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Introduction 

The presented models were developed to provide an estimate of recreational harvest and discards 

as they relate to fisheries management policies and stock status for summer flounder, black sea 

bass, and scup. The management alternatives presented are constructed in the context of their 

eventual application to the specification setting process for these species, and the model is being 

investigated by the Mid-Atlantic Fishery Management Council’s (MAFMC) Fishery 

Management Action Team (FMAT) and the Atlantic States Marine Commission’s (ASMFC) 

Plan Development Team (PDT) for use in the development and analysis of alternatives for the 

MAFMC and ASMFC Recreational Reform Initiative. The project is informed by extending 

work by Dr. John Ward (Ward 2015) on quantifying the historical effects of changes in 

management measures on discards and harvest based on the historical MRIP dataset, 

supplemented with information from stock assessments for these species. The management 

effects produced by this work could be integrated into a harvest control rule as a way of 

emulating fishery responses (and their uncertainty) to management measures, to demonstrate the 

implications of selecting various management configurations, and to understand the relative 

value of different management options.  

 

The recreational harvest and discard models for summer flounder and black sea bass underwent 

peer review in September 2021 by a panel consisting of members of the MAFMC Scientific and 

Statistical Committee. Based on that review, several refinements were introduced to the 

recreational harvest and discard models which are reflected in the final model configurations 

presented here and discussed in the methods and discussion sections of this report. Full responses 

to peer review comments are included in this report as well, along with a summary table (Table 

9).  

 

Background 

Given the current use of conservation equivalency (CE) and regional approaches in summer 

flounder, scup, and black sea bass management, which allow states or groups of states the ability 

to use differing recreational management measures provided that state specific harvest falls 

within pre-specified harvest targets, and the desire to explore new strategies for recreational 

management at the MAFMC and ASMFC, it is important to investigate new techniques that may 

be more effective than the yearly and somewhat ad hoc approach to recreational management 

that is currently used for setting management measures annually. Underlying the current process 

are the assumptions of similarity between years in the fishery for both fishing behavior and in the 

population dynamics of the targeted species. The process ignores many dynamic factors 

including implementation error in the new management procedure, changes to discard rates 

based on the new management regime, growth or decline in the population of fishers, and inter-

annual changes in availability of the resource to anglers. It was noted during the process for 

Addendum XXVIII that current methods for developing CE measures each year are subject to 

variability and uncertainty, and the performance of this strategy has not been consistent 

historically. Additionally, the process rarely allows for a re-evaluation of the performance of the 

chosen management in the following year to quantify how the program is working, beyond 

accounting for harvest limit adjustments that are needed in the following year to meet new 

management objectives.  

 



This project was designed to contribute to developing a new methodology that can perform better 

over time by accounting for more of the known population dynamics, allowing for transparency 

in the specification setting process and including the assessment of uncertainty in management 

choices. Having a quantification of uncertainty in the specification setting process allows for the 

application of risk tolerance to choices and could allow for more stability through time in the 

management program.  

 

Moving from an ad hoc harvest-based approach for setting specifications to a model-based 

approach may allow for more inter-annual stability in recreational management by not being 

directly subject to single year swings in Marine Recreational Information Program (MRIP) 

harvest estimates. The MRIP survey is the method used to collect recreational catch information 

(see: https://www.fisheries.noaa.gov/topic/recreational-fishing-data). A model-based approach 

may also better account for important population dynamics that are currently being ignored, such 

as recreational discards and future changes in availability due to cohort strength. Proposed 

advantages of a model-based approach are that performance of projections will be enhanced as 

stability will be increased in specification-setting, thus improving buy-in and knowledge of 

regulations by the fishing public, and the inclusion of more factors in the model-based 

projections than the status quo conservation equivalency process, potentially impacting future 

performance.  

 

The model-based strategies could offer value to managers by providing context of existing 

versus new management specifications for recreational harvest, thus allowing them to optimize 

the eventual management regime they select. Various options for management specifications will 

be reviewed at different regional configurations to provide trade-off information with regard to 

the management unit chosen. Variations of these approaches will also be explored that better use 

the inherent uncertainty in the system by translating this into uncertainty-based setting of the 

management program. In other words, an option could be used where the management system 

will only change if the recreational catch exceeds or underperforms relative to a threshold of 

uncertainty that exists in the output from the various models. These offer a potential for 

enhanced stability in management setting and these approaches better recognize the fact that the 

catch estimates and population information are both derived from statistical methods.   

