Mass Balance, Metabolism, and Excretion of [14C]-Plazomicin in Healthy Human Subjects

Taylor Choi1, Julie D. Seroogy1, Mitesh Sanghvi1, Shyeilla V. Dhuria1
1Achaogen Inc., South San Francisco, CA, USA; 2Xceleron, a Pharmaron company, Germantown, MD, USA

INTRODUCTION

• Plazomicin is an aminoglycoside (AG) that was engineered to overcome AG-resistance mechanisms, the most common of which involves modification of the ribosomes, which results in decreased binding to the primary site of action.

• Plazomicin is approved by the FDA and drug administration for the treatment of complicated skin and skin structure infections, including polymicrobial infections.

• This work characterizes the mass balance, excretion, and metabolism of [14C]-plazomicin in healthy human subjects.

METHODS

Study Design

• This was a single-center, open-label, nonrandomized study (NCT03177278).

• Six healthy male subjects were administered a single 30-minute intravenous (IV) infusion of [14C]-plazomicin sulfate (50 mg/mL).

• Participants were confined to the clinical research unit (CRU) for in-house observation for 14 days following the study treatment administration (Figure 1).

• Subjects were discharged from the CRU starting on Day 7 if following criteria were met:
 - ≤ 8% of the radiolabeled dose was recovered.
 - ≥ 90% of the radiolabeled dose was recovered.

• Plasma samples were pooled across all subjects according to the Hamilton method.2

• For plasma and whole blood total radioactivity, the total [14C]-plazomicin radioactivity was collected as a series of 15-second to 1-minute fractions of the radioactivity dose.

Sample Preparation and Analysis

• Plasma, urine, and fecal homogenates were mixed with sodium hydroxide (1 M) at 6.5 ± 0.2.

• Sodium hydroxide (1 M) was used to adjust the drug solution pH to 6.5 ± 0.2.

• Plazomicin was predominantly eliminated renally, with 97.5% of the dose recovered as parent drug in urine by the end of the last sampling interval (Figure 2).

• Approximately 56% of the total administered radioactivity was recovered in urine within 72 hours post-dose.

• The plasma pharmacokinetic (PK) parameters were generally consistent with those generated in other phase 1 studies.3

• Plazomicin pharmacokinetic parameters were generally consistent with those conclude with those generated in other phase 1 studies.4

• Plazomicin does not appear to be metabolized to any appreciable extent as no plasma metabolites were observed.5

• The 14C-[plazomicin] radiolabeled material contained 14C-labeled impurities.

• Results are consistent with nonclinical and clinical data for plazomicin and with the 14C-labeling.

CONCLUSIONS

• Drug development on plazomicin continues with the aim of identifying an unchanged drug in vivo and a marginable amount (≤ 5%) in plasma.

• Plazomicin does not appear to be metabolized in vivo or excreted in urine, confirming the potential for [14C]-plazomicin clinical evaluation in vivo.

REFERENCES

5. Taylor Choi; Julie D. Seroogy; Mitesh Sanghvi; Shyeilla V. Dhuria; Taylor Choi; Julie D. Seroogy; Mitesh Sanghvi; Shyeilla V. Dhuria 1 Achaogen Inc., South San Francisco, CA, USA; 2Xceleron, a Pharmaron company, Germantown, MD, USA

MS is an employee of Xceleron, a Pharmaron company.

TC, JDS, and SVD are employees or former employees of and stockholders in Achaogen; TC and SVD are employees or former employees of and stockholders in Health and Human Services, under Contract No. HHSO100201000046C.

ACKNOWLEDGMENTS

The authors thank Xceleron, a Pharmaron company, for financial support. This study was supported in part by the National Institutes of Health under Contracts HHSN26620090001 and HHSN26620090002.

DISCLOSURES

None of the authors have any financial ties or other potential conflicts of interest to declare.

Contact Information:
Shilaya V. Dhuria
1 Travel Place
Suite 300
94001, USA
sdhuria@achaogen.com

Prepared at UGMRA 2018, October 3-5, 2018, San Francisco, CA, USA

Figure 1. Structure of Plazomicin

Figure 2. Screening, Treatment, and Follow-up

Table 1. Demographic Summary

Table 2. Summary of Plasma and Whole Blood Total Radioactivity and Plazomicin (PK)

Figure 3. Mean Cumulative Percent of [14C]-Plazomicin Dose Excreted Based on Total Radioactivity in urine, Feces, and Total Viscous Samples at the Collection Interval

Figure 4. Mean Plasma and Whole Blood Total Radioactivity (ng eq/mL) vs Time

Figure 5. Mean Plasma Radioactivity- Equivalent Concentration (ng/mL) vs Time

Figure 6. Radiochromatogram of [14C]-Plazomicin-related Molecules in Urine

Figure 4. Radiochromatogram of [14C]-Plazomicin-related Molecules in Urine

Figure 5. Mean Plasma Radioactivity- Equivalent Concentration (ng/mL) vs Time

Figure 6. Radiochromatogram of [14C]-Plazomicin-related Molecules in Urine