MEMORANDUM

Date: March 31, 2016

To: Executive Committee

From: Rich Seagraves

Subject: MAFMC Risk Policy and ABC Control Rule Framework

The Council voted in late 2015 to include consideration of potential modifications to its existing Risk Policy and ABC control rule framework in the 2016 implementation plan. This will be the initial meeting to discuss this action which could be accomplished through an Omnibus Amendment or Framework action.

The primary goal of this meeting is to review issues relative to the current risk policy and ABC control rule framework and to discuss potential solutions/options to the problems identified. The background information provided to initiate this discussion gives an overview of the current ABC control rule framework and Council Risk Policy and a description and foundation of the Councils ABC control rule developed by the SSC. A report produced for the New England Council by the Fisheries Forum, which summarizes risk policies and ABC control rule frameworks adopted by the seven other Councils, can be accessed here: www.mafmc.org/briefing/april-2016.
Description of MAFMC ABC Control Rule

The following is the language included in the Omnibus Framework which revised the language describing the ABC Control Rule framework contained in the original ACL/AM Omnibus Amendment

648.20 Mid-Atlantic Fishery Management Council ABC control rules.

The SSC shall review the following criteria, and any additional relevant information, to assign managed stocks to one of four types of control rules based on the species’ assessment and its treatment of uncertainty when developing ABC recommendations. The SSC shall review the ABC control rule assignment for stocks each time an ABC is recommended. ABCs may be recommended for up to 3 years for all stocks, with the exception of 5 years for spiny dogfish. The SSC may deviate from the control rule methods and recommend an ABC that differs from the result of the standard ABC control rule application; however, any such deviation must include the following: A description of why the deviation is warranted, a description of the methods used to derive the ABC, and an explanation of how the deviation is consistent with National Standard 2. The four types of ABC control rules are described below.

(a) ABC control rule for a stock with an OFL probability distribution that is analytically-derived and accepted by the SSC. (1) The SSC determines that the assessment OFL and the assessment’s treatment of uncertainty are acceptable, based on the following:

(i) All important sources of scientific uncertainty are captured in the stock assessment model;

(ii) The probability distribution of the OFL is calculated within the stock assessment and adequately describes the OFL uncertainty;

(iii) The stock assessment model structure and treatment of the data prior to use in the model includes relevant details of the biology of the stock, fisheries that exploit the stock, and data collection methods;

(iv) The stock assessment provides the following estimates: Fishing mortality rate (F) at MSY or an acceptable proxy maximum fishing mortality threshold (MFMT) to define OFL, biomass, biological reference points, stock status, OFL, and the respective uncertainties associated with each value; and

(v) No substantial retrospective patterns exist in the stock assessment estimates of fishing mortality, biomass, and recruitment.

(2) An ABC for stocks with an accepted OFL probability distribution that is analytically-derived will be determined by applying the acceptable probability of overfishing from the MAFMC’s risk policy found in §648.21(a) through (d) to the probability distribution of the OFL.
(b) ABC control rule for a stock with an OFL probability distribution that is modified by the assessment team and accepted by the SSC. (1) The SSC determines the assessment OFL is acceptable and the SSC accepts the assessment team's modifications to the analytically-derived OFL probability distribution, based on the following:

(i) Key features of the stock biology, the fisheries that exploit it, and/or the data collection methods for stock information are missing from, or poorly estimated in, the stock assessment;

(ii) The stock assessment provides reference points (which may be proxies), stock status, and uncertainties associated with each; however, the uncertainty is not fully promulgated through the stock assessment model and/or some important sources of uncertainty may be lacking;

(iii) The stock assessment provides estimates of the precision of biomass, fishing mortality, and reference points; and

(iv) The accuracy of the minimum fishing mortality threshold and projected future biomass is estimated in the stock assessment using ad hoc methods.

(v) The modified OFL probability distribution provided by the assessment team acceptably addresses the uncertainty of the assessment.

(2) An ABC for stocks with an OFL probability distribution that is modified by the assessment team and accepted by the SSC will be determined by applying the acceptable probability of overfishing from the MAFMC's risk policy found in §648.21(a) through (d) to the probability distribution of the OFL as modified by the assessment team.

(c) ABC control rule for a stock with an OFL probability distribution that is modified by the SSC. (1) The SSC determines the assessment OFL is acceptable but the SSC derives the appropriate uncertainty for OFL based on meta-analysis and other considerations. This requires the SSC to determine that the stock assessment does not contain an estimated probability distribution of OFL or the OFL probability distribution in the stock assessment is judged by the SSC to not adequately reflect uncertainty in the OFL estimate.

(2) An ABC for stocks with an OFL probability distribution that is modified by the SSC will be determined by either (i) applying the acceptable probability of overfishing from the MAFMC's risk policy found in §648.21(a) through (d) to the SSC-adjusted OFL probability distribution. The SSC will use default assignments of uncertainty in the adjusted OFL probability distribution based on literature review and evaluation of control rule performance; or,

(ii) If the SSC cannot develop an OFL probability distribution, a default control rule of 75 percent of the F_{MSY} value will be applied to derive ABC.

(d) ABC control rule for when an OFL cannot be specified. (1) The SSC determines that the OFL cannot be specified given the available information.
(2) An ABC for stocks with an OFL that cannot be specified will be determined by using control rules based on biomass and catch history and application of the MAFMC’s risk policy found in §648.21(a) through (d).

Description of MAFMC Risk Policy

The following was excerpted from the Council's ACL/AM Omnibus Amendment approved in 2011. The complete amendment can be found at http://www.greateratlantic.fisheries.noaa.gov/nero/regs/frdoc/11/11OmnibusAmendmentEA&CommentsFinal.pdf

5.2.2 Risk Policy Alternatives

The Council risk policy alternatives given below would be applied all to the managed resources under MAFMC management jurisdiction. Under any of the action risk alternatives selected below, which excludes alternative RISK-A, the following would also apply.

For managed resources that are under rebuilding plans, the upper limit on the probability of exceeding F\text{REBUILD} would be 50 percent unless modified to a lesser value (i.e., higher probability of not exceeding F\text{REBUILD}) through a rebuilding plan amendment. For example, the Council may conclude through a rebuilding plan Amendment that setting catch limits at the 25th percentile of catch associated with F\text{REBUILD} would rebuild the stock more quickly (i.e., provide for 75 percent probability of not exceeding F\text{REBUILD}). In instances where the SSC derives a more restrictive ABC recommendation, based on the application of the ABC control rule methods framework and risk policy, than the ABC derived from the use of F\text{REBUILD} at the MAFMC-specified overfishing risk level, the SSC shall recommend to the MAFMC the lower of the ABC values.

In addition, if no OFL is available (i.e., No F\text{MSY} or F\text{MSY} proxy provided through the stock assessment to identify it) and no OFL proxy is provided by the SSC at the time of ABC recommendations, then an upper limit (cap) on allowable increases in ABC will be established. ABC may not be increased until an OFL has been identified. This policy is designed to prevent catch limits from being increased when there are no criteria available to determine if overfishing will be occurring for the upcoming fishing year. To reduce the risk of overfishing, the Council policy would be to not increase ABC in the absence of an OFL.

It should be noted in the alternatives below that if the ratio of biomass (B) to biomass at maximum sustainable yield (B\text{MSY}) is less than 1.0, then the current stock biomass is less than B\text{MSY}; if the ratio of B to B\text{MSY} is greater than or equal to 1, then the current stock biomass is B\text{MSY} or greater.

Alternative Risk-G (Council-Preferred): Stock Status/Life History, Inflection at B/B\text{MSY} = 1.0

Under this alternative, a stock replenishment threshold defined as the ratio of B/B\text{MSY} = 0.10, will be utilized to ensure the stock does not reach low levels from which it cannot recover. The probability of overfishing will be 0 percent if the ratio of B/B\text{MSY} is less than or equal to 0.10. Probability of overfishing increases linearly for stock defined as typical as the ratio of B/B\text{MSY} increases, until the inflection point of B/B\text{MSY} = 1.0 is reached and a 40 percent probability of
overfishing is utilized for ratios equal to or greater than 1.0. Probability of overfishing increases linearly for stock defined as atypical as the ratio of B/\text{BMSY} increases, until the inflection point of B/\text{BMSY} = 1.0 is reached and a 35 percent probability of overfishing is utilized for ratios equal to or greater than 1.0. The SSC will determine whether a stock is typical or atypical each time an \text{ABC} is recommended. Generally speaking, an atypical stock has a life history strategy that results in greater vulnerability to exploitation, and whose life history has not been fully addressed through the stock assessment and biological reference point development process.

In addition, under this alternative for managed resources that are under rebuilding plans, the upper limit on the probability of exceeding \text{FREBUILD} would be 50 percent unless modified to a lesser value (i.e., higher probability of not exceeding \text{FREBUILD}) through a rebuilding plan amendment. In instances where the SSC derives a more restrictive \text{ABC} recommendation, based on the application of the \text{ABC} control rule methods framework and risk policy, than the \text{ABC} derived from the use of \text{FREBUILD} at the MAFMC-specified overfishing risk level, the SSC shall recommend to the MAFMC the lower of the \text{ABC} values.

In addition, if no \text{OFL} is available (i.e., No \text{FMSY} or \text{FMSY} proxy provided through the stock assessment to identify it) and no \text{OFL} proxy is provided by the SSC at the time of \text{ABC} recommendations, then an upper limit (cap) on allowable increases in \text{ABC} will be established. \text{ABC} may not be increased until an \text{OFL} has been identified.

![Figure 1. Risk Policy G.](image-url)
Description and Foundation of the Mid-Atlantic Fishery Management Council’s Acceptable Biological Catch Control Rule

September 11, 2015

Scientific and Statistical Committee

Mid-Atlantic Fishery Management Council
Purpose of this Document

How the Mid-Atlantic Fishery Management Council (MAFMC) determines catch limits has changed substantially in recent years. The modifications were primarily adopted because of changes in the 2006 reauthorization of the Magnuson-Stevens Fishery Conservation and Management Act (MSA) and subsequent changes to the National Standard 1 guidance. This document describes the approach that has been adopted by the MAFMC and its Scientific and Statistical Committee (SSC) to determine Acceptable Biological Catches (ABCs) to avoid overfishing as of 2014 and provides the rationale for several important aspects of the MAFMC’s ABC control rule (i.e., approach to setting ABCs that buffer for scientific uncertainty so as to avoid overfishing per the requirements of the MSA). Additionally, information describing the ABC control rule for the MAFMC is currently in several locations, some of which are unpublished. Thus, this document provides much of the information about ABC determination in one location.

Introduction

The reauthorization of the MSA brought several important changes to U.S. federal fisheries management. One of the primary changes was a requirement for Annual Catch Limits (ACLs) which should avoid overfishing and not exceed the recommendations from the Council’s SSC or peer review process:

Each Council shall... develop annual catch limits for each of its managed fisheries that may not exceed the fishing level recommendations of its scientific and statistical committee or the peer review process established under subsection (g); (MSA 301.109-479.6, 2006)

The MSA also added a 15th required fishery management plan (FMP) provision to avoid overfishing, that FMPs shall:

(15) establish a mechanism for specifying annual catch limits in the plan (including a multiyear plan), implementing regulations, or annual specifications, at a level such that overfishing does not occur in the fishery, including measures to ensure accountability. (MSA 301.109-479.15 2006)

The MSA also clarified the role of the SSCs in the process:

Each scientific and statistical committee shall provide its Council ongoing scientific advice for fishery management decisions, including recommendations for acceptable biological catch, preventing overfishing, maximum sustainable yield, and achieving rebuilding targets, and reports on stock status and health, bycatch, habitat status, social and economic impacts of management measures, and sustainability of fishing practices. (MSA 302.101-627, 109-479.g.1.B, 2006)
NOAA revised its National Standard 1 guidance in response to changes in the MSA by providing definitions of ACL and ABC and clarifying the roles of the SSC and the Council in the process of setting catch limits. In particular, it specified that $\text{ACL} \leq \text{ABC} \leq \text{OFL}$ (overfishing limit), that the SSC determines the ABC, and that the Council determines the ACL with the constraint that the ACL must be less than or equal to the SSC’s ABC recommendation. Thus, the SSCs recommendation for an ABC sets an upper limit on the ACL in order to avoid overfishing. National Standard 1 further defines ABC as

Acceptable biological catch (ABC) is a level of a stock or stock complex’s annual catch that accounts for the scientific uncertainty in the estimate of OFL and any other scientific uncertainty (see paragraph (f)(3) of this section), and should be specified based on the ABC control rule. (National Standard 1, 2009)

This National Standard 1 guidance indicates that a control rule should be used to determine an ABC that is lower than the OFL and that scientific uncertainty should be considered when determining ABCs. While control rules were commonly used to set catch limits or targets in federally managed U.S. fisheries prior to the 2006 reauthorization, they did not commonly include accounting for scientific uncertainty. In the response to comments, National Standard 1 further elaborates the roles of the Council and SSC in determining the ABC control rule

NMFS believes that determining the level of scientific uncertainty is not a matter of policy and is a technical matter best determined by stock assessment scientists as reviewed by peer review processes and SSCs. Determining the acceptable level of risk of overfishing that results from scientific uncertainty is the policy issue. The SSC must recommend an ABC to the Council after the Council advises the SSC what would be the acceptable probability that a catch equal to the ABC would result in overfishing. (National Standard 1, 2009)

Thus, according to National Standard 1, the Council has the responsibility of determining an acceptable probability of overfishing and communicating that decision to the SSC. Furthermore, the SSC has the responsibility of using estimates of scientific uncertainty, combined with the Council’s acceptable probability of overfishing, to develop ABC recommendations. Therefore, the approach to determining ABCs should have four elements: 1) it should follow a control rule, 2) the control rule should use the OFL as an upper threshold on ABC, 3) the difference between ABC and OFL should incorporate scientific uncertainty, and 4) the control rule should use the acceptable probability of overfishing from the Council.
MAFMC ABC Control Rule

The MAFMC and its SSC jointly developed a control rule to determine ABCs for MAFMC-managed stocks that considers both how uncertainty is handled in assessments and the biological characteristics of the stock in question. In conjunction with the Council’s risk policy, the control rule uses a probabilistic approach to specify ABCs for stocks with stock assessments in three categories and ad hoc approaches for Catch-based ABC assessments. Stock assessments are categorized among four levels based primarily on 1) whether an estimate of the OLF is available and accepted by the SSC and 2) how uncertainty in the OLF is characterized in the assessment.

Furthermore, the MAFMC-adopted control rule uses the Council’s risk policy to determine an acceptable probability of overfishing (P^*) as a function of the stock biomass and life history of the species (Fig. 1). Lower stock size and/or life history characteristics that increase susceptibility to overfishing (and are not incorporated into assessments) require greater confidence that overfishing will be avoided (via larger buffers). The probabilistic approach was adopted for three of the levels because it explicitly incorporates uncertainty and the MAFMC’s acceptable probability of overfishing in determining ABCs. It was also recognized that uncertainty would be very difficult (or impossible) to fully and quantitatively characterize in some situations. The Catch-based ABC portion of the control rule was designed to accommodate these cases. The probabilistic approach adopted by the MAFMC and its SSC is based on Prager and Shertzer (2010).

