗gD )− 1

2
(e∗gU )

2

Π∗gD =
1

2
(FUe

∗g
U + FDe

∗g
D ) +

1

2
((hgDU − h

g
UU) e∗gU + (hgDD − h

g
UD) e∗gD )− 1

2
(e∗gD )

2 .

If we let θ =
(
fUU , fUD, fDU , fDD, {hgUU , h

g
UD, h

g
DU , h

g
DD}g∈G

)
denote the pa-

rameters of the model, the Coasian objective for governance structure g

is:

W g (θ) = Π∗gU + Π∗gD = FUe
∗g
U + FDe

∗g
D −

1

2
(e∗gU )

2 − 1

2
(e∗gD )

2 .

The Coasian Problem that describes the optimal governance structure is

then:

W ∗ (θ) = max
g∈G

W g (θ) .

At this level of generality, the model is too rich to provide straight-
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forward insights. In order to make progress, we will introduce the follow-

ing definitions. If fij = hgij = 0 for i 6= j, we say that investments are

self-investments. If fii = hgii = 0, we say that investments are cross-

investments. When investments are self-investments, the following defini-

tions are useful. Assets A1 and A2 are independent if hUIUU = hNIUU = hRNIUU

and hDIDD = hNIDD = hRNIDD (i.e., if owning the second asset does not increase

one’s marginal incentives to invest beyond the incentives provided by owning

a single asset). Assets A1 and A2 are strictly complementary if either

hNIUU = hRNIUU = hDIUU or h
NI
DD = hRNIDD = hUIDD (i.e., if for one player, owning one

asset provides the same incentives to invest as owning no assets). U’s hu-

man capital is essential if hDIDD = hUIDD, and D’s human capital is essential

if hUIUU = hDIUU .

With these definitions in hand, we can get a sense for what features of

the model drive the optimal governance-structure choice. (Hart, 1995)

Theorem 18. If A1 and A2 are independent, then NI or RNI is optimal.

If A1 and A2 are strictly complementary, then DI or UI is optimal. If U’s

human capital is essential, UI is optimal. If D’s human capital is essential,

DI is optimal. If both U’s and D’s human capital is essential, all governance

structures are equally good.

These results are straightforward to prove. If A1 and A2 are independent,

then there is no additional benefit of allocating a second asset to a single

party. Dividing up the assets therefore strengthens one party’s investment

incentives without affecting the other’s. If A1 and A2 are strictly complemen-
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tary, then relative to integration, dividing up the assets necessarily weakens

one party’s investment incentives without increasing the other’s, so one form

of integration clearly dominates. If U’s human capital is essential, then D’s

investment incentives are independent of which assets he owns, so UI is at

least weakly optimal.

The more general results of this framework are that (a) allocating an

asset to an individual strengthens that party’s incentives to invest, since it

increases his bargaining position when unprogrammed adaptation is required,

(b) allocating an asset to one individual has an opportunity cost, since it

means that it cannot be allocated to the other party. Since we have assumed

that investment is always socially valuable, this implies that assets should

always be allocated to exactly one party (if joint ownership means that both

parties have a veto right). Further, allocating an asset to a particular party is

more desirable the more important that party’s investment is for joint welfare

and the more sensitive his/her investment is to asset ownership. Finally,

assets should be co-owned when there are complementarities between them.

While the actual results of the PRTmodel are sensible and intuitive, there

are many limitations of the analysis. First, as Holmström (1999) points out,

“The problem is that the theory, as presented, really is a theory about as-

set ownership by individuals rather than by firms, at least if one interprets

it literally. Assets are like bargaining chips in an entirely autocratic mar-

ket... Individual ownership of assets does not offer a theory of organizational

identities unless one associates individuals with firms.”Holmström concludes
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that, “... the boundary question is in my view fundamentally about the dis-

tribution of activities: What do firms do rather than what do they own?

Understanding asset configurations should not become an end in itself, but

rather a means toward understanding activity configurations.”That is, by

taking payoff functions VU and VD as exogenous, the theory is abstracting

from what Holmström views as the key issue of what a firm really is.

Second, after assets have been allocated and investments made, adap-

tation is made effi ciently. The managers always reach an ex post effi cient

arrangement in an effi cient manner, and all ineffi ciencies arise ex ante through

inadequate incentives to make relationship-specific investments. Williamson

(2000) argues that, “The most consequential difference between the TCE and

[PRT] setups is that the former holds that maladaptation in the contract ex-

ecution interval is the principal source of ineffi ciency, whereas [PRT] vaporize

ex post maladaptation by their assumptions of common knowledge and ex

post bargaining.”That is, Williamson believes that ex post ineffi ciencies are

the primary sources of ineffi ciencies that have to be managed by adjusting

firm boundaries, while the PRT model focuses solely on ex ante ineffi cien-

cies. The two approaches are obviously complementary, but there is an entire

dimension of the problem that is being left untouched under this approach.

Finally, in the Coasian Problem of the PRT model, the parties are un-

able to write formal contracts (in the above version of the model, this is true

only when µ = 1) and therefore the only instrument they have to motivate

relationship-specific investments is the allocation of assets. The implicit as-
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sumption underlying the focus on asset ownership is that the characteristics

defining what should be traded in which state of the world are diffi cult to

write into a formal contract in a way that a third-party enforcer can unam-

biguously enforce. State-contingent trade is therefore unverifiable, so con-

tracts written directly or indirectly on relationship-specific investments are

infeasible. However, PRT assumes that relationship-specific investments, and

therefore the value of different ex post trades, are commonly observable to U

and D. Further, U and D can correctly anticipate the payoff consequences

of different asset allocations and different levels of investment. Under the

assumptions that relationship-specific investments are commonly observable

and that players can foresee the payoff consequences of their actions, Maskin

and Tirole (1999) shows that the players should always be able to construct

a mechanism in which they truthfully reveal the payoffs they would receive

to a third-party enforcer. If the parties are able to write a contract on these

announcements, then they should indirectly be able to write a contract on

ex ante investments. This debate over the “foundations of incomplete con-

tracting”mostly played out over the mid-to-late 1990s, but it has attracted

some recent attention.

