Plazomicin is an aminoglycoside that was engineered to overcome aminoglycoside-modifying enzymes, the most common aminoglycoside-resistance mechanism in Enterobacteriaceae.

Dose selection support for the plazomicin dosing regimens evaluated in the completed Phase 3 studies was based on a series of pharmacometric analyses undertaken early in drug development[1,2].

Refinement of a population pharmacokinetic (PK) model based on PK data from Phase 3 patients[3] allowed for the reassessment of initial plazomicin dosing regimen administered according to baseline creatinine clearance.

As described herein, pharmacokinetic-pharmacodynamic (PK-PD) target attainment analyses were undertaken to evaluate initial plazomicin dosing regimens and interpretive criteria for the in vitro susceptibility testing for plazomicin in against Enterobacteriaceae.

METHODS

Simulated Patient Populations

- Using parameter estimates from the previously-developed population PK model[3] with a zero-order input and 1st-order elimination[3], disease indicator parameters, and demographic variables, total-drug plasma concentration-time profiles were generated for three sets of simulated patients:
 - Simulated patients with complicated urinary tract infections (cUTI), including acute pyelonephritis (AP), and creatinine clearance (CLcr; mL/min) generated using two sets of ranges:
 - >60, >30 to ≤60, and >15 to ≤30 mL/min.
 - Simulated patients with cUTI or AP, bloodstream infection (BSI), or hospital-acquired bacterial pneumonia (HABP/ventilator-associated bacterial pneumonia (VABP)).
 - Initial plazomicin dosing regimens were administered to simulated patients according to CLcr as described in Table 1.

RESULTS

- As shown in Figures 3A and 3B, percent probabilities of attaining the total-drug plasma AUC/MIC ratio target associated with net bacterial stasis at MIC values of 2 or 4 µg/mL approached or exceeded 90% among simulated patients with cUTI, AP, or BSI. At a MIC value of 2 µg/mL, percent probabilities of PK-PD target attainment for the total-drug plasma AUC:MIC ratio target associated with net bacterial stasis (B) among simulated patients by CLcr group are shown in Table 2. The scatter of average total-drug plasma AUC:MIC values on Days 1-2 among simulated patients by CLcr is shown in Figure 1.

CONCLUSIONS

- These data provide support for proposed plazomicin dosing regimens and the evaluation of plazomicin susceptibility breakpoints against Enterobacteriaceae.

REFERENCES

ACKNOWLEDGMENTS

This project was funded in whole or in part with federal funds from the Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, under Contract No. HHSO100201000046C.

Table 1 Initial plazomicin dosing regimens based on baseline renal function

<table>
<thead>
<tr>
<th>Baseline CLcr</th>
<th>Dose interval</th>
<th>Dose (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>60 mL/min</td>
<td>q24h</td>
<td>15</td>
</tr>
<tr>
<td>>30 to 60 mL/min</td>
<td>q24h</td>
<td>10</td>
</tr>
<tr>
<td>>15 to 30 mL/min</td>
<td>q48h</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 1 Scatterplot of average total-drug plasma AUC:MIC values on Days 1-2 among simulated patients by CLcr

Figure 2 Percent probabilities of PK-PD target attainment by MIC for initial plazomicin dosing regimens among simulated patients, cUTI/AP(A), BSI (B), or HABP/VABP (C) based on total-drug plasma or ELF AUC:MIC ratio targets for plazomicin against Enterobacteriaceae.

Figure 3 Percent probabilities of PK-PD target attainment by MIC for initial plazomicin dosing regimens among simulated patients, cUTI/AP(A), BSI (B), or HABP/VABP (C) based on total-drug plasma or ELF AUC:MIC ratio targets for plazomicin against Enterobacteriaceae.