![Fig. 1. Acceptable probability of overfishing (P^*) as a function of stock size adopted by the MAFMC in an Omnibus Amendment (July 2011).](image)

Fig. 1. Acceptable probability of overfishing (P^) as a function of stock size adopted by the MAFMC in an Omnibus Amendment (July 2011). The threshold acceptable probability of overfishing is 0.4 for species with a typical life history and 0.35 for those with an atypical life history. The acceptable probability of overfishing is zero if relative biomass (projected biomass divided by the expected biomass if the stock was fished at the maximum fishing mortality rate threshold) is less than 0.1. The acceptable probability of overfishing increases to its threshold as relative biomass approaches 1. Whether a species is deemed typical or atypical depends on the degree to which its life history has been incorporated in the development of fishing mortality reference points.*

Analytically-based ABC: Assignment of a stock to this level implies that all important sources of uncertainty are fully and formally captured in the stock assessment model and the probability distribution of the OLF calculated within the assessment provides an adequate description of uncertainty of OLF. Accordingly, the OFL distribution will be estimated directly from the stock assessment.
For a stock assessment to fit into the Analytically-based ABC category, the SSC must determine that the OFL probability distribution represents best available science. Examples of attributes of a stock assessment that would lead to its inclusion in Level 1 are:

- Assessment model structure and any treatment of the data prior to inclusion in the model includes appropriate and necessary details of the biology of the stock, the fisheries that exploit the stock, and the data collection methods;
- Estimation of stock status and reference points integrated in the same framework such that the OFL calculations promulgate all uncertainties (stock status and reference points) throughout estimation and forecasting;
- Assessment estimates relevant quantities including F_{MSY}, OFL, biomass reference points, stock status, and their respective uncertainties; and
- No substantial retrospective patterns in the estimates of fishing mortality (F), biomass (B), and recruitment (R) are present in the stock assessment estimates.

The important part of the Analytically-based ABC category is that the precision estimated using a purely statistical routine will define the OFL probability distribution. Thus, all of the important sources of uncertainty are formally captured in the stock assessment model. When a Level 1 assessment is achieved, the assessment results are likely unbiased and fully consider uncertainty in the precision of estimates. Under Analytically-based ABC, the ABC will be determined solely on the basis of an acceptable probability of overfishing (P^*), determined by the Council’s risk policy, and the probability distribution of the OFL.

Expert-based ABC: Inclusion in this category indicates that the estimation of the probability distribution of the OFL directly from the stock assessment model fails to include some important sources of uncertainty, necessitating expert judgment during the preparation of the stock assessment, and the final OFL probability distribution developed during the assessment is deemed best available science by the SSC.

Possible attributes of a stock assessment that results in an Expert-based ABC include:

- Key features of the biology of the stock, the fisheries that exploit it, or the data collection methods are missing from the stock assessment;
- Assessment estimates relevant quantities, including reference points (which may be proxies) and stock status, together with their respective uncertainties, but the uncertainty is not fully promulgated through the model or some important sources may be lacking;
- Estimates of the precision of biomass, fishing mortality rates, and their respective reference points are provided in the stock assessment; and
- Accuracy of the MFMT and future biomass is estimated in the stock assessment by using *ad hoc* methods.

1 With justification, F_{MSY} may be replaced with an alternative (i.e., proxy) maximum fishing mortality threshold to define the OFL. Proxies, such as $F_{35\%}$ and $F_{40\%}$, are commonly used in place of F_{MSY} because F_{MSY} can be very difficult to estimate.
For Expert-based ABC assessments, ABCs will be determined by using the Council’s risk policy (similar to a Level 1 assessment), but with the OFL probability distribution based on the specified distribution developed in the stock assessment process and as accepted by the SSC.

Empirically-based ABC: Assessments in this level are judged to over- or under-estimate the accuracy of the OFL. Attributes of a stock assessment that would lead to inclusion in this category are the same as those that lead to an Expert-based ABC, except that the assessment does not contain estimates of the probability distribution of the OFL or the probability distribution provided does not, in the opinion of the SSC, adequately reflect uncertainty in the OFL estimate.

For Empirically-based ABC assessments, the SSC adjusts the distribution of the OFL and develops an ABC recommendation by applying the Council’s risk policy to the modified OFL probability distribution. The SSC evaluates a set of default or other amounts of uncertainty in the OFL probability distribution based on literature review and an evaluation of ABC control rules. A control rule of 75 percent of F_{MSY} may be applied as a default if an OFL distribution cannot be developed.

Catch-based ABC: Stock assessments that result in a Catch-based ABC are deemed to have reliable estimates of trends in abundance and catch, but absolute abundance, fishing mortality rates, and reference points are suspect or absent. Additionally, there are limited circumstances that may not fit the standard approaches to specification of reference points and management measures set forth in these guidelines (i.e., ABC determination). In these circumstances, the SSC may propose alternative approaches for satisfying the NS1 requirements of the MSA than those set forth in the NS1 guidelines. In particular, stocks in this level do not have point estimates of the OFL or probability distributions of the OFL that are considered best available science. In most cases, stock assessments that fail peer review or are deemed highly uncertain by the SSC will be assigned to this level.

Examples of potential attributes for inclusion in this category are:

- Assessment approach is missing essential features of the biology of the stock, characteristics of data collection, and the fisheries that exploit it;
- Stock status and reference points are estimated, but are not considered reliable;
- Assessment may estimate some relevant quantities including biomass, fishing mortality or relative abundance, but only trends are deemed reliable;
- Large retrospective patterns usually present; and
- Uncertainty may or may not be considered, but estimates of uncertainty are probably substantially underestimated.

For a Catch-based ABC the SSC uses all available information to set ABCs on a case by case basis, and generally may not increase ABCs unless the following two circumstances are met:

1. Biomass-based reference points suggest that the stock is greater than B_{MSY}, and the stock biomass is stable or increasing. If biomass-based reference points are not available, best available science indicates that stock biomass is stable or increasing, and,
2. The SSC must provide a determination that, based on best available science, the proposed increase to the ABC is not expected to result in overfishing of the stock. The SSC must provide a
description of why the increase is warranted, describe the method used to derive the increased ABC, and provide a certification that the increase in ABC is not likely to result in overfishing on the stock.
Uncertainty in the OFL

A central part the first three categories of ABC specification of the MAFMC ABC control rule is the determination of the uncertainty of the OFL. The MAFMC probabilistic approach begins with an estimate of the distribution of catch that can be taken when the population is fished at the fishing mortality threshold (FMT) given expected biomass when the catch limit will be implemented (OFL). The ABC is then determined by choosing the catch associated with a percentile (P*) of the distribution, such that the ABC achieves a pre-specified probability of overfishing. The P* represents the acceptable probability of overfishing, and the catch associated with a given percentile has a P* probability of overfishing. In principle, this approach requires an accurate description of the OFL distribution. If the distribution of OFL is not accurate, the meaning of the P* parameter is no longer the acceptable probability of overfishing – instead it simply is an ad hoc method for providing a buffer between ABC and OFL. There are two primary sources of uncertainty that affect uncertainty in the OFL: uncertainty in biomass and uncertainty in the FMT. Estimation of both of these quantities is subject to substantial uncertainty, but the true uncertainty (instead of precision) is very difficult to estimate. Therefore, the MAFMC’s SSC has adopted a default probability distribution to describe OFL for level 3 assessments.

The default distribution adopted by the SSC for Empirically-based ABC stock assessments is a lognormal distribution with a coefficient of variation (CV) of 100%. This distribution was chosen because the distribution of estimated biomass and other quantities in assessment models can often be described by a distribution similar to a lognormal (with a long right hand tail). The value of the CV was developed from an analysis of several simulation studies that evaluated the accuracy of estimates from statistical catch-at-age (SCA) stock assessment models. In one sense, simulation studies are ideal for considering the performance of estimation of OFL because the true values of stock size and fishing mortality are known and, therefore, the true accuracy of estimates can be determined. The downside of using simulation studies is that they often use simplified examples and the models used to simulate data do not include many of the real world complexities that are present in actual stock assessment situations. Thus, most simulation studies of assessment model performance include a caveat that the estimates of accuracy are likely optimistic because more assumptions will usually be violated in the real world.

We conducted a review of several simulation studies of performance of SCAs for estimating biomass in the last year of the time series and FMT (Table 1). We used reported coefficients of variation (CVs) of estimated biomass in the last year of an assessment. Yin and Sampson (2004) reported CVs of biomass in the last year in their paper. Bence et al. (1993) reported the proportion of assessment models where the estimate was within 20% of the true value, and we converted this value to a CV by assuming that the results were lognormally distributed. For Wilberg and Bence (2006, 2008), we used the original results (not reported in the papers) to calculate the CVs. Relative errors and the range of the 80% interval were presented in Punt et al. (2002). Results from three studies, Labelle (2005), Magnusson and Hilborn (2007), and Linton and Bence (2009) were primarily presented graphically, and CVs of estimates were not provided. However, their estimates in terms of magnitude in errors and skewed distribution of errors were consistent with the studies that presented results tabularly. Results from Conn et al. (2010) were used to estimate the uncertainty associated with F_{MSY} (results not reported in the paper).
Many factors influence the accuracy of stock assessment estimates. Biomass was more accurately estimated when fishing mortality was higher, with good indices of abundance, with more years of data, and with higher sample sizes for age distributions of the catch. Factors that affected the reliability of estimates were the survey selectivity pattern, the CV of survey measurement error, time-varying catchability of indices of abundance, and effective sample size of age composition of the catch. The CV of estimates of biomass in the last year varied among the alternative studies and among scenarios considered within each study (Table 2). In general, low fishing mortality rates, high survey CVs, and not having a good index of abundance for older age classes led to higher CVs in estimates of biomass in the last year. The overall mean CV in estimated biomass in the last year among the studies was 47%. When the assessment model was substantially different from the data generating model, assessment results could become quite biased (Punt et al. 2002; Wilberg and Bence 2006). However, levels of bias and the variability of the assessment model results depended on the conditions simulated for each species.

Few studies evaluated the accuracy of a fishing mortality reference point. Later analysis of results not shown in Conn et al. (2010), found that the CV of F_{MSY} was about 0.45 (approximately 0.3 and 0.6) for

<table>
<thead>
<tr>
<th>Study</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bence et al. 1993</td>
<td>Determine effects of survey characteristics on SCA estimates</td>
</tr>
<tr>
<td>Ianelli 2002</td>
<td>Determine robustness of productivity estimation</td>
</tr>
<tr>
<td>Punt et al. 2002</td>
<td>Determine likely performance of several assessment techniques under a range of data generating scenarios for southern Australia fisheries</td>
</tr>
<tr>
<td>Yin and Sampson 2004</td>
<td>Determine effects of data, fishery, and stock characteristics on SCA estimates</td>
</tr>
<tr>
<td>Radomski et al. 2005</td>
<td>Compare performance of SCAs and forward VPAs</td>
</tr>
<tr>
<td>Labelle 2005</td>
<td>Determine performance of MULTIFAN-CL in several cases</td>
</tr>
<tr>
<td>Wilberg and Bence 2006</td>
<td>Compare alternative methods for estimating time-varying catchability in SCAs</td>
</tr>
<tr>
<td>Magnusson and Hilborn 2007</td>
<td>Determine characteristics that make fisheries data informative in SCAs</td>
</tr>
<tr>
<td>Wilberg and Bence 2008</td>
<td>Determine performances of deviance information criterion for selecting among SCAs that differ in their random effects</td>
</tr>
<tr>
<td>Conn et al. 2010</td>
<td>Determine when productivity can be estimated in SCAs.</td>
</tr>
</tbody>
</table>
the two species examined (using the inverse prediction method) and that estimates of biomass and \(F_{\text{MSY}} \)
had a positive correlation of about 0.6 on average (unpublished results). In contrast, Yin and Sampson
(2004) found that spawning-potential-based (SPR) fishing mortality rate reference points were
accurately estimated with CVs of approximately 5%, but because their simulation models contained little
error in the inputs to the SPR model this is likely an underestimate of the amount of uncertainty that
would be achieved in practice.

Table 2. Mean, minimum, and maximum coefficient of variation (CV) of biomass in the last year of the
assessment for studies where the estimation model was similar to or the same as the data generating
model.

<table>
<thead>
<tr>
<th>Study</th>
<th>Mean CV (%)</th>
<th>Minimum CV (%)</th>
<th>Maximum CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bence et al. (1993)</td>
<td>60</td>
<td>14</td>
<td>183</td>
</tr>
<tr>
<td>Yin and Sampson (2004)</td>
<td>35</td>
<td>9</td>
<td>94</td>
</tr>
<tr>
<td>Radomski et al. (2004)</td>
<td>19</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>Wilberg and Bence (2006)</td>
<td>65</td>
<td>17</td>
<td>407</td>
</tr>
<tr>
<td>Wilberg and Bence (2008)</td>
<td>31</td>
<td>14</td>
<td>48</td>
</tr>
</tbody>
</table>

A Default Level of Uncertainty for the OFL

The MAFMC’s SSC has adopted a default lognormal distribution with a 100% CV for the OFL. While a CV
of 100% is greater than that used by the Pacific Fishery Management Council\(^2\), several lines of evidence
suggest that the MAFMCs estimate of uncertainty in the OFL is a reasonable value. Uncertainty in stock
assessment models has two components: precision and bias. Precision describes the degree to which
repeated applications of the assessment model (to data collected under the same conditions) show the
same results. Bias refers to a systematic difference between the mean estimate from the stock
assessment model and the true value. Bias is caused by assumptions of the stock assessment model
being violated. The major cause of uncertainty in stock assessment models is often bias (Mohn 1996),
but we usually only have estimates of the precision. The simulation evaluations of the accuracy of age-
structured stock assessment models indicate that in situations where the assumptions of the models are
violated that the uncertainty can be extremely high. Because the OFL can be thought of as the product
of estimated biomass and the estimated MFMT, the uncertainty in both of these quantities will factor
into the uncertainty in OFL. Additionally, we need to know the covariance between the estimates of

\(^2\) The Pacific Fishery Management Council uses a CV of 36% based on an analysis of the change in estimates of
biomass among stock assessments that have been conducted over about the last two decades (Ralston et al.
2011). However, the approach used to develop that estimate of the CV of the OFL has several important
assumptions: 1) the models used to assess Pacific stocks have been unbiased on average, and 2) that there is no
uncertainty in the fishing mortality reference point. Both of these assumptions are likely to be violated, which, if it
is the case, would mean that 36% is a minimum estimate of the CV of the OFL and that the true uncertainty is likely
much higher.
biomass and MFMT. The mean estimate of uncertainty in biomass from the simulation studies was 47% (Table 2), the mean estimate of uncertainty in \(F_{MSY} \) was 45% (Conn et al. 2010), and the correlation between these values was 0.6 (from the one study that estimated them, Conn et al. 2010). Combining all of these values together provides an estimate of the CV of the OFL of approximately 100%, the default value adopted by the MAFMC’s SSC.