Exercise 22 (Adapted from Bolton and Dewtripont, Question 42).
Consider the following vertical integration problem: there are two risk-neutral
managers, each running an asset ai, where i = 1, 2. Both managers make ex
ante investments. Only ex post spot contracts regulating trade are feasible.
Ex post trade at price P results in the following payoffs: R (eD)− P for the
downstream manager D and P −C (eU) for the upstream manager U , where
the ei’s denote ex ante investment levels. Investing eU costs the upstream
manager eU , and investing eD costs the downstream manager eD.
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If the two managers do not trade with each other, their respective payoffs
are

r (eD,AD)− Pm and Pm − c (eU ,AU) ,

where Pm is a market price, and Ai denotes the collection of assets owned by
manager i. In this problem, Ai = ∅ under j-integration, Ai = {a1, a2} under
i-integration, and Ai = {ai} under nonintegration.
As in the Grossman-Hart-Moore setting, it is assumed that

R (eD)− C (eU) > r (eD,A1)− c (e2,A2)

for all (eD, eU) ∈ [0, ē]2 and all Ai,

R′ (eD) > r′ (eD, {a1, a2}) ≥ r′ (eD, {ai}) ≥ r′ (eD, ∅) ≥ 0,

and

−C ′ (eU) > −c′ (eU , {a1, a2}) ≥ −c′ (eU , {ai}) ≥ −c′ (eU , ∅) ≥ 0.

(a) Characterize the first-best allocation of assets and investment levels.

(b) Assuming that the managers split the ex post gains from trade in half,
identify conditions on r′ (eD,Ai) and c′ (eD,Ai) such that nonintegration is
optimal.

Exercise 23. Suppose a downstream buyer D and an upstream seller U
meet at date t = 1 and trade a widget at date t = 3. The value of the widget
to the buyer is eD, and the seller’s cost of production is 0. Here, eD represents
an (unverifiable) investment made by the buyer at date t = 2. The cost of
investment, which is borne entirely by the buyer, is ce2

D/2. No long-term
contracts can be written, and there is no discounting.

(a) What is the first-best investment level eFBD ?

(b) Suppose there is a single asset. If the buyer owns it, he has an outside
option of λeD, where λ ∈ (0, 1). If the seller owns it, she has an outside
option of v, which is independent of and smaller than eD. (Imagine that
the seller can sell the asset for v in the outside market, and the minimal
investment eD is bigger than v.) Assume that the buyer and seller divide the
ex post gains from trade 50 : 50 (Nash bargaining).
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Compute the buyer’s investment for the case where the buyer owns the asset
and for the case where the seller owns the asset.

(c) Now assume a different bargaining game at date t = 3. If both parties
have outside options that are valued below eD/2, the parties split the surplus,
giving eD/2 to each party. If one of the parties has an outside option that
gives r > eD/2, then the party gets r and the other party gets the remainder
eD − r. Supposing that λ > 1/2, compute the buyer’s investment when the
buyer owns the asset. Compare this with the outcome when the seller owns
the asset, distinguishing between the situations where v is high and v is low.
Note: for this part, assume that, under S-ownership, B’s outside option is
w̄ < −v, making it irrelevant.
Long Hint: this part is a bit complicated due to the non-standard bargaining
game, but it is illustrative of how the bargaining structure affects investment
incentives (and it makes Nash bargaining look very nice in comparison). This
hint is meant to guide you through the problem.

• Under seller ownership, the bargaining game is such that the buyer
chooses eD to

max
eD

{
min

{
eD − v,

eD
2

}
− c

2
e2
D

}
.

• Break it up into cases:

— If eD − v < eD/2, then what is the buyer’s optimal choice of eD?
Plug back in to check that the condition holds.

— If eD − v > eD/2, then what is the buyer’s optimal choice of eD?
Plug back in to check that the condition holds– what happens if
it does not?

• Write the buyer’s optimal choice of eD as a step function with argu-
ments v and c.

5.2 Foundations of Incomplete Contracts

Property rights have value when contracts are incomplete because they de-

termine who has residual rights of control, which in turn protects that party



206 CHAPTER 5. THE THEORY OF THE FIRM

(and its relationship-specific investments) from expropriation by its trading

partners. We will now discuss some of the commonly given reasons for why

contracts might be incomplete, and in particular, we will focus on whether it

makes sense to apply these reasons as justifications for incomplete contracts

in the Property Rights Theory.

Contracts may not be as complete as parties would like for one of three

reasons. First, parties might have private information. This is the typical

reason given for why, in our discussion of moral hazard models, contracts

could only depend on output or a misaligned performance measure rather

than directly on the agent’s effort. But in such models, contracts specified

in advance are likely to be just as incomplete as contracts that are filled

in at a later date. We typically do not refer to such models as models of

incomplete contracting models, and we reserve the term “incomplete” to

refer to a contract that simply does not lay out all the future contingencies.

One often-given justification for incomplete contracts (in this more precise

sense) is that it may just be costly to write a complicated state-contingent

decision rule into a contract that is enforceable by a third party. This is

surely important, and several authors have modeled this idea explicitly (Dye,

1985; Bajari and Tadelis, 2001; and Battigalli and Maggi, 2002) and drawn

out some of its implications. Nevertheless, I will focus instead on the final

reason.

The final reason often given is that parties may like to specify what to

do in each state of the world in advance, but some of these states of the
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world are either unforeseen or indescribable by these parties. As a result,

parties may leave the contract incomplete and “fill in the details”once more

information has arrived. Decisions may be ex ante non-contractible but ex

post contractible (and importantly for applied purposes, tractably derived

by the economist as the solution to an effi cient bargaining protocol), as in

the Property Rights Theory.

I will focus on the third justification, providing some of the arguments

given in a sequence of papers (Maskin and Tirole, 1999; Maskin and Moore,

1999; Maskin, 2002) about why this justification alone is insuffi cient if parties

can foresee the payoff consequences of their actions, which they must if they

are to accurately assess the payoff consequences of different allocations of

property rights. In particular, these papers point out that there exists auxil-

iary mechanisms that are capable of ensuring truthful revelation of mutually

known, payoff-relevant information as part of the unique subgame-perfect

equilibrium. Therefore, even though payoff-relevant information may not

be directly observable by a third-party enforcer, truthful revelation via the

mechanism allows for indirect verification, which implies that any outcome

attainable with ex ante describable states of the world is also attainable with

ex ante indescribable states of the world.