 

To model the effects of management specifications on recreational harvest, we originally 

selected an approach using Generalized Additive Models. Generalized Additive Models (GAMs) 

are extensions of generalized linear models in which the linear predictor incorporates the 

summation of smooth nonparametric functions of predictor variables (Wood 2006). Thus, the 

relationship between any of the smoothed predictor variables and the response variable may be 

nonlinear. As with other GLMs, the response variable may follow any from the exponential 

family of distributions (Wood 2006). The general structure of the model may be written:  

g(µi) = Xi*Θ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + …. 

where 

µi is the expected value of Yi, the response variable, and Yi ~ some exponential family 

distribution 

https://www.fisheries.noaa.gov/topic/recreational-fishing-data


Xi* is a row of the model matrix for strictly parametric model components, Θ  is the vector of 

associated parameters, and the fj are smooth functions of the covariates xk. The smoothing 

functions are flexible and can use one of several bases including polynomials, cubic splines, thin 

plate regression splines, and P-splines. Estimation of the model is done via maximum likelihood, 

with a penalty term based on the second derivatives of the smoothing functions (e.g. penalizing 

the ‘wiggliness’ of the splines to avoid overfitting).  

The advantages of using GAMs over other regression techniques include: straightforward 

interpretation of marginal effects of the predictors due to the additive structure of the model; the 

ability to capture nonlinear patterns by fitting smoothers to the data without a priori knowledge 

of their distribution; and the ability to control the wiggliness of the predictor functions to assess 

the tradeoffs between variance and bias.  

To refine the modeling approach in response to peer review feedback, the model was converted 

to a shape constrained additive model (SCAM) (Pya and Wood 2015). The sole differentiation 

between SCAMs and GAMs is that the former incorporates user-specified restrictions on the 

shape of the smooth function for the relationship between one or more of the predictor variables 

and the response variable. For example, the relationship between a covariate and the response 

variable may be specified to be monotonically increasing or decreasing, convex, or concave. 

These constraints were introduced to our model so that the form of the smoothing functions for 

certain variables would reflect scientific intuition; these circumstances are explained in more 

detail in the methods section. 

Methods  

Recreational fishery fleet dynamics model  

Crucial to short-term fishery forecasts is a consideration of how changes to recreational 

management measures such as minimum size, bag limits, and season length affect recreational 

harvest and discarding rates. A recreational fishery fleet dynamics model was developed that 

predicts both harvest and discards using the historical MRIP dataset along with an understanding 

of the management measures in place during the same period. To supplement this information, 

data from recent stock assessments for the species studied were also included such as spawning 

stock biomass and recruitment.  

 

Data 

The MRIP dataset uses the newly calibrated MRIP data timeseries (see: 
https://www.fisheries.noaa.gov/feature-story/fishing-effort-survey-calibrating-recreational-catch-

estimates), and the data were queried to produced harvest and discards at a year-state-Wave level 

of granularity. This dataset of harvest and discards was overlaid with state-year-Wave specific 

historical management measures dating back to 1993 (the black sea bass dataset was started in 

2009 after investigation). A “Wave” is a term used for two-month time periods within a year 

(e.g. January through February is Wave 1, March through April is Wave 2, etc.). The state 

regulations in place were refined to the Wave level. In cases where management plans did not 

line up well with the existing Wave structure of MRIP, the management that was in place for the 

majority of the wave was used. In other words, if the bag limit changed within a wave, the bag 

limit that was in place for the longest amount of time in that Wave was used. 

 

https://www.fisheries.noaa.gov/feature-story/fishing-effort-survey-calibrating-recreational-catch-estimates
https://www.fisheries.noaa.gov/feature-story/fishing-effort-survey-calibrating-recreational-catch-estimates


The final dataset includes several metrics broken down by year, state, and Wave. Both landings 

and discards are in number of fish as estimated by MRIP. Bag limit, minimum size, and season 

length by year, state, and Wave (where applicable) were compiled from past fishery management 

plan review information. The recreational harvest limit (RHL) and spawning stock biomass 

(SSB) were pulled from past stock assessment reports. A lagged recruitment variable was also 

added to the analysis. To derive this value, age was estimated based on the minimum size of each 

state in each wave and year using a Von Bertalanffy growth curve. Values for the growth curve 

came from the most recent stock assessment documents (NEFSC, 2019).The stock assessment 

estimates recruitment (R) as the number of recruits at age 0 in a given year. The lagged 

recruitment for each row of data was the recruitment value counted back from the current year by 

the age at minimum size (rounded to the nearest whole year value). For example, if the minimum 

size of a fish was 18 inches in 2007, then the fish was estimated to be 6 years of age and the 

recruitment value used in year 2007 was the estimated number of  age-0 recruits in 2003.  

 

Model structure 

From this survey generated catch information (MRIP), and the knowledge of the management 

structure in place in each state, a series of Shape Constrained Additive Models (SCAMs) were 

built to model the effects of management on harvest and discards. The “scam” function from the 

“scam” package (Pya 2021) was used in the statistical software R for the analysis (R core team 

2021).  