References

Conn, P.B., E.H. Williams, and K.W. Shertzer. 2010. When can we reliably estimate the productivity of fish stocks? Canadian Journal of Fisheries and Aquatic Sciences 67: 511-523.

Glossary

Acceptable biological catch (ABC) is a level of a stock or stock complex’s annual catch that accounts for the scientific uncertainty in the estimate of OFL and any other scientific uncertainty (see paragraph (f)(3) of this section), and should be specified based on the ABC control rule. (From NS1)

ABC control rule means a specified approach to setting the ABC for a stock or stock complex as a function of the scientific uncertainty in the estimate of OFL and any other scientific uncertainty (see paragraph (f)(4) of this section). (From NS1)

Annual catch limit (ACL) is the level of annual catch of a stock or stock complex that serves as the basis for invoking AMs. ACL cannot exceed the ABC, but may be divided into sector-ACLs (see paragraph (f)(5) of this section). (From NS1)

Catch is the total quantity of fish, measured in weight or numbers of fish, taken in commercial, recreational, subsistence, tribal, and other fisheries. Catch includes fish that are retained for any purpose, as well as mortality of fish that are discarded. (From NS1)
RISK POLICY & MANAGING FOR UNCERTAINTY
ACROSS THE REGIONAL FISHERY MANAGEMENT COUNCILS

An Updated Report
2012

Fisheries Leadership & Sustainability Forum

Prepared in support of the
New England Fishery Management Council Risk Policy Workshop
March 20-21, 2013
TABLE OF CONTENTS

INTRODUCTION ... 3
ACRONYMS ... 4
BACKGROUND .. 6
DISCUSSION ... 9
NORTH PACIFIC FISHERY MANAGEMENT COUNCIL ... 13
PACIFIC FISHERY MANAGEMENT COUNCIL .. 16
WESTERN PACIFIC FISHERY MANAGEMENT COUNCIL ... 19
GULF OF MEXICO FISHERY MANAGEMENT COUNCIL .. 22
CARIBBEAN FISHERY MANAGEMENT COUNCIL ... 25
SOUTH ATLANTIC FISHERY MANAGEMENT COUNCIL ... 28
MID-ATLANTIC FISHERY MANAGEMENT COUNCIL .. 31
NEW ENGLAND FISHERY MANAGEMENT COUNCIL .. 34
RESOURCES .. 37
INTRODUCTION

The 2006 reauthorized Magnuson-Stevens Fishery Conservation and Management Act (MSRA) instructs the eight regional fishery management councils (councils) to prevent overfishing while achieving optimum yield (OY) from U.S. fisheries. To achieve this mandate, the MSRA requires councils to establish annual catch limits (ACLs) for all managed fisheries and ensure adherence to those limits through the use of accountability measures (AMs). Through the significant effort of councils, council staff, Science and Statistical Committees (SSCs), NOAA Fisheries scientists and managers, and other management partners, ACLs were first implemented for all federally managed fisheries by the 2011 deadline. The achievement of this ambitious mandate was supported by considerable developments on both scientific and management fronts. Diverse policies, processes, and tools are used to set reference points, account for scientific and management uncertainty, establish ACLs and provide accountability. Reflecting on their experience during the first few years of utilizing ACLs and AMs, councils are revisiting their approach to risk policy and refining their policies and processes for setting catch levels.

This report was developed as a resource for fishery managers, and to provide a platform for sharing progress and lessons learned across council regions. The body of the report consists of eight regional profiles, which provide a high-level overview of the different approaches adopted by each of the eight regional councils and their SSCs to manage risk and account for uncertainty in their specification processes. These regional profiles build on the original “Risk Policy and Managing for Uncertainty Report” published by the Fisheries Leadership & Sustainability Forum in 2010. Each regional profile has been informed through direct communication and phone interviews with council members, council staff, SSC members, NOAA Fisheries staff, and other experts during the summer and fall of 2012 (See Resources for a list of interviewees). As each council’s risk policy and specification processes are complex and continually evolving, these profiles are not intended to be comprehensive. Each profile reflects regional differences and includes the information and insight interviewees found most relevant to share for the purposes of this report, current as of late 2012.

The regional profiles are prefaced by background information and a discussion section. Included in the background section are a review of National Standard 1 guidelines for establishing ACLs, and a general overview of the approaches councils have taken to comply with the ACL mandate and account for scientific and management uncertainty. The discussion section captures some of the high-level themes across regional risk policies. This report is not intended to compare the effectiveness of risk policy approaches across council regions; rather it aims to highlight innovations and continuing challenges to addressing risk and uncertainty. This report is also meant to support discussions at the New England Fishery Management Council workshop on risk policy in March 2013.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Accountability Measure</td>
</tr>
<tr>
<td>ABC</td>
<td>Acceptable Biological Catch</td>
</tr>
<tr>
<td>ACL</td>
<td>Annual Catch Limit</td>
</tr>
<tr>
<td>ACT</td>
<td>Annual Catch Target</td>
</tr>
<tr>
<td>AFSC</td>
<td>Alaska Fisheries Science Center</td>
</tr>
<tr>
<td>ASMFC</td>
<td>Atlantic States Marine Fisheries Commission</td>
</tr>
<tr>
<td>B<sub>MSY</sub></td>
<td>Biomass associated with MSY</td>
</tr>
<tr>
<td>BSAI</td>
<td>Bering Sea/Aleutian Islands</td>
</tr>
<tr>
<td>CFMC</td>
<td>Caribbean Fishery Management Council</td>
</tr>
<tr>
<td>CNMI</td>
<td>Commonwealth of the Northern Mariana Islands</td>
</tr>
<tr>
<td>CPS</td>
<td>Coastal Pelagic Species</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>DB-SRA</td>
<td>Depletion-Based Stock Reduction Analysis</td>
</tr>
<tr>
<td>DCAC</td>
<td>Depletion-Corrected Average Catch</td>
</tr>
<tr>
<td>EEZ</td>
<td>Exclusive Economic Zone</td>
</tr>
<tr>
<td>F</td>
<td>Fishing Mortality</td>
</tr>
<tr>
<td>F<sub>ABC</sub></td>
<td>Fishing Mortality level/rate associated with ABC</td>
</tr>
<tr>
<td>F<sub>MSY</sub></td>
<td>Fishing Mortality level/rate associated with MSY</td>
</tr>
<tr>
<td>FEP</td>
<td>Fishery Ecosystem Plan</td>
</tr>
<tr>
<td>FMP</td>
<td>Fishery Management Plan</td>
</tr>
<tr>
<td>GHL</td>
<td>Guideline Harvest Level</td>
</tr>
<tr>
<td>GMFMC</td>
<td>Gulf of Mexico Fishery Management Council</td>
</tr>
<tr>
<td>HMS</td>
<td>Highly Migratory Species</td>
</tr>
<tr>
<td>IATTC</td>
<td>Inter-American Tropical Tuna Commission</td>
</tr>
<tr>
<td>ITQ</td>
<td>Individual Transferable Quota</td>
</tr>
<tr>
<td>M</td>
<td>Natural Mortality Rate</td>
</tr>
<tr>
<td>MAFMC</td>
<td>Mid-Atlantic Fishery Management Council</td>
</tr>
<tr>
<td>MPS</td>
<td>Migratory Pelagic Species</td>
</tr>
<tr>
<td>MRIP</td>
<td>Marine Recreational Information Program</td>
</tr>
<tr>
<td>MSE</td>
<td>Management Strategy Evaluation</td>
</tr>
<tr>
<td>MSRA</td>
<td>Magnuson-Stevens Fishery Conservation and Management Act (reauthorized)</td>
</tr>
<tr>
<td>MSST</td>
<td>Minimum Stock Size Threshold</td>
</tr>
<tr>
<td>MSY</td>
<td>Maximum Sustainable Yield</td>
</tr>
<tr>
<td>NEFMC</td>
<td>New England Fishery Management Council</td>
</tr>
<tr>
<td>NEFSC</td>
<td>Northeast Fisheries Science Center</td>
</tr>
<tr>
<td>NERO</td>
<td>Northeast Regional Office</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>NMFS</td>
<td>National Marine Fisheries Service</td>
</tr>
<tr>
<td>NPFMC</td>
<td>North Pacific Fishery Management Council</td>
</tr>
<tr>
<td>NWFSC</td>
<td>Northwest Fisheries Science Center</td>
</tr>
<tr>
<td>NS1</td>
<td>National Standard 1 Guidelines</td>
</tr>
</tbody>
</table>
OFL Overfishing Limit
ORCS Only Reliable Catch Stocks
OY Optimum Yield
P* Probability of Overfishing
PDF Probability Distribution Function
PDT Plan Development Team
PFMC Pacific Fishery Management Council
PIFSC Pacific Islands Fisheries Science Center
PIRO Pacific Islands Regional Office
PRIA Pacific Remote Island Areas
PSA Productivity-Susceptibility Analysis
SAFMC South Atlantic Fishery Management Council
SEDAR Southeast Data, Assessment, and Review
SEEM Social, Economic, Ecological and Management (Analysis)
SEFSC Southeast Fisheries Science Center
SRA Stock Reduction Analysis
SSC Scientific and Statistical Committee
SWFSC Southwest Fisheries Science Center
TAC Total Allowable Catch
TAL Total Allowable Landings
USVI United States Virgin Islands
WCPFC Western Central Pacific Fishery Commission
WPFMC Western Pacific Fishery Management Council
BACKGROUND

The 2009 revised National Standard 1 (NS1) Guidelines to the 2006 reauthorized Magnuson-Stevens Fishery Conservation and Management Act (MSRA) outline the process for regional fishery management councils (councils) and Scientific and Statistical Committees (SSCs) to follow when specifying annual catch limits (ACLs). Each region’s SSC is instructed to set overfishing limits (OFLs) for all managed stocks in a fishery. The OFL represents the upper limit of catch that can be harvested from current biomass and is calculated by applying a limit to the fishing mortality rate (F) that is typically set by maximum sustainable yield (MSY) or its proxy (Shertzer et al 2010). Following the establishment of OFL values, SSCs develop acceptable biological catch (ABC) recommendations for each stock. The ABC is a catch limit that is calculated downward from the OFL based upon the councils’ ABC control rules to account for scientific uncertainty: the greater the degree of scientific uncertainty, the greater the difference between the OFL and ABC (See Figure I).

Based upon SSCs’ ABC recommendation, councils establish ABC levels and adopt annual catch limits (ACLs), which are required under MSRA as a tool to prevent the OFL from being exceeded. ACLs must be set less than or equal to ABCs and represent the level of annual catch that can be harvested from a stock or stock complex. ACLs also serve as the basis for invoking accountability measures (AMs) in a fishery. AMs are management controls that prevent ACLs from being exceeded and include measures such as annual catch targets (ACTs), time/area closures, and payback mechanisms in response to ACL overages.

Figure I. Relationship of OFL >/= ABC >/= ACL >/= ACT.¹

Scientific Uncertainty and ABCs

Scientific uncertainty is the first critical factor SSCs and councils consider when setting catch limits. Scientific uncertainty reflects uncertainty around the determination of stock status and projections of how a stock will respond to different harvest strategies in the future. This uncertainty stems from imperfect understanding of biological and ecological information such as assessment parameter estimates, abundance, productivity, vulnerability, trophic interactions, bycatch in other fisheries, changing states of nature, and other factors.

SSCs account for scientific uncertainty in the specification of ABCs through the application of ABC control rules. ABC control rules are procedures set by councils with input from their SSCs, which guide SSCs in characterizing scientific uncertainty and incorporating appropriate buffers from the OFL when recommending ABC levels to the councils. While control rules account for varying levels of scientific uncertainty, they are also a function of councils’ risk tolerance. Resource needs, data availability, stock assessment frequency, management history and capacity, and SSC guidance all inform a council’s control rule selections. Typically, more scientific uncertainty regarding a stock corresponds with a more risk averse ABC control rule and thus a larger buffer from OFL to ABC. Ultimately, control rules reflect policy decisions made by councils and express their preferred level of risk tolerance for overfishing a stock.

The ABC control rules currently in place are diverse and vary across council regions; they reflect different interpretations of the MSRA statute and NS1 guidelines, a range of information availability, and the unique ecological and management context of each region’s managed fisheries. Many councils use a tiered ABC control rule, in which stocks are categorized into tiers depending on the availability and quality of scientific data. For each tier, the control rule outlines the different processes and parameters for specifying ABCs. While the use of tiered ABC control rules provides SSCs and managers with valuable guidance, the first few years of ACL implementation have provided councils with additional applied experience. Some councils have expressed concern that the ABC resulting from the approach specified by a certain tier is overly precautionary or not precautionary enough, and in some cases have been reluctant to utilize a particular tier. Many councils lack the data to apply their upper level tiers; thus some tiers are only minimally utilized if at all. Managers have also expressed that the tiered systems may be too rigid in practice, and that councils would benefit from additional flexibility to respond on a case-by-case basis.

The National Standard 1 guidelines specify that ABCs must be set at a level such that there is no more than a 50% probability that overfishing will occur. The majority of councils specify an acceptable probability of overfishing (p*) when establishing ABCs for at least one stock in their region. While p* can be articulated for any stock, p* can only be applied to stocks with enough information to determine a probability distribution around the OFL. Several councils apply p* within their tiered control rules, where the selection of p* is informed and/or bounded by data availability and scientific uncertainty. While specifying acceptable probabilities of overfishing is a way for councils to communicate their risk tolerance, this approach focuses more on the probability than on the consequences of overfishing a stock.
Councils use a number of approaches to incorporate estimates of scientific uncertainty when establishing ABCs. Some councils incorporate variables during the specifications process to represent estimates of scientific uncertainty. These variables can be used to structure control rules in several ways, such as informing reductions in the maximum allowable p*, adjusting the OFL downward before a p* is applied, or informing a percentage reduction applied to the OFL to arrive at an ABC. For stocks without enough information to produce OFL estimates, direct reductions or scalars can be applied to other reference points such as F_{MSY} or a proxy. A number of methods have been developed to estimate uncertainty and inform ABC specification of data poor stocks. For the most data poor stocks, where proxies cannot be established, ABCs are commonly determined by applying straight percentage reductions to estimates of historic catch.

Management Uncertainty, ACLs, ACTs and AMs

In addition to accounting for scientific uncertainty, managers must also account for management uncertainty when establishing ACLs and AMs. Management uncertainty describes the accuracy and precision with which management measures limit catch to allowable levels and is largely a function of the existing monitoring, reporting, and enforcement mechanisms in place for a fishery. Monitoring programs including surveys, trip reporting, dealer reporting, and observer coverage play an important role in reducing sources of management uncertainty by helping managers compare estimated and actual catch relative to ACLs. These data collection programs can also provide data such as fishing mortality, bycatch estimates, size-at-age data, and other information that can help capture scientific uncertainty and improve stock assessments.