This result is troubling in its implications for the Property Rights The-

ory. Comparing the effectiveness of second-best institutional arrangements

(e.g., property-rights allocations) under incomplete contracts is moot when

a mechanism exists that is capable of achieving, in this setting, first best
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outcomes. Here, I will provide an example of the types of mechanisms that

have been proposed in the literature, and I will point out a couple of recent

criticisms of these mechanisms.

An Example of a Subgame-Perfect ImplementationMech-

anism

I will first sketch an elemental hold-up model, and then I will show that it

can be augmented with a subgame-perfect implementation mechanism that

induces first-best outcomes.

Hold-Up Problem There is a Buyer (B) and a Seller (S). S can choose

an effort level e ∈ {0, 1} at cost ce, which determines how much B values the

good that S produces. B values this good at v = vL + e (vH − vL). There

are no outside sellers who can produce this good, and there is no external

market on which the seller could sell his good if he produces it. Assume

(vH − vL) /2 < c < (vH − vL).

There are three periods:

1. S chooses e. e is commonly observed but unverifiable by a third party.

2. v is realized. v is commonly observed but unverifiable by a third party.

3. With probability 1/2, B makes a take-it-or-leave-it offer to S, and with

probability 1/2, S makes a take-it-or-leave-it offer to B.
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This game has a unique subgame-perfect equilibrium. At t = 3, if B

gets to make the offer, B asks for S to sell him the good at price p = 0.

If S gets to make the offer, S demands p = v for the good. From period

1’s perspective, the expected price that S will receive is E [p] = v/2, so S’s

effort-choice problem is

max
e∈{0,1}

1

2
vL +

1

2
e (vH − vL)− ce.

Since (vH − vL) /2 < c, S optimally chooses e∗ = 0. In this model, ex ante

effort incentives arise as a by-product of ex post bargaining, and as a result,

the trade price may be insuffi ciently sensitive to S’s effort choice to induce

him to choose e∗ = 1. This is the standard hold-up problem. Note that

the assumption that v is commonly observed is largely important, because it

simplifies the ex post bargaining problem.

Subgame-Perfect ImplementationMechanism While effort is not ver-

ifiable by a third-party court, public announcements can potentially be used

in legal proceedings. Thus, the two parties can in principle write a contract

that specifies trade as a function of announcements v̂ made by B. If B always

tells the truth, then his announcements can be used to set prices that induce

S to choose e = 1. One way of doing this is to implement a mechanism that

allows announcements to be challenged by S and to punish B any time he

is challenged. If S challenges only when B has told a lie, then the threat of

punishment will ensure truth telling.
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The crux of the implementation problem, then, is to give S the power

to challenge announcements, but to prevent “he said, she said” scenarios

wherein S challenges B’s announcements when he has in fact told the truth.

The key insight of SPI mechanisms is to combine S’s challenge with a test

that B will pass if and only if he in fact told the truth.

To see how these mechanisms work, and to see how they could in principle

solve the hold-up problem, let us suppose the players agree ex-ante to subject

themselves to the following multi-stage mechanism.

1. B and S write a contract in which trade occurs at price p (v̂). p (·) is

commonly observed and verifiable by a third party.

2. S chooses e. e is commonly observed but unverifiable by a third party.

3. v is realized. v is commonly observed but unverifiable by a third party.

4. B announces v̂ ∈ {vL, vH}. v̂ is commonly observed and verifiable by

a third party.

5. S can challenge B’s announcement or not. The challenge decision is

commonly observed and verifiable by a third party. If S does not

challenge the announcement, trade occurs at price p (v̂). Otherwise,

play proceeds to the next stage.

6. B pays a fine F to a third-party enforcer and is presented with a counter

offer in which he can purchase the good at price p̂ (v̂) = v̂ + ε. B’s
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decision to accept or reject the counter off is commonly observed and

verifiable by a third party.

7. If B accepts the counter offer, then S receives F from the third-party

enforcer. If B does not, then S also has to pay F to the third-party

enforcer.

The game induced by this mechanism seems slightly complicated, but we

can sketch out the game tree in a relatively straightforward manner.

Figure 22: Maskin and Tirole mechanism



212 CHAPTER 5. THE THEORY OF THE FIRM

If the fine F is large enough, the unique SPNE of this game involves the

following strategies. If B is challenged, he accepts the counter offer and buys

the good at the counter-offer price if v̂ < v and he rejects it if v̂ ≥ v. S

challenges B’s announcement if and only if v̂ < v, and B announces v̂ = v.

Therefore, B and S can, in the first stage, write a contract of the form

p (v̂) = v̂ + k, and as a result, S will choose e∗ = 1.

To fix terminology, the mechanism starting from stage 4, after v has

been realized, is a special case of the mechanisms introduced by Moore and

Repullo (1988), so I will refer to that mechanism as the Moore and Repullo

mechanism. The critique that messages arising from Moore and Repullo

mechanisms can be used as a verifiable input into a contract to solve the hold-

up problem (and indeed to implement a wide class of social choice functions)

is known as the Maskin and Tirole (1999) critique. The main message of this

criticism is that complete information about payoff-relevant variables and

common knowledge of rationality implies that verifiability is not an important

constraint to (uniquely) implement most social choice functions, including

those involving effi cient investments in the Property Rights Theory model.

The existence of such mechanisms is troubling for the Property Rights

Theory approach. However, the limited use of implementation mechanisms in

real-world environments with observable but non-verifiable information has

led several recent authors to question the Maskin and Tirole critique itself.