 

By using available information on recreational fishing to evaluate plausible alternatives for these 

relationships, we can account for uncertainty in the management responses of recreational 

fishery fleet dynamics. Since a statistical model was used, estimates of uncertainty can also be 

produced. The estimated uncertainty from these analyses can be used to describe alternate states 

of nature in the recreational fleet dynamics model when projecting a new series of management 

measures into the future.   

 

The general form of the recreational fleet dynamics model is: 

 
𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑜𝑟𝐷𝑖𝑠𝑐𝑎𝑟𝑑𝑠

= 𝑌𝑒𝑎𝑟 + 𝑠(𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑆𝑖𝑧𝑒) + 𝑠(𝑊𝑎𝑣𝑒) + 𝑆𝑡𝑎𝑡𝑒 + 𝑠(𝑆𝑒𝑎𝑠𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ) + 𝑠(𝐵𝑎𝑔)
+ 𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡 + 𝑆𝑝𝑎𝑤𝑛𝑖𝑛𝑔𝑆𝑡𝑜𝑐𝑘𝐵𝑖𝑜𝑚𝑎𝑠𝑠 + 𝑅𝑒𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝐿𝑖𝑚𝑖𝑡 

 

Where an s indicates variables in the GAM that are smoothed, Year is the calendar year the 

harvest and regulations occurred in, Minimum Size is the regulatory minimum size in place for 

each year-state-Wave combination, 𝑊𝑎𝑣𝑒 is the two month period in which the catch occurred 

as defined by MRIP (waves go from 1 to 6 for the year), 𝑆𝑡𝑎𝑡𝑒 is the state in which the harvest 

occurred (states of MA – NC were used in the analysis), 𝑆𝑒𝑎𝑠𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ is the length of the open 

fishing days in the specific Wave (e.g. days open can go from 1 to 61 or 62 depending on the 

Wave), 𝐵𝑎𝑔 is the regulatory bag limit (or number of fish an individual angler is allowed to take 

on a trip) in a particular year-state-Wave combination. Other covariates were tested in the model 

including Recreational Harvest Limit (RHL), Recruitment (lagged by the number of years it 

would take for the recruit to enter the recreational fishery), and Spawning Stock Biomass (SSB) 

from the stock assessment (NEFSC 2019). These covariates were tested as elements that could 

provide information on availability of the stock to anglers, but not all were included in the final 

models because they did not significantly contribute to harvest and discard prediction ability.  



 

 

A gamma distribution was selected for the model (with a log link) after model testing, with the 

gamma distribution performing the best relative to the existing data. Other distributions were 

considered including Poisson and negative binomial since the harvest and discards are in 

numbers of fish and therefore discrete, but the gamma distribution offered some of the same 

attributes such as not dropping below zero and flexibility in the shape of the distribution, and 

performed best during model testing, so this was the selected distribution for the model.  

 

For the “scam” function, the “REML” method was used for the smoothness selection of the 

model. Also called “Restricted Maximum Likelihood”, this approach maximizes the scaled 

average of the likelihood over all possible values for the model parameters to find the variance 

parameters for the model (Wood 2017). Several bases were considered for the non-shape 

constrained smoothers included in candidate models, including cubic splines, P splines, and low-

rank thin plate splines. Ultimately, low-rank thin plate splines (the default basis in the mgcv 

package for GAMs) were selected as the base for the smoothers, as this method does not require 

knots to be equidistantly placed over the range of the data (Wood 2006; Perperoglou et al. 2019). 

For shape constrained smoothers, shape constrained P-splines were used, which incorporate 

restraints on the functional form of the relationship between the covariate and the predicted value 

(Pya and Wood 2015).  

 

Separate models were developed for harvest and discards. Future iterations may investigate a 

more synthetic way of modeling harvest and discards simultaneously, but to stay as close as 

possible to the models that were peer reviewed, two separate independent models were 

developed. 

 

Given the level of refinement in the dataset, the general model can be applied to the coast, can be 

run as a stand-alone state specific model, and can be run as different regional configurations. It 

can also be run in a retrospective fashion to predict previous years to determine model 

performance. These all lead to flexibility in this model as a management tool, allowing for 

changes to occur through time, while allowing a consistent underlying method to be used even 

with these changes.  

 

In addition to the estimated mean prediction, a function was used that samples from the 

uncertainty within the posterior of the model to produce an observation, or a single estimate 

within the envelop of uncertainty in the model. This function simulates data from a multivariate 

normal distribution conditioned on the covariance matrix from the SCAM model. This function 

is used to produce a single observation over multiple realizations for use in projecting the 

outcome of a specific regulatory set up (bag limit, minimum size, and season length set up) and 

helps to understand the uncertainty that is possible within this single management choice.  