Management uncertainty arises from difficulty in accurately accounting for total catch, common in fisheries with a large recreational and/or subsistence component, and in multispecies fisheries where not all catch is landed. Councils employ a number of measures to account for management uncertainty and help to avoid exceeding an ACL. Many councils buffer against management uncertainty by establishing ACTs below the ACL. ACTs act as “target” reference points in a fishery, and can reduce the possibility that the “limit” reference point, the ACL, is exceeded. These reductions can be incorporated on an ad hoc basis or informed by an ACT control rule. In addition to ACTs, managers employ a number of other AMs to prevent and/or mitigate ACL overages such as in-season area closures, reductions in trip or bag limits, and reductions to a subsequent year’s ACL. Several councils rely on the input from various committees or advisory groups to help characterize management uncertainty and determine appropriate mechanisms to ensure ACLs are not exceeded.
DISCUSSION

Following the 2006 MSRA, councils and their management partners responded rapidly to comply with the ACL mandate by drafting FMP amendments, developing methods to characterize and account for scientific and management uncertainty, and establishing specifications processes to meet the implementation deadline. Now, with ACLs established for all managed fisheries subject to the ACL mandate, federal fishery managers are transitioning to a new phase in thinking about risk policy. Councils are learning from their own experience and the experiences of other regions, and evaluating what approaches are most effective for integrating and communicating their risk preferences. Looking ahead, councils are exploring opportunities to advance and refine their decisions about risk.

In this second phase of risk policy development, the discussion between councils and their management partners is evolving to encompass a more strategic, long-term perspective on risk. Councils are finding that they can use their risk policies and control rules as a pathway to explore broader management objectives, including the consideration of social, economic, ecological and biological factors as well as the achievement of optimum yield. The specification of catch limits through the application of control rules provides a platform for structuring and communicating these tradeoff decisions. Moreover, the development and application of control rules can help make tradeoffs more systematic and transparent. The initial applications of, and subsequent revisions to control rules, demonstrate that risk policies are not static and will continue to evolve over time. Rather than a product to be finalized, risk policies are a pathway for ongoing conversations between the council, SSC, and their management partners.

Balancing Structure and Flexibility

The control rules employed across council regions all impart some structure to the specification of ABCs and ACLs, reflecting the value that councils place on consistency, transparency and administrative record-building. However, even within the more structured tiered approaches, councils often preserve some flexibility, recognizing that stocks with similar data availability may warrant different levels of precaution. For example, tiers 1 and 2 of the South Atlantic Fishery Management Council’s (SAFMC’s) ABC control rule examine four factors (vulnerability, stock status, uncertainty and data availability) to determine the maximum allowable p^* for each stock in these categories.

In some cases, councils have developed control rules with tiers that are rarely or never used. While these tiers can provide a frame of reference, the limited application of data rich tiers poses the question of whether tiered structures guide or constrain councils in managing for risk and uncertainty. One perspective is that unused tiers demonstrate the need to better align a risk policy with information availability. Another perspective suggests that the articulation of tiered classifications can communicate the council’s thinking about what constitutes a higher or lower risk scenario and their respective risk tolerances. A tiered approach, with or without unused categories can also provide a frame of reference for improving information availability and prioritizing stocks for assessment. This is evident from the language used to describe some tiers; for example, the Mid Atlantic Fishery Management Council (MAFMC) uses the terms “ideal”,
preferred”, “acceptable” and “unreliable” to characterize the quality of assessments and batch stocks into one of four tiers.

As councils move into this second phase of risk policy, there is momentum for risk policies to be more inclusive of the different social, economic, ecological and biological dimensions of risk and optimum yield considerations. The flexibility currently built into structured control rules is often used to adjust catch levels to account for these factors. For example, parrotfish play an important ecological role as coral reef grazers, and also have an important social and economic role in parts of the U.S. Caribbean. The Caribbean Fishery Management Council’s (CFMC’s) specification of ACLs for parrotfish incorporated a buffer that acknowledges this species’ vital ecological role and susceptibility to overfishing, while also recognizing the region’s social and economic dependence on this stock.

Managing Risk

While identifying, quantifying and clearly communicating about risk is an ongoing challenge, councils have taken steps to recognize specific types of risks. Several councils incorporate measures of biological risk when specifying catch limits by evaluating characteristics such as the vulnerability, susceptibility and life history characteristics of a stock. These metrics can guide the council’s risk policy and directly inform management measures, particularly where there is some flexibility within a tiered control rule. For example, MAFMC groups stocks into ‘typical’ and ‘atypical’ categories based upon their life history characteristics; ‘atypical’ stocks are subject to an increased level of precaution. To prevent stocks from becoming overfished and maintain stock biomass near levels that support MSY, the Pacific Fishery Management Council (PFMC) employs harvest control rules for stocks managed under the Groundfish FMP. The harvest control rules recommend progressive reductions to ACLs relative to the ABC as biomass drops below B_{MSY} toward the minimum stock size threshold (MMST).

Recognizing and managing risk is an evolving process built on the collective experience of managers and scientists across regions. While scientific information can help inform risk determinations, complex marine ecosystems are difficult to predict and managers are challenged to account for ecosystem-level risks that are not yet well understood. In some cases, managers have taken an early precautionary approach by developing FMPs for as-yet undeveloped fisheries. For example, the North Pacific Fishery Management Council (NPFMC) developed an Arctic FMP to establish management authority over fisheries that could develop in the future as Arctic ice recedes. Managers and scientists have been paying particular attention to rebuilding groundfish stocks and the role of forage fish in the Pacific, Mid-Atlantic and New England regions. Integrating biological and ecological considerations, balancing rebuilding requirements with social and economic considerations, preserving predator-prey relationships, and anticipating the risks posed by habitat changes and regime shifts are likely to be central components of ecological risk discussion moving forward.

Accommodating Data Limitations

The process for specifying ACLs outlined in the NS1 guidelines is extremely data intensive. Councils have made significant progress specifying ACLs for data-poor stocks, despite data
limitations and high levels of uncertainty. Control rules and tiered approaches account for the quality of assessments, availability of information, and the level of scientific uncertainty, and recommend corresponding levels of precaution. Scientists and managers have made considerable advances in the development and application of data-poor methods. Ongoing work to enhance management of stocks for which only catch data are available (“Only Reliable Catch Stocks”, ORCS) continue to advance our ability to manage data-poor stocks. Managers have also formalized processes to utilize local knowledge, and incorporate the expert judgment of fishers, scientists, and managers.

The management of data-poor stocks can be particularly challenging when an entire fishery or stock complex is constrained by high uncertainty around one or more individual stocks. Particularly for multispecies fisheries and reef complexes, bycatch of data-poor stocks can result in management to the “lowest common denominator,” in which precautionary catch limits for data poor stocks constrain utilization of other stocks. Councils are taking steps to avoid unnecessarily constraining target fisheries. For example, in the Caribbean and Western Pacific, area based management is used to address the differences in catch composition and localized stock status across a region. Several councils have grouped stocks into family complexes and set complex-level ACLs to avoid managing and accounting for a multitude of small, individual ACLs in reef fish complexes. Others, including the Caribbean and South Atlantic regions, have removed non-target or rarely caught stocks from management units and reclassified them as ecosystem component species, or in some cases delegated management responsibility to state agencies, to focus their efforts on stocks for which there are active federal fisheries.

Given the limited resources for stock assessments and the large number of managed stocks in the U.S., data availability and scientific uncertainty will always be a challenge. While managers and scientists continue to develop and refine data-poor methods, progress in managing data-poor stocks is also the product of leveraging existing information and clarifying tradeoffs in the face of high uncertainty.

Characterizing and Responding to Management Uncertainty

The requirement to adhere to ACLs and utilize accountability measures has elevated the role of management uncertainty as metric for management success. Improving management certainty, like improving scientific certainty, takes considerable time and resources and is a stepwise, longer-term goal. Councils have made significant progress in recognizing and accounting for management uncertainty within their specifications processes. Strategies include the use of ACTs, buffers to account for bycatch and differences between observed and reported landings, adjustments to bag limits and seasons in recreational fisheries, and payback mechanisms to subtract ACL overages from the subsequent fishing year.

Councils have also drawn on the expertise of their management partners to help characterize and respond to management uncertainty. For example the MAFMC relies on the expertise of their Species Monitoring Committees to develop ACT control rules and provide recommendations to the Council on ACTs and other management measures to ensure adherence to catch limits. Likewise, the Gulf of Mexico Fishery Management Council (GMFMC) employs their Socioeconomic Committee to help set ACT buffers and provide analysis on the social and economic impacts of
potential ACT buffers. The Western Pacific Fishery Management Council (WPFMC) established a Social, Economic, Ecological, and Management (SEEM) Working Group, which scores a series of factors including management uncertainty and recommends percentage reductions from the ABC ad ACL during their specifications process.

Building on Relationships, Processes and Tools

Risk policy discussions to date have tended to focus on specifying acceptable probabilities of overfishing without explicit consideration of the social, economic, ecological and biological tradeoffs surrounding those decisions. As councils embrace this second phase in risk policy and move toward a broader perspective on risk, managers can learn from the innovative ways councils have already begun to structure, consider and communicate about risk.

Councils have developed a number of tools to evaluate tradeoffs, structure decisions and communicate about the consequences of risk. For example, the NEFMC employs an innovative approach to manage their scallop fishery. The Council’s SSC and Scallop Plan Development Team present managers with a decision table that illustrates the potential tradeoffs in yield that correspond to different \(p^* \) choices. This approach allows the Council to incorporate precaution in response to uncertainty while also optimizing yield in this high value fishery. Similarly, the NPFMC’s SSC and Crab Plan Team examined the economic tradeoffs in forgone yield associated with setting ABCs for crab, evaluating how small changes in the \(p^* \) applied during the specifications process could potentially have significant impacts on revenue. While the scallop and crab fisheries are high value, data rich fisheries, councils have also developed tools to support the specification of catch limits for stocks in their most data limited tier. The SAFMC and their SSC employ a decision tree, consisting of a set of questions regarding the characteristics and trends for a particular stock, which guides the case-by-case evaluation of OFL and ABC recommendations for their data poor stocks.

In addition to developing tools, councils have adopted processes to guide risk considerations and catch level recommendations in a systematic way. The WPFMC established a Social, Economic, Ecological, and Management (SEEM) Working Group of social scientists, economists, Council staff, and fishers to evaluate region-specific considerations to inform the Council’s selection of management buffers when specifying ACTs. The GMFMC relies on the guidance from their ABC Control Rule Working Group to support the application and refinement of their ABC control rules. Consisting of a Council member, SSC members and NMFS staff, the Working Group supports the Council and SSC in the evolution of their control rule.

Central to the tools and processes described above are the relationships that support them. Councils rely on the input and expertise of their management partners and advisors at almost every step in the management process. Leveraging these relationships to explore tradeoffs and evaluate the implications of different risk approaches will continue to be an important part of this collaborative and ongoing process.
The North Pacific Fishery Management Council (NPFMC) oversees six fishery management plans including: Bering Sea/Aleutian Islands (BSAI) Groundfish, Gulf of Alaska Groundfish, BSAI Crabs, Sea Scallops, Alaska Salmon, and the Arctic. The NPFMC uses a tiered system to set ABCs that incorporates either a probabilistic (p*) approach or a fixed buffer below the OFL for both groundfish plans and the crab plan, and a fixed buffer approach for scallops. At present, the BSAI Crab, Alaska Salmon, and Sea Scallop FMPs defer authority to set precautionary Guideline Harvest Levels (GHLs) or Total Allowable Catches (TACs) to the State of Alaska, but the Council ensures that they are within ACLs and OFLs. Alaskan salmon and Pacific halibut are exempt from specifications because they are managed by the State of Alaska and the Pacific Salmon Treaty and the Pacific Halibut Commission, respectively. The operating framework for setting crab and scallop ABCs and groundfish TACs is applied on an annual basis as described below:

\[
\text{Overfishing Limit (OFL) } \geq \text{ Acceptable Biological Catch (ABC)}
\]

\[
\text{ABC } = \text{ Annual Catch Limit (ACL)}
\]

\[
\text{ACL } \geq \text{ Annual Catch Target (ACT)}
\]

\[
\geq \text{ Total Allowable Catch (TAC) or Guideline Harvest Level (GHL)}
\]

The NPFMC uses TACs for both groundfish FMPs as catch targets, like ACTs. ABC levels are specified by the SSC based on Plan Team review and other input prior to being adopted by the Council. TACs are set equal to ACLs or adjusted downward by the Council for conservation, bycatch, social, economic, and other considerations.

Scientific Uncertainty
The SSC examines multiple sources of scientific uncertainty in the ABC specification process including observation error and other “within” assessment uncertainty sources, errors in proxy definition, parameterization errors in models, choices of methodology for assessments, and choices of which assessment data to include or omit. The North Pacific SSC acknowledges that estimates of “within” model uncertainty do not fully capture the true extent of scientific uncertainty associated with stock status. As a result, they incorporate considerations of additional uncertainties such as errors in estimating \(F_{MSY}\) or \(B_{MSY}\) or their proxies, parameterization estimation errors for such things as the catchability quotient (q), and choice of appropriate assessment methodologies. Sigma (\(\sigma\)), a random variable used as a proxy to represent scientific uncertainty, accounts for all of these sources of scientific uncertainty under the p* approach used for crab stock specifications in the North Pacific. The SSC and Plan Teams continue to assess methods for characterizing scientific uncertainty in OFL calculations.

Specifications in the North Pacific region are supported by expertise from the Alaska Fisheries Science Center (AFSC). The frequency of stock assessments and the extensive review process adds scientific rigor to advice provided for fisheries management in the North Pacific region. Further, this enhances the ability of the SSC to account for scientific uncertainty within the stock assessment models and trends in recruitment or other population parameters in a timely manner. The Council has also been proactive in establishing ABCs for non-target species, such as sharks,
skates, and octopus to ensure that potential fisheries development occurs based on sound information and data collection programs.

Six-Tiered Approach
The North Pacific Council employs a six-tiered approach to setting ABCs for the groundfish fisheries; each tier corresponds to the level of information available for a particular stock. ACLs are set equal to ABCs in the North Pacific region. The SSC establishes B_MSY or a proxy for current biomass and calculates a Fishing Mortality rate (F) associated with the ABC (F_ABC) based on assessment information, and sets a buffer to capture scientific uncertainty from their proxy modeling. These calculations are capped by overfishing proxies based on biomass levels and stock status. For a stock to be categorized in a tier, there must be specific information available to inform its stock status, as summarized below:

Tier 1: Require reliable point estimates of B, B_MSY, and PDF of MSY;
1a) F_ABC ≤ the harmonic mean of the Probability Distribution Function (PDF)
1b) F_ABC ≤ the harmonic mean of the PDF x stock biomass estimate
1c) F_ABC = 0

Tier 2: Require reliable point estimates of B, B_MSY, F_MSY, F_35%, and F_40%;
2a) F_ABC ≤ F_MSY x estimated fishing mortality
2b) F_ABC ≤ F_MSY x estimated fishing mortality x stock biomass estimate
2c) F_ABC = 0

Tier 3: Require reliable point estimates of B, B_40%, F_35%, and F_40%;
3a) F_ABC ≤ F_40%
3b) F_ABC ≤ F_40% x stock biomass estimate
3c) F_ABC = 0

Tier 4: Require reliable point estimates of B, F_35%, and F_40%; F_ABC ≤ F_40%

Tier 5: Require reliable point estimates of B and M; F_ABC = 0.75 x M

Tier 6: Require reliable catch history from 1978 to 1995; ABC = 0.75 x OFL

The maximum ABC derived from the formula in the tier system can be further adjusted downward by the SSC to account for additional unquantifiable uncertainty; the guidelines above represented maxima in each tier. Operationally, the Groundfish Plan Team provides input on OFLs and ABCs on a species by species basis, which the SSC then reviews. The SSC reviews these recommendations to create Council options for additional buffers from OFLs to ABCs.