As Maskin himself asks: “To the extent that [existing institutions] do not

replicate the performance of [subgame-perfect implementation mechanisms],
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one must ask why the market for institutions has not stepped into the breach,

an important unresolved question.”(Maskin, 2002, p. 728)

Recent theoretical work by Aghion et al. (2012) demonstrates that the

truth-telling equilibria in Moore and Repullo mechanisms are fragile. By

perturbing the information structure slightly, they show that the Moore and

Repullo mechanism does not yield even approximately truthful announce-

ments for any setting in which multi-stage mechanisms are necessary to ob-

tain truth-telling as a unique equilibrium of an indirect mechanism. Aghion

et al. (2018) takes the Moore and Repullo mechanism into the laboratory

and show that indeed, when they perturb the information structure away

from common knowledge of payoff-relevant variables, subjects do not make

truthful announcements.

Relatedly, Fehr et al. (2017) takes an example of the entire Maskin and

Tirole critique into the lab and ensure that there is common knowledge of

payoff-relevant variables. They show that in the game described above, there

is a strong tendency for B’s to reject counter offers after they have been

challenged following small lies, S’s are reluctant to challenge small lies, B’s

tend to make announcements with v̂ < v, and S’s often choose low effort

levels.

These deviations from SPNE predictions are internally consistent: if in-

deed B’s reject counter offers after being challenged for telling a small lie,

then it makes sense for S to be reluctant to challenge small lies. And if S

often does not challenge small lies, then it makes sense for B to lie about the
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value of the good. And if B is not telling the truth about the value of the

good, then a contract that conditions on B’s announcement may not vary

suffi ciently with S’s effort choice to induce S to choose high effort.

The question then becomes: why do B’s reject counter offers after being

challenged for telling small lies if it is in their material interests to accept

such counter offers? One possible explanation, which is consistent with the

findings of many laboratory experiments, is that players have preferences

for negative reciprocity. In particular, after B has been challenged, B must

immediately pay a fine of F that he cannot recoup no matter what he does

going forward. He is then asked to either accept the counter offer, in which

case S is rewarded for appropriately challenging his announcement; or he can

reject the counter offer (at a small, but positive, personal cost), in which case

S is punished for inappropriately challenging his announcement.

The failure of subjects to play the unique SPNE of the mechanism sug-

gests that at least one of the assumptions of Maskin and Tirole’s critique

is not satisfied in the lab. Since Fehr et al. (2017) is able to design the

experiment to ensure common knowledge of payoff-relevant information, it

must be the case that players lack common knowledge of preferences and

rationality, which is also an important set of implicit assumptions that are

part of Maskin and Tirole’s critique. Indeed, Fehr et al. (2017) provides

suggestive evidence that preferences for reciprocity are responsible for their

finding that B’s often reject counter offers.

The findings of Aghion et al. (2018) and Fehr et al. (2017) do not neces-
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sarily imply that it is impossible to find mechanisms in which in the unique

equilibrium of the mechanisms, the hold-up problem can be effectively solved.

What they do suggest, however, is that if subgame-perfect implementation

mechanisms are to be more than a theoretical curiosity, they must incor-

porate relevant details of the environment in which they might be used. If

people have preferences for reciprocity, then the mechanism should account

for this. If people are concerned about whether their trading partner is ratio-

nal, then the mechanism should account for this. If people are concerned that

uncertainty about what their trading partner is going to do means that the

mechanism imposes undue risk on them, then the mechanism should account

for this.
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Chapter 6

Financial Contracting

The last topic that we will cover in this class applies the tools we have devel-

oped over the last couple weeks in order to think about corporate governance,

which Shleifer and Vishny (1997) define as “ways in which the suppliers of

finance to corporations assure themselves of getting a return on their in-

vestment.”We will think about a setting in which a capital-constrained En-

trepreneur needs capital from capital-rich potential Investor to undertake a

project that yields a positive return. We will look at the different instruments

the Entrepreneur has to credibly commit herself to return funds to such an

Investor in order to attract financing from them.

In a world of complete contracts and complete financial markets, how

a project is financed– whether through debt or equity or some other, more

complicated arrangement– is irrelevant for the total value of the project,

and every positive net-present value project will be funded. The irrelevance

217
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result is known as the Modigliani-Miller theorem (Modigliani and Miller,

1958) and it is not so different from versions of the Coase theorem that we

have mentioned in passing a few times. (Very) roughly speaking, we can

think of the expected discounted revenues from the project as some value

V . If undertaking the project requires K dollars worth of capital, then the

Investor has to get at least K dollars back. One way he could get K dollars

back is if he gets a share of the future revenues for which the expected present

discounted value is K. Or the Entrepreneur could write a debt contract for

which the expected present discounted value of payments is K. Either way,

the Entrepreneur will receive V −K and will undertake the project if V > K.

The Modigliani-Miller theorem served as a benchmark and spawned a lit-

erature providing explanations for when and why debt has advantages over

equity based on two classes of explanations: differences in tax treatment and

incentive problems. Our focus will be on the latter and in particular on how

different arrangements lead the Entrepreneur to make different decisions that

in turn affect the value of the project. Without appropriate contractual safe-

guards, the Investor might worry that the Entrepreneur will make decisions

that are privately beneficial to the Entrepreneur but harmful to the Investor.

The moral hazard problems that arise in these settings may include insuf-

ficient effort on the part of the Entrepreneur, although this may not take

the form of the Entrepreneur working too few hours, but rather that she

might avoid unpleasant tasks like firing people or a taking a tough stance in

negotiations with suppliers. The problem may take the form of unnecessary
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or extravagant investments aimed at growing the Entrepreneur’s “empire”at

the expense of the Investor’s returns. Or it may take the form of self dealing

and excessive perk consumption: buying costly private jets, expensive art for

the corporate headquarters, or hiring friends and family members.

When actions like the ones described above are not contractible, credit

may be rationed in the sense that the Entrepreneur may be unable to “obtain

the loan [she] wants even though [she] is willing to pay the interest that the

lenders are asking, and perhaps even a higher interest rate.” (Tirole, 2005,

p. 113) Positive net-present value projects may therefore not be undertaken.

We will begin with a workhorse model that builds off our analysis of limited

liability constraints to provide a reason why credit may be rationed. As

in our earlier discussion of such models, the Entrepreneur must be given a

rent in order to provide her with incentives to take the right action. The

total returns from the Entrepreneur’s project net of the incentive rents the

Entrepreneur must receive is what we will refer to as her pledgeable income.

