ABSTRACT

Plazomicin (PLZ) is a next generation aminoglycoside (AG) that overcomes common AG resistance mechanisms and retains activity against extended spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Enterobacteriaceae (CRE). Phase 3 studies in complicated urinary tract infections and in serious infections due to CRE have been completed. To better understand the tissue distribution of PLZ, quantitative whole-body autoradiography (QWBA) was conducted in male Sprague-Dawley (SD) and Long-Evans (LE) rats administered [14C]-PLZ. Six SD and LE rats were administered a single 30-minute IV infusion dose of 80 mg/kg [14C]-PLZ (100 μCi/kg). One animal was euthanized per time point (up to 100 and 504 h post-dose for SD and LC rats, respectively) for blood collection and carcass analysis. At each time point, one animal was euthanized by CO2 inhalation (5% CO2). Radio-HPLC and LC/MS/MS analyses of plasma and urine samples from SD rats showed that plazomicin parent compound represented the entirety of the radioactivity.

RESULTS

- The [14C]-PLZ radioactivity was widely distributed to all SD tissues analyzed. The whole body autoradiogram (WBA) indicated that PLZ substrate is not partitioning into the red blood cells. Tissue plasma AUC0-t: plasma AUC0-t ratios for radioactivity in kidney, large intestine (wall), liver, spleen, bone marrow (femur), and adrenal gland. Radio-HPLC and LC-MS/MS analyses of plasma and urine samples confirmed that the radioactivity derived from [14C]-PLZ exhibited minimal to no affinity to melanin.

- Following a single IV administration of [14C]-PLZ rats, radioactivity was widely distributed to all SD tissues analyzed. As expected for AG drugs, [14C]-PLZ radioactivity was highest in the kidney at all time points analyzed, with 10%, 1.8%, and 0.6% of the administered dose in the kidney at 0.083, 24, and 168 h post-dose, respectively.

CONCLUSIONS

- The radiotherapy derived from intravenously administered [14C]-plazomicin exhibited minimal to no affinity to melanin, suggesting plazomicin is not likely to be retained in pigmented tissues.

- The potential contribution of sustained plazomicin exposure in the kidneys to the high and sustained microbiological eradication rates observed in the Phase 3 cUTI study warrants further investigation.

REFERENCES

ACKNOWLEDGMENTS

Thank you to Charles River Laboratories for medical writing support and sponsor preparation support. This work was supported by Achaogen (Inglewood, CA) under the terms of a master services agreement with Charles River Laboratories under Study Director Justin Godsey.

Tissue Distribution of [14C]-Plazomicin in Rats

Taylor Choi1, Julie Seroogy2

Achaogen, Inc., South San Francisco, CA

INTRODUCTION

- Plazomicin (PLZ) is a next-generation aminoglycoside (AG) that overcomes common AG resistance mechanisms and retains activity against extended spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Enterobacteriaceae (CRE).

- Plazomicin is under development for the treatment of complicated urinary tract infections (cUTIs) and other serious bacterial infections that affect critically ill patients, especially those due to multidrug-resistant (MDR) CRE.

- The objective of this study was to determine the tissue distribution of radioactivity after a single intravenous (IV) administration of [14C]-plazomicin.

METHODS

- [14C]-Plazomicin was administered to instrumented Sprague-Dawley (SD) and noninstrumented Long-Evans (LE) rats by 30-minute IV infusion at a dose of 80 mg/kg (100 μCi/kg). Tissue distribution was determined by quantitative whole-body autoradiography at the following time points: SD rats—0.083, 0.5, 1, 24, and 168 h post IV infusion (EOIV); LE rats—0.083, 0.5, 1, 24, 168, 336, and 504 h post-EOIV. At each time point, one animal was euthanized by CO2 inhalation (5% CO2). Radio-HPLC and LC/MS/MS analyses of plasma and urine samples confirmed that the radioactivity derived from [14C]-PLZ exhibited minimal to no affinity to melanin.

- Following a single IV administration of [14C]-PLZ rats, radioactivity was widely distributed to all LE tissues analyzed. As expected for AG drugs, [14C]-PLZ radioactivity was highest in the kidney at all time points analyzed, with 6%, 1.8%, and 0.6% of the administered dose in the kidney at 0.083, 24, and 168 h post-dose, respectively.

RESULTS

- The [14C]-plazomicin radioactivity was widely distributed to all tissues analyzed. Tissue plasma AUC0-t: plasma AUC0-t ratios for radioactivity in kidney, large intestine (wall), liver, spleen, bone marrow (femur), and adrenal gland. Radio-HPLC and LC-MS/MS analyses of plasma and urine samples confirmed that the radioactivity derived from [14C]-plazomicin exhibited minimal to no affinity to melanin.

- The radiotherapy derived from intravenously administered [14C]-plazomicin exhibited minimal to no affinity to melanin, suggesting plazomicin is not likely to be retained in pigmented tissues.

- The potential contribution of sustained plazomicin exposure in the kidneys to the high and sustained microbiological eradication rates observed in the Phase 3 cUTI study warrants further investigation.

REFERENCES

ACKNOWLEDGMENTS

Thank you to Charles River Laboratories for medical writing support and sponsor preparation support. This work was supported by Achaogen (Inglewood, CA) under the terms of a master services agreement with Charles River Laboratories under Study Director Justin Godsey.