TAC Specification Tradeoffs
In contrast to the six-tiered approach used for groundfish specification, crab stocks in tiers 1-3 utilize a p* approach that is adjusted on an ad hoc basis for individual stocks. Operationally, use of the p* approach results in setting ABCs equal to OFLs for most stocks, or provides a larger buffer as desired by the Council. Sigma is a variable used in the p* approach to account for sources of
scientific uncertainty; through informing p* values, sigma adjusts the ABC downwards from the OFL. In 2011, the North Pacific SSC and Crab Plan Team spent considerable effort examining the tradeoffs of foregone yield in terms of discounted revenues and net present values inherent in setting annual ABCs for crab (Punt et al. 2012). The NPFMC was provided a full decision analysis of the crab fishery centered on both components of risk: probability and potential consequences of overfishing. While many Councils utilize a p* approach to quantify the probability of overfishing, the analysts looked at how small changes in p* values could potentially have large consequences for fishery revenue by leaving harvestable crab in the ocean.

Punt and his colleagues discovered that the economic benefits of managing for stability in long-term catches are not fully offset by the short-term costs of reductions in p* values (and thus, revenue) due to discounting for Alaskan crab (Punt et al. 2011). This academic study highlights a method to incorporate and quantify potential dollar losses to a fishery due to a particular p* choice during the ACL/TAC specification process that can be employed for many fisheries.

Management Uncertainty and Accountability Measures
Given the high level of management certainty in North Pacific Fisheries, NPFMC does include additional buffers below the established TACs. TACs are used by NMFS in-season managers as catch limits and also serve as real-time accountability measures, which are only rarely exceeded (and in most cases when exceeded, catches remain below the ABCs and well below OFL). Comprehensive at-sea observer coverage, near real-time electronic catch monitoring systems, partial and total fishery closures, and other in-season measures all contribute to the region’s management certainty. For example, crab stocks are managed with a federal catch-shares program and fishery closures are utilized if catch nears the TAC in a fishing season, without regard for individual carryovers. The scallop fishery, on the other hand, operates as a voluntary catch-shares program. This fishery in the North Pacific is for weathervane scallops only, and the State of Alaska oversees implementation of the 100% voluntary observer coverage, catch reporting, and shutdown of subareas when catch is projected to reach the GHL in a fishing season. As a result, the scallop ABC is set at 90% of the OFL; the Council does not anticipate establishing an additional buffer between the ABC and the OFL for these stocks. The use of state-set GHLs and AMs also provides support for a 10% carryover provision currently in place for the sablefish and halibut fisheries.

Continuing Challenges
Scientists involved in North Pacific fisheries management are working on evaluating the current groundfish ABC specification process through Management Strategy Evaluations (MSEs). MSEs are an effective way to develop robust practices that prevent overfishing while achieving optimum yield. Additional aspects of the MSEs that are underway in the region include evaluating the impact of bycatch species and the probability of exceeding a set ACL.
The Pacific Fishery Management Council (PFMC) administers four FMPs: Coastal Pelagic Species (CPS), Highly Migratory Species (HMS), Groundfish, and Salmon. Stocks within the Groundfish and CPS FMPs use a P* approach for determining ABCs during the ACL specification process. HMS stocks are exempted from ACL specification because they are managed by international fisheries management organizations, such as the Inter-American Tropical Tuna Commission (IATTC). Management of salmon in the Pacific is complex; salmon have unique life histories and are also subject to management under international and tribal treaties. As a result, salmon runs in the Pacific region are co-managed among the Council, states of Washington, Oregon, and California, Pacific Northwest Tribes, and the Pacific Salmon Commission. While most salmon runs are exempt from ACL specification, the Council still determines catch limits for these stocks. Given the challenges associated with managing such diverse stocks, the PFMC utilizes different approaches for specifying catch limits and quotas across their FMPs. The PFMC and SSC have made significant advances in identifying, quantifying, and incorporating scientific uncertainty into the establishment of ACLs for non-exempted stocks under their jurisdiction, especially for stocks within the Groundfish FMP.

Scientific Uncertainty
The SSC incorporates scientific uncertainty buffers between the OFL and the ABC according to the tiered-classification system for species in the Groundfish FMP as described in the next section. The variable sigma (σ) is used to characterize estimates of scientific uncertainty, and is applied along with p* to an OFL distribution to determine a buffer from OFL to ABC. The SSC’s selection of sigma adjusts the OFL downward to account for scientific uncertainty: the greater the uncertainty, the larger the buffer from OFL to ABC. The default sigma for data rich stocks has been set using a meta-analytical approach that looks at variability in biomass estimates across assessments, assessment model uncertainty such as data limitation, model uncertainty, parameterization error, assessor bias, and others (Ralston et al. 2011). For data poor stocks, scientific uncertainty is difficult to characterize and OFLs are set by applying limits of fishing mortality estimates (F) to proxies of MSY based on “catch-only” methods described in MacCall 2010, Dick and MacCall 2011, and Cope 2012. In practice, the SSC sets a sigma value for stocks in Tier 1, and uses a two and four-fold increase to assign sigma values to stocks in Tier 2 and Tier 3, respectively.

The Northwest and Southwest Fisheries Science Centers and state fisheries management agencies provide stock assessments to the Pacific Council that help inform specification of catch limits. New and updated stock assessments can provide additional data on stock status and biomass reference points to support management. However, they do not necessarily improve the certainty around those estimates: measures of scientific uncertainty may actually increase in response to new assessments.

Three-Tiered Approach
The Pacific Council employs a three-tiered approach for the Groundfish FMP harvest specifications process based on the level and type of information available. Stocks in Tier 1 are considered data-rich, while stocks in Tier 2 and 3 are increasingly data poor. Groundfish stocks that are most commonly targeted tend to fall into Tiers 1 and 2; the remaining stocks, representing
the majority of the ninety-plus managed Groundfish species, fall into Tier 3. In addition to
application of the sigma variable described above, stocks are assigned either a P* value or straight
reduction from the OFL. A summary of the Pacific Council’s ABC control rules under the three-
tiered approach is provided below:

Tier 1 - data-rich stocks; Council specifies a P* based on SSC input, maximum p* is 0.45

Tier 2 - less data reliability; Council chooses P* or straight reduction from OFL

Tier 3 - data-poor stocks; Council chooses P* or straight reduction from OFL

Prior to the passage of Amendment 23 for the Groundfish FMP in 2012, ABCs were set based upon
straight reductions of 25%, 50% and 75% from the OFL for the above three tiers, respectively. The
inclusion of the sigma variable accounts for differences in scientific uncertainty across tiers
(previously characterized by the different percentage reductions above), and the Council selects P*
values based on their preferred level of risk tolerance. With a few exceptions, the Council has the
flexibility to choose a P* on a stock-by-stock basis within each tier, but is exploring applying a
single P* value for each tier. The default maximum P* is set at 0.45 currently, though the Council
can adopt more conservative values. For example, at the June 2012 PFMC meeting, the Council
adopted precautionary P* values of 0.4 for sablefish to improve chances that sablefish abundance
would increase over the short-term, and 0.3 for spiny dogfish because the F_MSY proxy for dogfish
was flagged as being inappropriate for the species’ life history.

Sigma and P* values are applied during the Council’s biennial harvest specifications process. With
the establishment of the P*-based ABC control rule, the SSC recommends default sigma values of
0.36 for Tier 1, 0.72 for Tier 2, and 1.44 for Tier 3. The default sigma can be overridden by
species-specific sigma estimates if they exceed the default value. For example, a sigma value of
0.41 instead of 0.36 was used for Widow rockfish for the 2013-2014 ABC specification. The
Council decided under their preferred ABCs for 2011-14 to use the P* approach for stocks in Tiers
1-3. To assist the Council in choosing the appropriate buffer for all tiers, the SSC provided a table
that maps potential P* values to corresponding buffer fractions from OFL to ABC. The Council
can then determine its preferred level of risk and use the table to select the appropriate buffer and
calculate the ABC for the stock.

40:10 / 25:5 Harvest Control Rules
The Pacific Council employs two harvest control rules for the explicit purpose of quickly
rebuilding stocks managed under the Groundfish FMP to biomass levels that support MSY. The
40:10 and 25:5 ABC harvest control rules are applied independently of OFL to ABC buffers so that
scientific uncertainty is separated. These strategies are typically used when a stock’s biomass is
below the proxy B_MSY value but above the minimum stock size threshold (MSST) set by the
Council. The 40:10 rule applies to all groundfish stocks in the FMP except flatfish, which are
instead managed with the 25:5 control rule. The “40” and “25” refer to their respective proxy B_MSY
values of B_{40%} and B_{25%}, or 40% and 25% of unfished biomass, respectively. Prior to 2011, all
groundfish were managed to B_{40%}. The flatfish proxy B_MSY was revised in response to the 2009
petrale sole assessment and further consideration of flatfish life history characteristics. The 40:10
and 25:5 control rules reduce the ACL relative to the ABC if a groundfish stock’s biomass drops below the B_{MSY} levels, with the purpose of returning the stock to B_{MSY} more quickly. The reduction becomes progressively larger as biomass drops towards the MSST.

Management Uncertainty and Accountability Measures

Conservation concerns and management uncertainty considerations are currently blended together on a flexible, *ad hoc* basis during the ACL specification process. The Council employs a suite of measures to ensure ACLs are not exceeded including additional buffers below the ACL, reductions in bag limits for the recreational sector, depth closures, monthly fishing opportunity allocations, and other time or area closures. There is significant management certainty in the region’s groundfish fishery as a result of reporting requirements and 100% observer coverage required under the groundfish ITQ program. While AMs are triggered if an ACL is overshot more than once in four years, the Council is proactive in avoiding ACL overages and responds to overages even within a single year. AMs in place currently for PFMC fisheries include seasonal, gear, and fishery closures, increased monitoring, and ACL-overage reductions from future ACLs, among others.

Continuing Challenges

The PFMC continues to struggle with the difficult task of setting ACLs for stock complexes that include species of varying life histories, as well as updating assessments for the ninety-plus stocks within their Groundfish FMP. The Council and SSC continue to investigate the challenges of managing multispecies fisheries and hope that revisions to the NS1 Guidelines will provide guidance. The PFMC is also currently seeking approval from NMFS for a 10% carryover provision for their sablefish fishery to provide additional flexibility and management certainty. The Council and SSC are still in discussion over whether or not the sigma and P^* values provide the appropriate amount of precaution; some feel they are too precautionary while others feel they are not precautionary enough. Without a clear process for reconsideration of these buffers, the Council is interested in exploring a more coherent risk framework that incorporates more specific examination of consequences. Finally, the Pacific Council is working on how to deal with the challenging consequences of rebuilding long-lived rockfish stocks as mandated under the MSRA; the Council would benefit from additional guidance on how to weigh social and economic factors with the directive to rebuild as quickly as possible.
The Western Pacific Fishery Management Council (WPFMC) administers four area-based Fishery Ecosystem Plans (FEPs): Hawaii, Marianas (which includes Guam and the Commonwealth of the Northern Mariana Islands [CNMI]), American Samoa, and the Pacific Remote Island Areas (PRIAs). The WPFMC utilizes an area-specific approach to management with ecosystem boundaries defined by the Exclusive Economic Zones (EEZs) of the island areas under their jurisdiction. This arrangement is intended to reflect the biological isolation of the island regions and the social, cultural, and biological differences of each region. The Council also manages pelagic fisheries through the Pelagics FEP; this FEP is not archipelago specific and covers the entire Western Pacific Region. The four archipelagic FEPs encompass multiple types of species including precious corals, bottomfish, groundfish, reef fish and crustaceans, while the Pelagics FEP includes tunas, billfish, and other open ocean species.

The Council uses a qualitative, risk-based approach to establishing the OFL, ABC, ACL and ACT values for managed stocks. The WPFMC establishes ACLs for all stocks, except those managed under the Pelagics FEP that are exempt from the ACL requirement because they are subject to international management or have an annual life cycle. The Western and Central Pacific Fishery Commission (WCPFC) and the Inter-American Tropical Tuna Commission (IATTC) are responsible for managing pelagic stocks with ACL exemptions.

Scientific Uncertainty
With a large number of data-poor and unassessed stocks, there is significant scientific uncertainty associated with WPFMC-managed fisheries. The region currently has a biennial bottomfish stock assessment cycle that alternates assessments between Hawaii and the other islands; currently, only two or three stocks are assessed in each cycle. For unassessed stocks, WPFMC often relies on catch data to establish ACLs. Where catch data are not comprehensive, catch estimates are based on raising small survey sample sizes to account for the entire fishery and thus introduce error around point estimates of total catch. The Council has adopted conservative risk policies to deal with significant scientific and management uncertainties. For example, the Council recommended and NMFS imposed a total moratorium on the harvest of gold coral given high uncertainty associated with its age and growth.

Five-Tiered Strategy
The Western Pacific SSC adopted a five-tiered system as an overarching approach to derive OFLs and ABCs based on the South Atlantic Council’s model. As the tier increases, the level of information available for ABC determinations decreases, and the buffer between OFL and ABC increases as a result. The five-tiered specifications approach follows.

Tiers 1 and 2: $\text{ABC} = p^\ast\text{percentile of the probability distribution of OFL \times OFL}$

Tier 3: ABCs are determined based upon catch only methods such as Depletion-Corrected Average Catch (DCAC), Stock Reduction Analysis (SRA) or biomass-based surplus production models that incorporate estimates of stock resilience
Tier 4: \(ABC = 0.70 \times F_{\text{MSY}} \)

Tier 5: Three potential scenarios to choose from based on stock status:

- \(ABC = 1.0 \times \text{median catch if biomass is } > B_{\text{MSY}} \)
- \(ABC = 0.67 \times \text{median catch if biomass is } < B_{\text{MSY}} \text{ but } > \text{MSST (Minimum Stock Size Threshold)} \)
- \(ABC = 0.33 \times \text{median catch if biomass is } < \text{MSST (considered overfished)} \)

For Tiers 1, 2 and 3 that have the data and associated biological reference points such as MSY estimates or proxies to support such determinations, the Council seeks SSC advice on risk levels and scientific uncertainty to be incorporated into ABC calculations. The \(p^* \) approach can only be applied to stocks in Tiers 1 and 2, and the SSC qualitatively (and quantitatively, where possible) evaluates assessment quality, scientific uncertainty, stock status, and vulnerability/susceptibility analysis for stocks to present a range of potential \(p^* \) values for the Council’s consideration. The stocks in Hawaii’s “Deep Seven” bottomfish complex fall into Tiers 1 and 2 and currently utilize the \(p^* \) approach. The “Deep Seven” species complex is very culturally important in Hawaii, and has significantly more data available than other fish stocks. The \(p^* \) approach was applied to bottomfish stock complexes in American Samoa, Guam and CNMI based on a new assessment completed in 2012.