Even if the overall income from the project would be high enough to cover

the Investor’s capital costs, if the Entrepreneur’s pledgeable income is not,

she will be unable to attract funding from the Investor.

The form of the optimal contract in this model can, depending on how

you look at it, be interpreted either as a debt contract or as a contract

involving outside equity. But it lacks the richness of form that real financing

arrangements take. In particular, when we think of equity, we typically

think of a contract in which an outside Investor owns some share of a firm’s



220 CHAPTER 6. FINANCIAL CONTRACTING

profits and is also able to exercise some limited control over some of the

firm’s decisions. When we think of debt, we think of contracts in which

the Investor is guaranteed some payments, and if the Entrepreneur does not

repay the Investor, the Investor gains control over the associated assets and

can then make decisions about how they are used. The model above has

no notion of control rights, so it is unable to provide a compelling argument

for why such contracts might move around control rights in a contingent

way. We will therefore take an incomplete contracts view to think about

how contingent control rights might be used in an optimal arrangement.

6.1 Pledgeable Income and Credit Rationing

There is a risk-neutral Entrepreneur (E) and a risk-neutral Investor (I). The

Investor has capital but no project, and the Entrepreneur has a project but

no capital. In order to pursue the project, the Entrepreneur needs K units

of capital. Once the project has been pursued, the project yields revenues

py, where y ∈ {0, 1} is the project’s output, and p is the market price for

that output. The Entrepreneur chooses an action e ∈ [0, 1] that determines

the probability of a successful project, Pr [y = 1| e] = e, as well as a private

benefit b (e) that accrues to the Entrepreneur, where b is strictly decreasing

and concave in e and satisfies b′ (0) = 0 and lime→1 b
′ (e) = −∞.

The Entrepreneur can write a contractw ∈ W = {w : {0, 1} → R, 0 ≤ w (y) ≤ py}

that pays the Investor w (y) if output is y and therefore shares the projects
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revenues with the Investor. If the Investor declines the contract, he keeps

the K units of capital, and the Entrepreneur receives a payoff of 0. If the

Investor accepts the contract, the Entrepreneur’s and Investor’s preferences

are

UE (w, e) = E [py − w (y)| e] + b (e)

UI (w, e) = E [w (y)| e] .

There are strong parallels between this model and the limited-liability Principal-

Agent model we studied earlier. We can think of the Entrepreneur as the

Agent and the Investor as the Principal. There is one substantive difference

and two cosmetic differences. The substantive difference is that the Entre-

preneur is the one writing the contract, and while the contract must still

satisfy the Entrepreneur’s incentive-compatibility constraint, the individual

rationality constraint it has to satisfy is the Investor’s. The two cosmetic

differences are: (1) the payments in the contract flow from the Entrepreneur

to the Investor, and (2) instead of higher values of e costing the Entrepreneur

c (e), they reduce her private benefits b (e).

Timing The timing of the game is as follows.

1. E offers I a contract w (y), which is commonly observed.

2. I accepts the contract (d = 1) or rejects it (d = 0) and keeps K, and

the game ends. This decision is commonly observed.
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3. If I accepts the contract, E chooses action e and receives private benefit

b (e). e is only observed by E.

4. Output y ∈ {0, 1} is drawn, with Pr [y = 1| e] = e. y is commonly

observed.

5. E pays I an amount w (y). This payment is commonly observed.

Equilibrium The solution concept is the same as always. A pure-strategy

subgame-perfect equilibrium is a contract w∗ ∈ W, an acceptance deci-

sion d∗ : W → {0, 1}, an action choice e∗ : W × {0, 1} → [0, 1] such that

given contract w∗, the Investor optimally chooses d∗, and the Entrepreneur

optimally chooses e∗, and given d∗, the Investor optimally offers contract w∗.

We will say that the optimal contract induces action e∗.

The Program The Entrepreneur offers a contract w ∈ W, which specifies

a payment w (0) = 0 and 0 ≤ w (1) ≤ p and proposes an action e to solve

max
w(1),e

(p− w (1)) e+ b (e)

subject to the incentive-compatibility constraint

e ∈ argmax
ê∈[0,1]

(p− w (1)) ê+ b (ê) ,
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the Investor’s individual-rationality (or break-even) constraint

w (1) e ≥ K.

Analysis We can decompose the problem into two steps. First, we can

ask: for a given action e, how much rents must the Entrepreneur receive in

order to choose action e, and therefore, what is the maximum amount that

the Investor can be promised if the Entrepreneur chooses e? Second, we can

ask: given that the Investor must receive K, what action e∗ maximizes the

Entrepreneur’s expected payoff?

The following figure illustrates the problem using a graph similar to the

one we looked at when we thought about limited liability constraints. The

horizontal axis is the Entrepreneur’s action e, and the segment pe is the

expected revenues as a function of e. The dashed line (p− we1) e represents,

for a contract that pays the Investor w (1) = we1 if y = 1, the Entrepreneur’s

expected monetary payoff, and −b (e) represents the Entrepreneur’s cost of

choosing different actions. As the figure illustrates, the contract that gets

the Entrepreneur to choose action e1 can pay the Investor at most we1e1 in

expectation.
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Figure 23: Entrepreneur Incentive Rents

The next figure illustrates, for different actions e, the rents (p− we) e +

b (e) that the Entrepreneur must receive for e to be incentive-compatible.

Note that because we ≥ 0, there is no incentive-compatible contract that

gets the Entrepreneur to choose any action e > eFB. The vertical distance

between the expected revenue pe curve and the Entrepreneur rents curve is

the Investor’s expected payoff under the contract that gets the Entrepreneur

to choose action e. For the Investor to be willing to sign such a contract,

that vertical distance must be at least K, which is the amount of capital the

Entrepreneur needs.
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Figure 24: Equilibrium and Pledgeable Income

Two results emerge from this analysis. First, if K > 0, then in order to

secure funding K, the Entrepreneur must share some of the project’s earn-

ings with the Investor, which means that the Entrepreneur does not receive

all the returns from her actions and therefore will choose an action e∗ < eFB.

Second, the value K̄ represents the maximum expected payments the Entre-

preneur can promise the Investor in any incentive-compatible contract. This

value is referred to as the Entrepreneur’s pledgeable income. If the project

requires capital K > K̄, then there is no contract the Entrepreneur can offer

the Investor that the Investor will be willing to sign, even though the Entre-

preneur would invest in the project if she had her own capital. When this is

the case, we say that there is credit rationing.

As a final point about this model, with binary output, the optimal con-
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tract can be interpreted as either a debt contract or an equity contract. Un-

der the debt contract interpretation, the Entrepreneur must reimburse we∗

or else go bankrupt, and if the project is successful, she keeps the residual

p − we∗. Under the equity contract interpretation, the Entrepreneur holds

a share (p− we∗) /p of the project’s equity, and the Investor holds a share

we∗/p of the project’s equity. That the optimal contract can be interpreted

as either a debt contract or an equity contract highlights that if we want to

actually understand the role of debt or equity contracts, we will need a richer

model.

6.2 Control Rights and Financial Contract-

ing

The previous model cannot explain the fact that equity has voting power

while debt does not, except following default. Aghion and Bolton (1992)

takes an incomplete contracting approach to thinking about financial con-

tracting and brings control rights front and center. We will look at a simple

version of the model that provides an explanation for debt contracts fea-

turing contingent control. In this model, control rights matter because the

parties disagree about important decisions that are ex ante noncontractible.

The parties will renegotiate over these decisions ex post, but because the

Entrepreneur is wealth-constrained, renegotiation may not fully resolve the

disagreement. Investor control will therefore lead to a smaller pie ex post,
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but the Investor will receive a larger share of that pie. As a result, even

though Investor control destroys value, it may be the only way to get the

Investor to be willing to invest to begin with.

The Model As in the previous model, there is a risk-neutral Entrepreneur

(E) and a risk-neutral investor (I). The Investor has capital but no project,

the Entrepreneur has a project but no capital, and the project costs K. The

parties enter into an agreement, which specifies who will possess the right

to make a decision d ∈ R+ once that decision needs to be made. After

the state θ ∈ R+, which is drawn according to density f (θ), is realized, the

decision d is made. This decision determines verifiable profits y (d), which we

will assume accrue to the Investor.1 It also determines nonverifiable private

benefits b (d) that accrue to the Entrepreneur.

The parties can contract upon a rule that specifies who will get to make

the decision d in which state of the world: let g : R+ → {E, I} denote the

governance structure, where g (θ) ∈ {E, I} says who gets to make the

decision d in state θ. The decision d is itself not ex ante contractible, but

it is ex post contractible, so that the parties can negotiate over it ex post.

In particular, we will assume that the Entrepreneur has all the bargaining

power, so that she will propose a take-it-or-leave-it offer specifying a decision

d as well as a transfer w ≥ 0 from the Investor to the Entrepreneur. Note

1We could enrich the model to allow the parties to contract ex ante on the split of the
verifiable profits that each party receives. Giving all the verifiable profits to the Investor
maximizes the effi ciency of the project because it maximizes the pledgeable income that
he can receive without having to distort ex post decision making.
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that the transfer has to be nonnegative, because the Entrepreneur is cash-

constrained.

Timing

1. E proposes a governance structure g. g is commonly observed.

2. I chooses whether or not to go ahead with the investment. This decision

is commonly observed.

3. The state θ is realized and is commonly observed.

4. E makes a take-it-or-leave-it offer of (d, w) to I, who either accepts or

rejects it.

5. If I rejects the offer, party g (θ) chooses d.

Analysis As usual, let us start by describing the first-best decision that

maximizes the sum of the profits and the private benefits:

dFB ∈ argmax
d∈R+

y (d) + b (d) .

Assume y and b are strictly concave and single-peaked, so that there is a

unique first-best decision. Moreover, assume y (d) is maximized at some

decision dI , and b (d) is maximized at some other decision dE < dI . These

assumptions imply that dE < dFB < dI . Now, let us see what happens

depending on who has control.
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We will first look at what happens under Entrepreneur control. This

corresponds to g (θ) = E for all θ. In this case, if the Investor rejects the

Entrepreneur’s offer in stage 4, the Entrepreneur will choose d to maximize

her private benefit and will therefore choose dE. Recall that the Entrepreneur

does not care about the profits of the project because we have assumed that

the profits accrue directly to the Investor. The decision dE is therefore the

Investor’s outside option in stage 4. It will not be the decision that is actually

made, however, because the Entrepreneur can offer to make a higher decision

in exchange for some money. In particular, she will offer
(
dFB, w

)
, where w

is chosen to extract all the ex post surplus from the Investor:

y
(
dFB

)
− w = y

(
dE
)
or w = y

(
dFB

)
− y

(
dE
)
> 0.

Under Entrepreneur control, the Entrepreneur’s payoffwill therefore be b
(
dFB

)
+

y
(
dFB

)
− y

(
dE
)
> b

(
dE
)
, and the Investor’s payoff will be y

(
dE
)
, which

is effectively the Entrepreneur’s pledgeable income. If y
(
dE
)
> K, then the

Investor will make the investment, and the first-best decision will be made,

but if y
(
dE
)
< K, this arrangement will not get the Investor to make the

investment.

Now let us look at what happens under Investor control, which corre-

sponds to g (θ) = I for all θ. In this case, if the Investor rejects the Entre-

preneur’s offer at stage 4, the Investor will choose d to maximize profits and

will therefore choose dI . The decision dI is therefore the Investor’s outside
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option in stage 4. At stage 4, the Entrepreneur would like to get the Inventor

to make a decision d < dI , but in order to get him to do so, she would have

to choose w < 0, which is not feasible. As a result, dI will in fact be the

decision that is made. Under Investor control, the Entrepreneur’s payoffwill

be b
(
dI
)
, and the Investor’s payoff will be y

(
dI
)
, which again is effectively

the Entrepreneur’s pledgeable income. Conditional on the investment being

made, total surplus under Investor control is lower than under Entrepreneur

control, but the benefit of Investor control is that it ensures the Investor a

payoff of y
(
dI
)
, which may exceed K even if y

(
dE
)
does not.