Tier 4 applies to stocks for which MSY has been calculated but there are no active fisheries. For these stocks, such as unharvested crustaceans and precious corals, ABC is set at \(0.70 F_{\text{MSY}} \). Tier 5 stocks are the most data-poor, and rely on long-term catch data, where available, to make harvest determinations.

For reef fish stocks throughout the region, the SSC relies on catch data and applies the Tier 5 control rule to inform ABC decisions. Due to the high number of reef fish species in the region, ACLs are set for family groupings rather than on a species by species basis. This offers a practical solution for the Western Pacific region as approximately twenty reef fish families account for 99% of total finfish catch in each island area.

Management Uncertainty:

The Western Pacific region has a high degree of management uncertainty. Hawaii’s “Deep Seven” bottom complex is the only fishery with a well-developed, reliable catch reporting system in place. The Council proposed mandatory catch accounting and reporting requirements for all fisheries in 2010, however the resources to support this proposal are lacking.

The Council and SSC rely on three options for translating the ABC determinations into ACLs. These options incorporate buffers for management uncertainty and can also take additional factors into account through Social, Economic, Ecological, and Management (SEEM) Analysis (described below).

1. \(ACL = ABC \) as reduced by SEEM Analysis
2. \(ACL = ABC \) as reduced by a percentage buffer based on management uncertainty only
3. \(ACL = ABC \) as reduced by SEEM Analysis; ACT established below ACL
Hawaii’s “Deep Seven” complex is the only fishery with sufficient information to support SEEM analysis, using Option 3. For all other stocks, the Council reviews the SSC’s ABC choice for each stock, then recommends an ACL while taking into account management uncertainty as described in Option 2 above.

SEEM Analysis
During the 2011 specifications process the Council established a framework to explicitly consider social and economic input during ACL specification for the “Deep Seven” complex. They established a Social, Economic, Ecological, and Management (SEEM) Working Group, comprised of social scientists, economists, Council staff, and fishers to evaluate region-specific considerations of specifying ACTs lower than ACLs. During SEEM Analysis, a dozen Working Group members individually scored specific factors of each consideration such as symbolic/cultural importance of a stock, financial security of and number of fishers engaged in a fishery, etc. on a scale of -2 to 2. The averaged results of the SEEM Analysis were vetted through the SSC, and then presented to the Council. After finding positive scores for social, economic, and ecological considerations, but a negative score for the management uncertainty component, the Working Group recommended and the Council adopted a precautionary 6% reduction of the ACL to an ACT for the “Deep Seven” stock complex during their 2012-2013 specification cycle.

Accountability Measures
The Hawaiian “Deep Seven” complex is the only fishery with sufficient information to support in-season AMs. Other fisheries rely on post-season AMs. Specifically, if a fishery exceeds its ACL in a fishing year, the Council must correct the operational issue that caused the ACL overage. This may include a recommendation that NMFS implement a downward adjustment to the ACL in the subsequent fishing year, or other measures, as appropriate.

Continuing Challenges
The WPFMC and the SSC share significant trust and cooperation, which is partly due to the long tenure of many of the Council staff and Council members and the collaborative effort of establishing the region’s first catch limits. The majority of fishing in the region occurs for subsistence purposes and is conducted by small-scale “lifestyle” fishers. Fish stocks in the Western Pacific historically have not been managed based on enforceable catch limits (with the notable exception of spiny lobster and precious corals); it remains to be seen how fishers will react to the Council’s new catch limits in place for the first time for many stocks. The Council is still examining, with their SSC and Working Groups, the appropriateness of only allowing downward adjustments of ACLs to ACTs despite the significant social and economic importance of the “Deep Seven” fishery.

Setting catch limits for data-poor stocks is an ongoing challenge, given the large number of managed stocks and limited stock assessment resources. The five FEPs were established to take an ecosystem approach to management and thus include hundreds of species, some of which are not presently harvested. The Council, with the support and advice of the SSC, has the option of removing species from the FEPs that are not currently “in the fishery”, or reclassifying them as “ecosystem component” stocks within the FEP (for which an ACL is not required under MS
The Gulf of Mexico Fishery Management Council (GMFMC) currently administers seven FMPs: Aquaculture, Spiny Lobster, Reef Fish, Shrimp, Migratory Pelagics, Corals and Red Drum. The GMFMC has taken a proactive step in establishing its Aquaculture FMP prior to any aquaculture development in the region’s EEZ. The Gulf and South Atlantic Councils cooperate to manage joint FMPs for Corals, Migratory Pelagics, and Spiny Lobster. Recently, several GMFMC FMPs have been updated to remove management of certain stocks to provide for better coordination of co-managed FMPs, allow for state management of certain species, and enable the Council to focus more fully on its active fisheries. The GMFMC currently applies a flexible tiered-approach control rule based on the amount of data available.

Scientific Uncertainty
The GMFMC explicitly addresses scientific uncertainty through setting the ABC below the OFL as usually determined by an ABC control rule. Stocks in Tier 1 of the current ABC control rule rely on SSC expert judgment and use of a spreadsheet for stock categorization to address scientific uncertainty as described in the three-tiered approach section. For the remaining tiers, the Council largely relies on SSC expert opinion, subject to Council approval, to capture varying degrees of risk and scientific uncertainty. The Council recognizes that their current approach is not inclusive of both probability and potential impacts of overfishing, and is in the process of revising their ABC control rule. An ABC Control Rule Working Group seeks to address the issue of explicitly dealing with risk and uncertainty through a straightforward and transparent process supported by Council members, the SSC, Council staff, and stakeholders alike.

Process for Developing and Revising ABC Control Rule
In 2009 the GMFMC formed an ABC Control Rule Working Group, which consists of a Council member, SSC members, and NMFS staff, to develop a decision-making framework that would assess scientific uncertainty and appropriate p* levels for their specifications process. The current ABC control rule resulting from that process was adopted in 2012. The Working Group makes recommendations to the SSC on the appropriate approaches to use. Informed by the Working Group’s recommendation and SSC expert judgment, the SSC makes recommendations to the Council on specific revisions to the ABC control rule. Given that the Council has not explicitly articulated their risk preference, the Working Group, SSC and the Council continue to re-visit appropriate p* values for specifying ABCs and revising methods for setting ABCs for data-poor stocks where a p* approach cannot be applied. The Control Rule Working Group is in the process of discussing and developing species-specific risk levels that incorporate the costs (foregone yield, overfishing a stock, e.g.) of different management approaches on an ad hoc basis; there is no standardized procedure in place for these considerations yet.

Three-Tiered Approach
The ABC Control Rule Working Group looked at frameworks from other regions and decided, like the Western Pacific Council, to model its specifications approach after that of the South Atlantic Council. They adopted a framework that employs a series of dimensions and tiers based on the level of information available to quantify scientific uncertainty and establish appropriate buffers between OFLs and ABCs. For Tier 1, which is the most data-rich tier, the Council has delegated
the setting of the p^* value to the SSC within a range of 0.30 to 0.50. The remaining tiers have default risk levels, but the Council may choose to adopt a higher or lower level of risk on a case-by-case basis. The current default ABC control rules are provided below.

Tier 1 – $ABC = \text{yield at } p^*; 0.30 \leq p^* \leq 0.50; p^*$ is determined by a spreadsheet that is used by the SSC to evaluate elements of uncertainty within stock assessments.

Tier 2 – $ABC = \text{yield at } p^* \text{ of } 0.30 \text{ as a default. Council may choose to substitute a } p^* \text{ of } 0.40 \text{ or } 0.50 \text{ based on available information. Assessments do not provide an estimate of MSY or its proxy, but instead provide a measure of OFL based on alternative methodology.}$

Tier 3a – $ABC = \text{mean landings } + 1 \text{ Standard Deviation as default. Council may choose to substitute the mean of recent landings, or } 0.5 \text{ or } 1.5 \text{ standard deviations above mean landings based on time series of data. This Tier is used when landings data, but no assessment, is available, and if the expert opinion of the SSC suggests the stock is unlikely to undergo overfishing.}$

Tier 3b – $ABC = 75\% \text{ of OFL as default, where OFL} = \text{mean landings; based on expert judgment of landings data. Council may choose to substitute multipliers of } 65\%, 85\%, \text{ or } 100\% \text{ of OFL. This Tier is used when landings data but no assessment is available, and if the expert opinion of the SSC suggests recent landings may be unsustainable.}$

For data-rich species in Tier 1, the control rule considers the type of assessment (biomass, proxies, etc.), within-model uncertainty, past performance of models, and bias of previous assessors. These considerations are used to determine a specific p^* that falls within the specified range of 0.30 – 0.50. For stocks in Tier 2, the framework incorporates reliability of catch history, and data poor methods such as scalar and natural mortality approaches, depletion-corrected average catch (DCAC), depletion-based stock reduction analysis (DB-SRA), and others into the specification of OFLs and recommendation of ABCs as described in Berkson et al. 2011. For stocks in Tier 3, the specification of OFL and recommendation of ABC is based on mean recent landings multiplied by a scalar. The decision whether to use a less risk-averse approach (Tier 3a) or a more risk-averse approach (Tier 3b) relies heavily on the expertise and judgment of the SSC.

Within this control rule framework, the Gulf Council is making some adjustments to address the complexity and implementation challenges posed by the original approach. (For example, Tier 2 has been judged unsatisfactory in its current form by the SSC and Council and remains unused to date.) The Council recently adopted a motion to replace the methods for determining p^* in Tiers 1 and 2 with an approach that assigns stocks to “bins” that are assigned fixed p^* values based on the status of the stock, presence of a rebuilding plan, productivity and resilience, and desirability of the stock to fishers.

Management Uncertainty

Management uncertainty in the Gulf of Mexico stems largely from difficulties in monitoring the large number of vessels that participate in the commercial fishery, and accounting for the significant recreational catch and effort that occurs over a large geographic region. To account for
management uncertainty in their specifications process, the Gulf Council employs an ACL/ACT control rule for data-adequate stocks, and also relies on input from the long-standing Socioeconomic Committee to help set ACT buffers. This Committee is tasked with providing analysis on economic and social impacts of potential ACT decisions at the back end of the specifications process. At the Fourth National SSC Workshop in Williamsburg, VA participants expressed interest in incorporating such expertise earlier in the ACL/ACT specification process.

In 2012 the Gulf Council adopted a decision table-based ACL/ACT control rule as an optional tool to aid the Council during the specifications process. The control rule’s spreadsheet format provides guidance to the Council when addressing management uncertainty and determining appropriate reductions in ACLs to yield ACTs. When an ACT is used, the ACL is typically set equal to ABC. When an ACT is not used, the control rules can also guide the Council in determining appropriate reductions in ABCs to yield ACLs. The ACL/ACT control rule relies on objective measures of management success including the history of exceeding catch limits, the precision of the landings data, whether the ACL applies to a single stock or a complex, and the status of the stock. Buffers resulting from the application of the control rule are typically 15-20% for non-ITQ managed fisheries. ITQ fisheries have stricter monitoring and reporting requirements, resulting in less management uncertainty, and thus are typically assigned buffers between 0-5%.

When the ACL or ACT is divided into commercial and recreational sector allocations, the control rule is applied to each sector individually. For example, in 2012, the commercial greater amberjack ACT was set 15% below the ACL, while the recreational greater amberjack ACT was set 13% below the ACL. Both sectors had experienced harvest overages in recent years, but the magnitude of the overages in the different sectors warranted the use of different buffers.

Continuing Challenges
The Gulf Council still struggles with the frequency with which their stocks are assessed by the Southeast Data, Assessment, and Review (SEDAR) team, especially for the majority of their sixty-plus reef fish stocks that are classified as data-poor. Compounding this struggle is the fact that the Gulf, Caribbean and South Atlantic Councils all rely on the region’s limited resources to conduct requested stock assessments. Adhering to ACLs and applying AMs continues to be a challenge given the high management uncertainty in the Gulf’s large recreational fisheries.

The Council is still grappling with clearly incorporating risk and uncertainty into their specifications process, and rectifying how these considerations affect the competing NS1 objectives of achieving OY while preventing overfishing. In particular, the Gulf Council is working toward explicitly noting tradeoffs associated with adopting specific p^* values or other measures of acceptable risk for some fisheries. The ongoing discussions between the Council, SSC, and ABC Control Rule Working Group are valuable to helping the Gulf region address these challenges and refine their risk policy.
The Caribbean Fishery Management Council (CFMC) administers FMPs for Shallow Water Reef Fish, Spiny Lobster, Coral, and Queen Conch. The region is uniquely challenged given the lack of quantitative stock assessments, basic life history data and information regarding stock status for the majority of managed species. Given these challenges, the Caribbean region uses a qualitative approach to dealing with uncertainty and managing risk.

Scientific and Management Uncertainty
Lack of scientific information, catch accounting, and diffuse effort across the islands produces significant scientific and management uncertainty in the U.S. Caribbean. The region is also comprised of distinct island regions: the fishing cultures, management realities and levels of information availability vary greatly between the four U.S. Caribbean islands. In recognition of these differences and to avoid managing to the lowest common denominator of data availability and stock status when specifying ACLs, the Council sub-divided the US Caribbean EEZ into island-based components (St. Croix, St. Thomas/St. John and Puerto Rico) and specifies ACLs separately based on that island’s historical fishing activity.

Without sufficient information about recreational and commercial effort or landings to set scientific and management uncertainty buffers separately, a constant blended buffer approach is applied during the ACL specifications process. The SSC sets OFLs equal to an MSY proxy, which generally reflect average annual catch by species and island group. Then, the Council and SSC utilize expert judgment to reduce the OFL/ABC to an ACL based on an estimate of combined scientific and management uncertainty. Since managers do not have complete estimates of recreational or commercial catch, using recent catch as a proxy for reference points comes at the cost of high levels of uncertainty. The United States Virgin Islands (USVI), for example, lacks any estimates of recreational catch. Differences in the scale (family groups versus species), consistency, completeness and reliability of catch reporting across the USVI (St. Croix, St. John, St. Thomas) and Puerto Rico add additional uncertainty surrounding the accuracy and validity of the existing data used to inform ABCs.