As in the Property Rights Theory, decision rights determine parties’out-

side options in renegotiations, which determines their incentives to make

investments that are specific to the relationship. In contrast to the PRT,

however, ex post renegotiation does not always lead to a surplus-maximizing

outcome because the Entrepreneur is wealth-constrained. As such, in order

to provide the Investor with incentives to make the relationship-specific in-

vestment of investing in the project, we may have to give the Investor ex

post control, even though he will use it in a way that destroys total surplus.

If y
(
dI
)
> K > y

(
dE
)
, then Investor control is better than Entrepreneur

control because it ensures the Investor will invest, but in some sense, it

involves throwing away more surplus than necessary. In particular, consider

a governance structure g (·) under which the Entrepreneur has control with

probability π (i.e., Pr [g (θ) = E] = π), and the Investor has control with

probability 1− π (i.e., Pr [g (θ) = I] = 1− π). The Entrepreneur can get the
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Investor to invest if she chooses π to satisfy

πy
(
dE
)

+ (1− π) y
(
dI
)

= K,

which will be optimal.

Now, stochastic control in this sense is a bit tricky to interpret, but with

a slight elaboration of the model, it has a more natural interpretation. In

particular, suppose that the state of the world, θ, determines how sensitive

the project’s profits are to the decision, so that

y (d, θ) = α (θ) y (d) + β (θ) ,

where α (θ) > 0, and α′ (θ) < 0. In this case, the optimal governance struc-

ture would involve a cutoff θ∗ so that g (θ) = E if θ > θ∗ and g (θ) = I if

θ ≤ θ∗, where this cutoff is chosen so that the Investor’s expected payoffs

would be K.

If α′ (θ) y (d) + β′ (θ) > 0 for all d, then high-θ states correspond to

high-profit states, and this optimal arrangement looks somewhat like a debt

contract that gives control to the creditor in bad states and gives control

to the Entrepreneur in the good states. In this sense, the model captures

an important aspect of debt contracts, namely that they involve contingent

allocations of control. This theory of debt contracting is not entirely com-

pelling, though, because the most basic feature of debt contracts is that the

shift in control to the Investor occurs only if the Entrepreneur does not make
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a repayment. The last model we will look at will have this feature.

6.3 Cash Diversion and Liquidation

We will look at one final model that involves an important decision that is

often specified in debt contracts: whether to liquidate an ongoing project.

We will show that when the firm’s cash flows are noncontractible, giving the

Investor the rights to the proceeds from a liquidation event can protect him

from short-run expropriation from an Entrepreneur who may want to direct

the project’s cash flows toward her own interests. The model is related to

Hart and Moore’s (1998) model.

The Model As before, there is a risk-neutral Entrepreneur (E) and a

risk-neutral investor (I). The Investor has capital but no project, the En-

trepreneur has a project but no capital, and the project costs K. If the

project is funded, it yields income over two periods, which accrue to the En-

trepreneur. In the first period, it produces output y1 ∈ Y1 ≡ {0, 1}, where

Pr [y1 = 1] = q, and that output generates a cash flow of p1y1. After y1 is

realized, the Entrepreneur can make a cash payment 0 ≤ ŵ1 ≤ p1y1 to the

Investor. The project can then be terminated, yielding a liquidation value of

L, where 0 ≤ L ≤ K, which accrues to the Investor. Denote the probability

the project is continued by r ∈ [0, 1]. If the project is continued, in the

second period, it produces output y2 = 1, and that output generates cash
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flow of p2. At this point, the Entrepreneur can again make a cash payment

0 ≤ ŵ2 ≤ p2 to the Investor.

The cash flows are noncontractible, so the parties are unable to write a

contract that specifies output-contingent repayments from the Entrepreneur

to the Investor, but they can write a contract that specifies probabilities

r : R+ → [0, 1] that determine the probability r (ŵ1) the project is continued

if the Entrepreneur pays the Investor ŵ1. The contracting space is therefore

W = {r : R+ → [0, 1]}. The players’payoffs, if the Investor invests K in the

project are:

uE (`, y1, ŵ1, ŵ2) = p1y1 − ŵ1 + r (ŵ1) (p2 − ŵ2)

uI (`, y1, ŵ1, ŵ2) = ŵ1 + (1− r (ŵ1))L+ r (ŵ1) ŵ2.

Throughout, we will assume that p2 > L, so that liquidation strictly reduces

total surplus.

Timing The timing of the game is as follows.

1. E offers I a contract r (ŵ1), which is commonly observed.

2. I accepts the contract (d = 1) or rejects it (d = 0) and keeps K, and

the game ends. This decision is commonly observed.

3. If I accepts the contract, output y1 ∈ {0, 1} is realized. y1 is commonly

observed.
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4. E makes a payment 0 ≤ ŵ1 ≤ p1y1 to I. ŵ1 is commonly observed.

5. The project is liquidated with probability 1 − r (ŵ1). The liquidation

event is commonly observed.

6. If the project has not been liquidated, output y2 = 1 is realized. y2 is

commonly observed.

7. E makes a payment 0 ≤ ŵ2 ≤ y2 to I. ŵ2 is commonly observed.

Equilibrium The solution concept is the same as always. A pure-strategy

subgame-perfect equilibrium is a continuation function r∗ ∈ W, an

acceptance decision d∗ : W → {0, 1}, a first-period payment rule w∗1 :

W × {0, 1} → R+, and a second-period payment rule w∗2 : W × {0, 1} ×

{0, 1} × R+ → R+ such that given continuation function r∗ and payment

rules w∗1 and w
∗
2, the Investor optimally chooses d

∗, and given d∗, the Entre-

preneur optimally offers continuation function r∗ and chooses payment rules

w∗1 and w
∗
2.