In Puerto Rico, expansion factors are applied to landings data to account for underreporting and non-reporting of catch. The expanded landings data provide estimates of annual catch, which serve as MSY proxies. To support the Council’s 2011 ACL amendment, Only Reliable Catch Stocks (ORCS) methods were applied to scale these MSY proxies and determine OFL values (Berkson et al. 2011). The resulting scalar was 1.0 for all stocks; thus, the OFL was set equal to the MSY proxy for Puerto Rico’s fisheries. This was the first time that ORCS methods have been used by CFMC; based on their experience, the Council will modify these methods for future application. In the USVI, reported landings are used to determine MSY proxies directly. The Council sets ABCs equal to OFL for most stocks and accounts for the uncertainty associated with the use of landings data when specifying ACLs as described below. While scientific and management uncertainty is high for many fisheries in the region, reductions from recent catch levels are likely to remain modest given the important social and economic role fisheries play in the survival of Caribbean communities.
Eight-Scenario Model
The SSC relies on the national eight-scenario model that corresponds to the availability of data for any stock or stock complex to set OFLs. Each scenario specifies whether the calculation of an OFL is possible and includes management advice corresponding with information availability. In the Caribbean, all stocks currently fall into scenarios 7 and 8, the most data-poor of the scenarios. As a result, the SSC does not calculate OFLs, ABCs, or ACLs directly for these stocks; rather MSY proxies are used to determine appropriate OFLs. For example, the SSC set OFLs for parrotfish and queen conch based on expert judgment, and utilized average landings to set OFLs for the snapper-grouper complex. Similarly, for stocks not judged to be undergoing overfishing, average landings over time are used as proxies of MSY to set OFL levels. Recently, ORCS methods have been utilized to establish proxies of recent catch to inform ABCs. The Council established a Risk Assessment Team to help implement and incorporate these data-poor methods into the specifications process.

ACL Specification
In general, ABCs are set equal to OFLs; where ABCs are not specified, the Council bases its specification of ACLs on the OFL. During the ACL specifications process, the CFMC applies a straight percentage reduction of OFLs or ABCs to set ACLs for stocks based on expert judgment from the Council, SSC, Southeast Fisheries Science Center (SEFSC) and local experts. This buffer accounts for a blend of scientific and management uncertainty, conservation, and optimum yield (OY) considerations. The Council selects one of three buffers to set ACLs:

- ACL = OFL/ABC reduced 10% for stocks not undergoing overfishing
- ACL = OFL/ABC reduced 15% for stocks undergoing overfishing
- ACL = OFL/ABC reduced 25% for ecologically important stocks including surgeonfish

The Council and SSC determined the size of the buffer in each category with significant input from Non-Governmental Organizations (NGOs), NMFS, fishers, and politicians representing the U.S. Caribbean public. There are exceptions to the three buffer categories to address stock-specific concerns and differences in catch limits across island regions, and respond to new information as new or updated assessments become available. For example, a 15% buffer was applied to the parrotfish ABCs for all three island regions, and an additional reduction of about 5% was applied to the St. Croix stock to account for ecological concerns. To address differences in stock status across the islands, the Council and SSC specified catch limits for queen conch in federal waters off St. Croix while prohibiting harvest of queen conch in the federal waters of St. Thomas, St. John and Puerto Rico.

Continuing Challenges
Other continuing areas of research include setting scientifically based buffers between OFLs and ACLs for stocks that are not currently undergoing overfishing. With a large number of species and limited time and resources to obtain basic life history and other baseline information, prioritizing and conducting assessments is an ongoing challenge. Absent more reliable data and an improved data collection and monitoring program, the CFMC has little flexibility in implementing alternative specification processes or AMs for their fisheries. Despite these struggles, NMFS is putting significant effort into building relationships and trust with fishers to tap their local knowledge and to help reduce scientific and management uncertainty.
Though Caribbean fisheries have relatively low market value, they are extremely important to island communities and reef ecosystems. To address potential foregone yield of parrotfish and other reef species the Council is discussing moving toward an island-based management scheme, akin to the Western Pacific’s five Fishery Ecosystem Plans. This spatial management approach could help address the issues associated with managing very different fisheries, cultures, and practices on the four main islands that make up the U.S. Caribbean region. This strategy may provide the Council more flexibility to allow fishing for under-utilized stocks in some areas, while preventing overfishing in others.
The South Atlantic Fishery Management Council (SAFMC) manages over seventy stocks through eight FMPs: Coastal Pelagics, Coral, Dolphin/Wahoo, Golden Crab, Shrimp, Snapper-Grouper, Spiny Lobster, and Pelagic Sargassum Habitat. The Pelagic Sargassum Habitat FMP is unique and was established to protect habitat for young commercially important and federally protected migratory species including tunas, sea turtles, and marine mammals. The Coral, Spiny Lobster, and Coastal Pelagics FMPs are managed jointly with the Gulf of Mexico Fishery Management Council. Most of the fisheries in the South Atlantic region are characterized as data-poor, and a large proportion of catch is landed by the large recreational sector. As a result, the Council utilizes a broad tiered-approach that employs \(p^*\) and a decision tree that allow the SSC and Council to decide on scalar reductions to set buffers from OFLs to ABCs.

Scientific Uncertainty

To date, assessments have only been performed on a fraction of South Atlantic stocks; a few of those utilize the \(p^*\) approach to create buffers that account for scientific uncertainty. To gauge the reliability of assessment estimates, measures of parameter estimation uncertainty, process uncertainty and explicit recruitment uncertainty are incorporated when characterizing scientific uncertainty. The SSC also considers sources of uncertainty that do not show up in assessments, such as different assumptions about current states of nature, different runs of the same model, etc. The Southeast Data, Assessment, and Review (SEDAR) process, which includes input from fishers, biologists, and Council members and Council staff, typically chooses a single assessment model that they think most accurately represents the stock, thus the Probability Density Function (PDF) of the OFL is representative of only a single model run in an assessment. The SSC has noted that model-averaging tools could help with this issue.

The SSC is in the process of evaluating the applicability of the relatively new Only Reliable Catch Stocks (ORCS) methods to establish OFL and ABC values for data poor stocks. At this point, both the ORCS methods and a “decision tree” approach (described below) are acknowledged in the control rule. The process for setting catch limits for data poor stocks continues to evolve as new methods and updated assessment information becomes available.

Four-Tiered Approach

The Council and SSC employ the following four-tiered approach to specify ABCs based on the information available for each stock, from data rich (Tier 1) to data poor (Tier 4).

- **Tier 1** – \(p^*\) used to account for scientific uncertainty where possible; based on quantitative assessment of available data

- **Tier 2** – Depletion-Based Stock Reduction Analysis (DB-SRA) methods and \(p^*\) utilized to determine ABC

- **Tier 3** – Depletion-Corrected Average Catch (DCAC) methods used, does not provide OFL, only ABC; the analysis does not provide necessary details to inform a \(p^*\) choice
Tier 4 – ABC and OFL derived on a case-by-case basis

ABC specification for Tiers 1 and 2 are informed by four assessment dimensions, which reflect the critical characteristics of a stock: data and assessment information availability, characterization of uncertainty, stock status, and Productivity Susceptibility Analysis (PSA). (PSA is an approach used to measure the relative risk or vulnerability of a stock to fishing activity). Each dimension/risk factor is scored and weighted equally, though this can change with new information. Scientific uncertainty and PSA attributes are addressed and scored in a high, medium, or low qualitative fashion based upon expert judgment of the SSC. The sum of all of these four dimensions, called adjustment factors, yields a “critical probability” value, which informs a downward reduction in the maximum p* value from 0.50. The council then selects its preferred p*, which can be set equal to or below the revised maximum p* value. The resulting p* value does not necessarily correspond to a specific percentage reduction from the OFL to ABC; the actual reduction from OFL to ABC is based on applying p* to the PDF, which will yield different percentage reductions depending on the shape of the PDF curve.

Tier 3 stocks rely on the four-tiered DCAC methods described in MacCall’s 2009 paper on methods for deriving reference points for data-poor stocks. These methods do not provide an OFL, only an ABC.

For Tier 4 stocks, which comprise a large portion of the Council’s managed stocks, the SSC uses a decision tree to guide the case-by-case evaluations for initial OFL and ABC recommendations. Decision trees are stepwise decision-making tools that can be used to examine characteristics and trends of a stock and guide the implementation of harvest control rules. The SAFMC Tier 4 decision tree was formalized in April 2012 and includes a set of questions and considerations to guide the establishments of ABCs for Tier 4. The process of employing the decision tree also helps to build an administrative record to support their decision.

The decision tree for Tier 4 directs the SSC to consider the following when setting catch levels for data poor stocks:

- Will current catches impact the stock?
- Will increased catch lead to decline or other stock concerns?
- Is the stock part of a directed fishery?

If the stock is mostly caught as bycatch, the decision tree also guides the SSC to consider trends in the fishery including landings and effort.

The SSC is currently considering additional changes in Tier 4 to address recommendations from the ORCS report (Berkson et al 2011). Many data-poor stocks in the South Atlantic are not targeted and/or are rarely caught, and lack the fishery-dependent data used to apply Tier 4 methods. As a result, the SSC is also considering revising the above tiers or adding an additional tier to incorporate methods for setting OFL and ABC values for stocks without reliable catch histories.

Management Uncertainty & Accountability Measures
Management uncertainty in the South Atlantic is incorporated through the use of ACTs and accountability measures. ACTs are used largely in the recreational sector to address the precision of catch estimates, and function as proactive AMs. Reactive AMs are in place for many fisheries, and include fishery closures, and payback mechanisms to account for ACL overages. Catches of
many stocks in the South Atlantic region fluctuate widely from one year to the next. Given this variability, responsive monitoring is often used as a soft AM to investigate if a sudden spike or drop in landings is related to overfishing, natural variability or shift in targeted effort. For commercial fisheries in the South Atlantic, the SSC has discussed the potential of a depletion threshold whereby targeted fishing ceases if stock biomass drops below 10% of its unfished (virgin) biomass.

Continuing Challenges
The South Atlantic Council continues to work on obtaining necessary life history information and assessments for their unassessed stocks and leveraging data poor methods to inform specification of ABCs. The Caribbean, Gulf of Mexico, and South Atlantic Councils all rely on the limited resources and capacity of the Southeast Fisheries Science Center (SEFSC) and SEDAR to conduct assessments on a prioritized and tight schedule. The South Atlantic Council cooperates with the Gulf of Mexico to manage several FMPs and stocks jointly, but this increases complexity, management uncertainty, and incentive to adopt less precautionary p^* choices when two Councils are presented with two conflicting p^* choices by their respective SSCs.

Most of the focus in the South Atlantic region to date has been on dealing with scientific uncertainty, while efforts to quantify or integrate management uncertainty into the ACL/ACT process have not been prioritized. There has been some discussion on the topic but it remains a challenging issue given the high level of diffuse recreational effort, lack of historical binding catch limits, and sensitivities surrounding equity of inter-sector allocation. The South Atlantic Council also struggles with explicitly managing risk during their specification processes. Even for assessed stocks, the Council is unsure how to incorporate the potential consequences of overfishing or foregoing yield into their decision-making frameworks. Like other Councils, the SAFMC faces the challenge of managing stock complexes to the “lowest common denominator,” a situation in which conservative ACLs for data poor and/or overfished stocks can constrain harvest of other stocks in the complex. Alternatives to the ORCS methods for incorporating risk into the specifications process for data-poor stocks are also currently being explored. Conversations between the Council and SSC about a comprehensive risk policy that clearly distinguishes the concepts of risk and uncertainty are ongoing and remain a priority.
The Mid-Atlantic Fishery Management Council (MAFMC) administers seven FMPs: Atlantic Mackerel/Squid/Butterfish, Bluefish, Spiny Dogfish, Summer Flounder/Scup/Black Sea Bass, Surfclam/Ocean Quahog, Tilefish, and Monkfish. The Spiny Dogfish and Monkfish FMPs are managed in cooperation with the New England Council. In addition to the omnibus amendment addressing the ACL and AM requirements of MSRA, the Council voted to accept a formalized risk policy to apply to all managed stocks. The SSC uses a complementary ABC control rule that incorporates scientific uncertainty into catch level recommendations.

Scientific Uncertainty
Both the MAFMC and the New England Fishery Management Council (NEFMC) rely on the Northeast Fisheries Science Center (NEFSC) to conduct stock assessments. “Benchmark” assessments, where every aspect of the assessment process including the model employed is carefully examined, are conducted about every three years, while updated assessments may occur on an annual basis. The SSC looks at several facets of “within” assessment uncertainty stemming from differences in life history, natural mortality estimates, modeling projections, calibration coefficients, and other factors to help specify OFLs and ABCs. The four-level approach described below utilizes a probability of overfishing (p*) and an OFL distribution with a coefficient of variation (CV) or expert judgment approach to inform ABC recommendations. The CVs are a product of stock assessments, but can be modified by the SSC based on specific stock status information and expert judgment. The SSC incorporates scientific uncertainty from data collection, modeling and observation error, and variance of FMSY and BMSY estimates or proxies to determine appropriate CV values.

Four-Level Strategy
Prior to the 2006 reauthorization of the Magnuson Act, the Council’s Species Monitoring Committees specified catch and landings limits. The SSC, now explicitly tasked with setting OFLs and ABCs, relies upon an ABC control rule that employs a four level approach to characterize stocks based on assessment quality and scientific uncertainty.

Level 1: “ideal assessment”: ABC is based on the distribution of the OFL as provided from the assessment model; p* is based on the Council risk policy

Level 2: “preferred assessment”: uses an OFL distribution proxy provided from the assessment workgroup; p* is based on the Council risk policy

Level 3: “acceptable assessment”: does not reliably incorporate scientific uncertainty; uses an OFL distribution proxy (with a proxy CV) or a default value of 75% of FMSY to set ABC

Level 4: “unreliable assessment”: lacks data on absolute abundance and fishing mortality rates; no reliable OFL proxy available; ABC set based on ad hoc, alternative approaches (e.g., adjustment to long-term catch history or survey index values)
Currently, all managed stocks in the Mid-Atlantic region fall under Levels 3 or 4; Levels 1 and 2 of the control rule have not been applied to date. Level 3 stocks currently use a CV of 100% for the OFL distribution, however the SSC could choose another value based on more information. For stocks in Level 4, an ad hoc approach is used to set an ABC based on the expert judgment of the SSC. This multi-level approach to specification allows the Council flexibility to adapt to specific fishery conditions instead of relying on a blanket buffer for all stocks within a level. In practice, the buffers for stocks with “typical” life histories that are at or above B_{MSY} provided by the 100% CV are equivalent to setting ABCs equal to about 81% of the OFLs for those stocks. For stocks with “atypical” life histories that use a 100% CV and are at or above B_{MSY}, the buffer is about 73% of the OFL. In general, as CV values increase, the buffer between ABC and OFL increases too. When there is not enough information to determine OFL distribution proxies for Level 3 stocks, the SSC may utilize a default control rule of ABC = 75% of F_{MSY} (GMFMC 2012).

Risk Policy Alternatives
The MAFMC utilizes a risk policy to specify the Council’s tolerance for overfishing a stock for all the Council’s managed resources. The Council explicitly applies the control rule to stocks that fall into Levels 1 through 3. The Council considered multiple approaches before developing its risk policy, ranging from a constant p* to more elaborate matrices that include multiple risk factors and are based on scientific information and SSC judgment. Ultimately the Council selected a single policy that applies to all the managed resources.

The MAFMC’s risk policy is based on a linear reduction in catch as a stock declines in abundance per the methods laid out in Restrepo et al. 1998. The risk policy relies on a linear function that plots the current biomass to biomass associated with MSY (B/B_{MSY}) ratio on the x-axis and the p* options on the y-axis. Use of the function yields a linear reduction in probability of overfishing, which practically translates into a reduction in fishing mortality (F). The Council employs a default maximum p* value of 0.40 for “typical” stocks with a B/B_{MSY} ratio of 1.0 or greater. A more precautionary maximum p* value of 0.35 is used for “atypical” stocks because those are judged by the SSC to be more vulnerable to overfishing. For stocks without an F_{MSY} estimate or proxy, catch levels cannot be increased without SSC recommendation. The NS1 Guidelines state that the probability of overfishing may not exceed 50% (p*=0.50) and should be something lower.

Coordination with other Bodies
The MAFMC shares responsibility with the NEFMC for two FMPs: Monkfish and Spiny Dogfish. Both Councils must come to agreement and adopt the same specification of ACLs for shared stocks, which can be challenging and time-consuming. MAFMC collaborates with the Atlantic States Marine Fisheries Commission (ASMFC) on the Spiny Dogfish, Bluefish, and Summer Flounder/Scup/Black Sea Bass FMPs to reduce management uncertainty stemming from large recreational fisheries in the region. The ASMFC is a regional fisheries body and forum that sets state harvest guidelines for specific interstate fisheries along the Atlantic coast. This cooperative management approach requires coordination between the Council and Commission to set consistent state and federal catch and landings limits, and other fishing regulations. Representatives of the MAFMC and ASMFC meet twice a year under “joint rules” to cooperatively decide identical harvest specifications for the Summer Flounder/Scup/Black Sea Bass FMP. These meetings facilitate consensus building and consistency of management measures between the two groups.
Management Uncertainty
Given the high level of inter and intra-annual variability in the sources of management uncertainty, practical considerations, and the need for flexibility, the Mid-Atlantic Council delegates authority to the individual Species Monitoring Committees to develop ACT control rules for stocks and provide recommendations on implementing ACTs and regulations such as minimum fish sizes, seasons, and gear restrictions. These Committees pre-date the MSRA and the expertise of the members contribute the greatest knowledge of each fishery and the variable circumstances that could give rise to different levels of management uncertainty from one year to the next, particularly at the state level. The various Monitoring Committees are typically comprised of representatives from the Council staff, Commission staff, NMFS staff, the Northeast Fisheries Science Center, and a representative of each state’s fisheries agency. ACLs are set equal to ABCs for most stocks, and the various Species Monitoring Committees are tasked with providing buffers to account for management uncertainty by reducing the ACL down to a TAC or a TAL that act as an ACT or other “soft target”. For sources of management uncertainty that remain unquantifiable such as unreported landings, unknown mortality sources, and illegal fishing, a default buffer may be selected for some stocks.

Accountability Measures
There are currently AMs and ACTs in place for most managed stocks in the Mid-Atlantic region to account for management uncertainty. The MAFMC utilizes two types of AMs: proactive and reactive. Proactive AMs include establishment of TACs and TALs as described above, adjustment of possession limits, in-season closures of directed fisheries, and modification of management measures to slow landing rates and prevent the ACL from being exceeded. Reactive AMs, on the other hand, are implemented in response to ACL overages and include modification of a subsequent year’s regulations, such as trip or possession limits, or reductions in subsequent year catch or landing levels. Given variability in the availability of fish, fishing effort, and fishers’ behaviors, it is difficult to set long-term AMs. Most AMs are established and evaluated on an annual basis, however AMs for some stocks may be set for multiple years in advance and only modified if needed.

Continuing Challenges
Data limitations and the absence of robust methods for estimating, quantifying, and capturing management uncertainty in the specifications process are ongoing struggles for the MAFMC. For fisheries where data and methods afford explicit consideration of uncertainty, the Monitoring Committees and the SSC remain unclear as to which buffers should account for which specific considerations in the ABC and ACT specification processes. For example, accounting for discards is both a scientific and management uncertainty issue, and thus bleeds through both the ABC and ACL-ACT specification processes. The Council and the SSC also plan to address how to effectively characterize uncertainty so that stocks can be moved out of Levels 3 and 4 and into Levels 1 and 2 in the future. In addition, the SSC will continue to evaluate whether or not the 100% CV applied to tier 3 stocks accurately reflects scientific uncertainty while not being overly precautionary when specifying ABCs. In an effort to build trust and engage stakeholders in a more proactive and forward-looking management approach, the Mid-Atlantic Council has undertaken a visioning and strategic planning project.
NEW ENGLAND FISHERY MANAGEMENT COUNCIL

The New England Fishery Management Council (NEFMC) administers nine FMPs: Multispecies Groundfish, Scallops, Small Mesh Multispecies Groundfish, Herring, Deep Sea Red Crab, Northeast Skate Complex, Atlantic Salmon, Monkfish and Spiny Dogfish. The Spiny Dogfish and Monkfish fisheries are jointly managed by Mid-Atlantic Fishery Management Council (MAFMC) and NEFMC; MAFMC takes the lead on Spiny Dogfish while NEFMC takes the lead on managing Monkfish. The Atlantic Salmon FMP protects the federally endangered salmon from bycatch or “take” in any non-target fisheries. Of the stocks for which NEFMC established catch limits, only the deep-sea red crab fishery does not have an OFL in place due to lack of data. The New England Council utilizes different ABC control rules for each FMP, and an ad hoc approach for setting ACLs that allows the Council and SSC flexibility in managing diverse stocks and stock complexes.

Scientific Uncertainty
During their ABC specifications process, New England’s SSC focuses its efforts on capturing scientific uncertainty around estimations of projected catch. The Northeast Fisheries Science Center (NEFSC) conducts stock assessments every two or three years for most stocks in a prioritized and staggered fashion. The New England region has struggled with obtaining consistent stock assessments from one assessment cycle to the next, which introduces considerable scientific and management uncertainty and anxiety among fishers. Since 2010, there has been considerable attention paid to retrospective patterns in recent stock assessments, whereby older assessments are shown to be overly optimistic in their estimates of biomass. Despite overall increasing trends, the patterns across stock assessments show that biomass for most stocks is not as high as was estimated just a few years ago, and as a result many stocks are not rebuilding as quickly as initially projected.

Of the stocks managed by the NEFMC, only sea scallops and some of the multispecies groundfish species could be classified as data-rich, while the rest fit with varying degrees into the data-poor classification. In the case of the multispecies groundfish, a diverse fishery composed of twenty stocks, the SSC concluded that the uncertainty in catch projections is essentially unknown. This projection uncertainty, coupled with the possibility of a general productivity shift due to ecosystem and habitat changes, make it difficult for the SSC to fully capture scientific uncertainty.

ABC Control Rules
Unlike tiered approaches adopted by many councils, the ad hoc ABC specification strategy of NEFMC is not constrained in a systematic way by the amount or quality of information available for a stock. Methods for determining ABCs for New England stocks are different for each FMP, and range from a probabilistic approach for stocks with highly reliable stock assessments to data-poor approaches that rely on long-term average catch-based methods. While the NEFMC mostly accepts levels of uncertainty included in the SSC’s ABC recommendations, they have not provided the SSC with guidance regarding acceptable levels of risk for each stock.

In the case of data-poor fisheries such as deep-sea red crab and other fisheries such as monkfish, the SSC lacked confidence in the available stock assessments and opted to base the ABC on long-term average landings or other exploitation metrics with a buffer for scientific uncertainty. Small-mesh multispecies groundfish ABCs are set based on percentiles of the OFL distribution. The SSC
sets ABCs for the skate complex in response to B_{MSY} proxies derived from survey data and median catch/biomass exploitation indices. The ABC for scallops, the most data-rich of NEFMC managed fisheries, is based upon a p^* approach as described in the next section.

The Northeast Multispecies Groundfish complex includes fifteen species of groundfish, many of which are in rebuilding plans. To address ABC specification of healthy and rebuilding stocks, a multifaceted ABC control rule is applied. For healthy stocks, ABC determined as 75% of the yield from applying the fishing mortality rate (F) associated with MSY to current biomass (75% of F_{MSY}); this is consistent with the Council’s existing policy that OY is set equal to 75% of F_{MSY} for species in the groundfish complex. For rebuilding stocks, the default 75% F_{MSY} can be reduced to a fishing mortality level that meets rebuilding requirements (F_{Rebuild}). Stocks which cannot rebuild within the specified rebuilding period even when directed fishing has ceased, the ABC is based on limited incidental bycatch. For stocks with unknown status, the SSC recommends interim ABCs on a case-by-case basis.

Use of p^* to set ABC for Scallops
The New England Council employs a p^* approach for setting ABCs for the Scallop FMP based on recommendations from the SSC and Scallop Plan Development Team (PDT). This approach is supported by the high quality of stock assessments and robust management measures in place in the fishery. Significant scientific and management certainty are conferred through a limited entry program, closed area rotations, observer coverage, strict reporting measures and annual surveys performed by federal scientists as well as academic institutions working with the scallop industry.

During the specifications process, the Scallop PDT and SSC present the Council with a full decision analysis in table format to show results of Monte Carlo simulation, a computer modeling exercise that illustrates potential tradeoffs of yield that correspond to differing p^* choices (Hart 2009 and Hart 2013). The flexibility of this simulation allows experts to run analyses with different management uncertainty percentage buffers from ACLs to TACs to provide the Council with several management alternatives. As a result of these measures and the data-rich nature of the fishery, the SSC endorses a risk-based approach that utilizes the lower value of either the harvest rate associated with a maximum p^* of 0.25 or up to a 1% loss of yield (Hart 2009 in Appendix II of Amendment 15 to the Scallop FMP). This approach is both precautionary in the face of uncertainty and aims to optimize yield due to the high value of this fishery. The scallop fishery is the most valuable U.S. fishery by ex-vessel value, worth over $500 million dollars annually.

Management Uncertainty and ACLs
Management uncertainty varies greatly from one fishery to another in New England, and thus the Council uses a number of approaches for specifying ACLs and ACTs. For each FMP, an Oversight Committee, consisting of Council members and a representative from the NMFS Northeast Regional Office (NERO), develops management alternatives for establishing ACLs and accounting for management uncertainty, which are forwarded to the full Council for approval before formal consideration. (In addition to the specification of ACLs and ACTs, the Oversight Committees play in integral role in all Council actions within each respective FMP.) The Council also relies on their PDTs to provide input on ACL recommendations, as well as guidance on allocation issues, closed areas, selectivity patterns, management areas, and assessment evaluations.
The Council utilizes a range of ACL and ACT specification options for its FMPs:

- **Herring**: ACL = 95% of ABC
- **Monkfish - Southern Management Area**: ACL = ABC, ACT = 93% of ACL
- **Monkfish - Northern Management Area**: ACL = ABC, ACT = 86.5% of ACL
- **Small-Mesh Multispecies**: ACL = 95% of ABC, TAL = ACL – discards – state landings
- **Multispecies Groundfish**: ACL = ABC, TACs include a 5 - 7% buffer included for management uncertainty
- **Northeast Skate Complex**: ACL = ABC, ACT = 75% of ACL; TAL = 45% of ACT to account for catch in state waters and significant discards in non-target fisheries
- **Sea Scallops**: ACL = ABC

For most stocks, ACLs are set equal to ABCs. Fisheries thought to have low levels of management uncertainty do not require additional buffers in the form of ACLs or TAC/TALs.

Other New England FMPs have incorporated explicit buffers into their ACL-ACT specifications process for management uncertainty considerations, such as bycatch in the Multispecies Groundfish and Northeast skate complex fisheries. Total Allowable Landings (TALs) for the data-poor Northeast Skate Complex FMP are particularly precautionary due to high levels of bycatch in the groundfish fisheries and are based on estimates of stock biomass and median historical exploitation rate. The “sector” management program for the Multispecies Groundfish FMP is in its infancy, and issues of equity and management complexity complicate implementation of the program. Observers cover about a quarter of the vessel trips in the fishery, and a documented “observer effect” tends to skew reported catch data.

Continuing Challenges

The New England SSC struggles with incorporating sources of uncertainty that cannot be captured “within” stock assessments such as strong retrospective patterns across multiple assessments, environmental shifts, unknown sources of mortality for a stock, and variance among F\text{MSY} estimates or proxies. Retrospective patterns in stock assessments continue to complicate scientific uncertainty as well. Management uncertainty is unknown in the multispecies groundfish fishery due to a relatively new catch-share program and low observer coverage.

The tradeoff analysis performed during the specifications process for New England Scallops is innovative. The SSC is interested in working with the Council in expanding this kind of thinking to be more explicit about potential implications of different levels of risk and more consistent across ABC control rules. It remains a priority in the region to explore the possibility of a more comprehensive approach that articulates a clear and transparent risk policy.
RESOURCES

Personal Communications
The Fisheries Leadership & Sustainability Forum acknowledges the time and contributions provided by Council members, staff, SSC members, and NMFS experts that span all eight regional fishery management council regions, without which this updated report would not have been possible.

North Pacific Fishery Management Council
Dr. Jim Ianelli, NMFS Alaska Fisheries Science Center
Mr. David Witherell, NPFMC Deputy Director
Ms. Diana Stram, NPFMC Staff

Pacific Fishery Management Council
Ms. Michele Culver, PFMC Member designee
Dr. Owen Hamel, SSC Chair
Dr. Jason Cope, Groundfish Management Team Member
Mr. John DeVore, PFMC Staff
Mr. Corey Niles, Ecosystem Plan Development Team Member

Western Pacific Regional Fishery Management Council
Mr. Jarad Makaiau, NMFS Pacific Island Regional Office
Dr. Stewart Allen, SEEM Analysis Working Group, SSC Member
Mr. Paul Dalzell, WPFMC staff

Gulf of Mexico Fishery Management Council
Dr. Joe Powers, SSC Vice Chair
Mr. Bob Gill, Former Council Chair
Mr. Steven Atran, GMFMC Staff

Caribbean Fishery Management Council
Dr. Bill Arnold, NMFS Southeast Regional Office

South Atlantic Fishery Management Council
Dr. Luiz Barbieri, SSC Chair
Mr. John Carmichael, SAFMC Staff

Mid-Atlantic Fishery Management Council
Ms. Jessica Coakley, MAFMC Staff
Mr. Richard Seagraves, MAFMC Deputy Executive Director

New England Fishery Management Council
Mr. Chris Kellogg, NEFMC Deputy Director
Dr. Jake Kritzer, SSC Member
Mr. Terry Stockwell, NEFMC Member
Journal Articles

Government Regulations & Reports

Council Documents & Reports

North Pacific

Pacific

Western Pacific

Caribbean

Gulf of Mexico

Gulf of Mexico Fishery Management Council. 2012. “Standing and Special Reef Fish SSC
Meeting Summary”. Tab H, No. 4. Tampa, Florida June 7-8, 2012.

South Atlantic

Mid-Atlantic

New England