The Program Models such as this one, in which the Entrepreneur’s re-

payment decisions are not contractible, are referred to as cash diversion

models. The Entrepreneur’s problem will be to write a contract that spec-

ifies continuation probabilities and repayment amounts so that given those

repayment-contingent continuation probabilities, the Entrepreneur will ac-

tually follow through with those repayments, and the Investor will at least
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break even. In this setting, it is clear that in any subgame-perfect equilib-

rium, the Entrepreneur will not make any positive payment ŵ2 > 0, since

she receives nothing in return for doing so. Moreover, it will be without

loss of generality for the Entrepreneur to specify a single repayment amount

0 < w1 ≤ p1 to be repaid if y1 = 1, and a pair of probabilities r0 and r1,

where r0 is the probability the project is continued (and not liquidated) if

ŵ1 6= w1, and r1 is the probability the project is continued if ŵ1 = w1. The

Entrepreneur’s problem is therefore

max
r0,r1,w1≤p1

q (p1 − w1 + r1p2) + (1− q) r0p2

subject to the Entrepreneur’s incentive-compatibility constraint

p1 − w1 + r1p2 ≥ p1 + r0p2

and the Investor’s break-even constraint

q (w1 + (1− r1)L) + (1− q) (1− r0)L ≥ K.

It will be useful to rewrite the incentive-compatibility constraint as

(r1 − r0) p2 ≥ w1,

which says that in order for repayment w1 to be incentive-compatible, it
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has to be the case that by making the payment w1 (instead of paying zero),

the probability r1 that the project is continued (and hence the Entrepre-

neur receives p2) if she makes the payment is suffi ciently high relative to the

probability r0 the project is continued when she does not make the payment.

Analysis In order to avoid multiple cases, we will assume that

p1 >
p2

qp2 + (1− p)LK,

which will ensure that in the optimal contract, the Entrepreneur’s first-period

payment will satisfy w∗1 < p1.

The Entrepreneur’s problem is just a constrained maximization problem

with a linear objective function and linear constraints, so it can in principle

be easily solved using standard linear-programming techniques. We will in-

stead solve the problem by thinking about a few perturbations that, at the

optimum, must not be profitable. Taking this approach allows us to get some

intuition for why the optimal contract will take the form it does.

First, we will observe that the Investor’s break-even constraint must be

binding in any optimal contract. To see why, notice that if the constraint

were not binding, we could reduce the payment amount w1 by a little bit and

still maintain the break-even constraint. Reducing w1 makes the incentive-

compatibility constraint easier to satisfy, and it increases the Entrepreneur’s

objective function. This argument tells us that the Entrepreneur will receive

all of the surplus the project generates, so her problem is to maximize that
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surplus.

The second observation is that in any optimal contract, the project is

never liquidated following repayment. To see why, suppose r0 < r1 < 1

so that the project is continued with probability less than one following

repayment. Consider an alternative contract in which r1 is increased to r1+ε,

for ε > 0 small. Since making this change alone will violate the Investor’s

breakeven constraint, let us also increase w1 by εL so that

w1 + εL+ (1− r1 − ε)L = w1 + (1− r1)L.

Under this perturbation, the Investor’s breakeven constraint is still satisfied,

and the Entrepreneur’s incentive-compatibility constraint is satisfied as long

as

(r1 + ε− r0) p2 ≥ w1 + εL,

which is true because (r1 − r0) p1 ≥ w1 (or else the original contract did not

satisfy IC) and ε (p2 − L) > 0 since continuing the project is optimal (i.e.,

p2 > L). If the original contract satisfied IC and IR, then so does this one,

but this one also increases the Entrepreneur’s objective by q (−εL+ εp2),

which again is strictly positive, since p2 > L. This perturbation shows that

increasing the probability of continuing the project following repayment is

good for two reasons: it reduces the probability of ineffi cient liquidation, and

it increases the Entrepreneur’s incentives to repay.

Finally, the last step will be to show that the incentive constraint must
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bind at the optimum. It clearly must be the case that r0 < 1, or else the

incentive constraint would be violated. Again, suppose that the incentive

constraint was not binding. Then consider a perturbation in which we raise

r0 to r0 + ε, and to maintain the breakeven constraint, we increase w1 to

w1 + εL (1− q) /q. If the incentive constraint was not binding, then it will

still be satisfied if r0 is raised by a little bit. Lastly, this perturbation increases

the Entrepreneur’s payoff by

−q
[
εL (1− q)

q

]
+ (1− q) εp2 = (1− q) (p2 − L) ε > 0.

In other words, if the incentive constraint is not binding, it is more effi cient

for the Entrepreneur to pay the Investor with cash than with an increased

probability of liquidation, and since the Entrepreneur captures all the surplus,

she will choose to pay in this more effi cient way as much as she can.

To summarize, these three perturbations show that any optimal contract

in this setting has to satisfy

(1− r∗0) p2 = w∗1

and

qw∗1 + (1− q) (1− r∗0)L = K.

This is just two equations in two unknowns, so we can solve for the probability
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that the project is liquidated following nonpayment:

1− r∗0 =
K

qp2 + (1− q)L > 0.

There is a complementarity between the repayment amount and the liq-

uidation probability: if the project requires a lot of capital (i.e., K is large),

then the Investor needs to be assured a bigger payment, and in order to assure

that bigger payment, the project has to be liquidated with higher probability

following nonpayment. If the project has high second-period cash flows (i.e.,

p2 is high), then the Entrepreneur loses a lot following nonpayment, so the

project does not need to be liquidated with as high of a probability to en-

sure repayment. Finally, if the liquidation value of the project is high, then

the Investor earns more upon liquidation, so he can break even at a lower

liquidation probability.

Under the first-best outcome, the project will never be liquidated, and

the project will be undertaken as long as the expected cash flows exceed

the required capital, or qp1 + p2 > K. The model features two sources of

ineffi ciencies relative to the first-best outcome. First, in order to assure re-

payment, the Entrepreneur commits to a contract that with some probability

ineffi ciently liquidates the project.

Second, there is credit rationing: the maximum amount the Entrepreneur

can promise the Investor is p2 in the event that output is high in the first
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period and L in the event that it is not, so if

qp2 + (1− q)L < K < qp1 + p2,

the project will be one that should be undertaken but, in equilibrium, will not

be undertaken. The liquidation value of the project is related to the collateral

value of the assets underlying the project, and there is a literature beginning

with Kiyotaki and Moore (1997) that endogenizes the market value of those

assets and shows there can be important general equilibrium spillovers across

firms.
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