 

Model testing 

A series of nested models based on the general model described above and all working from the 

same dataset were tested (Tables 3 - 8). In addition to various combinations of covariates, 

variations on the number of knots (the upper limit of the amount of complexity of model to be 



fitted) and smoothing methods were also tested. The models were all compared via Akaike 

information criterion (AIC) using the AIC function in R.  

 

Evaluating performance 

Several diagnostics were run on the models. The first was to examine the statistical table and the 

effect plots from the models. This was done to determine the statistical significance of the effects 

as well as examining that the effects were logical. 

 

An additional set of diagnostics were run through the scam.check function in the mgcv package. 

This function plots four standard diagnostic plots, some smoothing parameter estimation 

convergence information, and the results of tests which may indicate if the smoothing basis 

dimension for a term is too low. The four plots are various residual plots. Please refer to the 

package documentation for the specifics on the various tests, but suffice it to say, the diagnostic 

analysis is less straight forward than traditional glm interpretation, therefore care is needed when 

interpreting these diagnostics. 

 

A final analysis was done to determine the efficacy of the approach. Given that the model is 

conditioned on the existing historical dataset, a retrospective analysis can be done to determine if 

the model can recreate previous MRIP estimates. This was accomplished by creating a prediction 

data frame based on the exact bag limit, minimum size, and season length that were in place in 

the states during the year being analyzed. The final model was then run 1,000 times sampling 

from the posterior uncertainty in the model. The prediction and the actual summed landings for 

the year being analyzed were superimposed for examination of the model’s efficacy in 

estimating harvest.   

 

Results 

 

Individual models were fitted to harvest and discards of summer flounder, black sea bass, and 

scup. The final models had the following forms:  

 

Summer flounder:  

 

Harvest= Year(re) + s(Minimum Size) + s(Wave) + State + s(Season Length) + s(Bag Limit) + 

Recruitment + s(RHL) 

 

Discards= Year(re) + s(Minimum Size) + s(Wave) + State + s(Season Length) + s(Bag Limit) + 

Recruitment + SSB 

 

Black sea bass:  

 

Harvest= Year(re) + s(Minimum Size) + s(Wave) + State + s(Season Length) + s(Bag Limit) + 

Recruitment + s(RHL) 

 

Discards= Year(re) + s(Minimum Size) + s(Wave) + State + s(Season Length) + s(Bag Limit) + 

Recruitment + SSB 

 



Scup: 

 

Harvest = Year(re) + Mode + s(Minimum Size) + s(Wave) + State + s(Season Length) + s(Bag 

Limit) + SSB 

 

Discards= Year(re) + Mode + s(Minimum Size) + s(Wave) + State + s(Season Length) + s(Bag 

Limit) + RHL 

 

Output from the recreational fishery fleet dynamics model generally indicated logical outcomes 

from the effects of the historical management measures. In general, harvest increased when 

regulations were liberalized (e.g., increased season length or RHL) and harvest decreased when 

regulations were made more restrictive (Table 1 and Figures 1, 4, 7, 10, 13, and 16). Generally, 

the final model effects appear to align with the understanding of what these various effects 

should be having on landings and discards.  

 

Year was included as a smoothed numerical term in the initial models but was converted to be 

included as a random effect in the presented models in response to peer review feedback. We 

agree that conversion from a numerical to a categorical variable is appropriate to account for 

interannual variability in harvest estimates that is not accounted for by the other covariates in the 

model. By including year as a random effect, harvest predictions may be made without the need 

for assumptions regarding how future years will relate to historical years.  

 

Multiple peer reviewers supported conversion of wave from a smoothed continuous variable to a 

categorical variable. While we acknowledge that wave is more aptly described as a factor, it was 

maintained as a continuous variable to account for the continuous seasonal pattern evident in 

recreational harvest seen across all three species. The wave effect is included in the harvest and 

discard models to account for changes in fishing behavior throughout the year that cannot be 

accounted for with the other management-related variables included. Because adjacent waves are 

expected to be more similar in harvest rate than waves that are separated by several months, 

wave was maintained as a continuous variable with a cyclical spline. This also gives flexibility 

for potential future models where waves are fragmented for management. In other words, if a 

partial wave is used in the future for management, reductions at the end of a wave will have a 

different effect than if changes are made at the beginning of the wave. 

 

A retrospective analysis was done to look at the performance of each of the models relative to 

harvest and discards in years past. A multi-year retrospective analysis was performed where the 

management measures in place for each of the past years was used to predict the harvest in that 

same past year, and then this model prediction was compared to the actual harvest estimate 

produced by the MRIP program in that year. Figures 3, 6, 9, 12, 15, and 18 show the results of 

the retrospective analysis. What can be seen is that the model largely is able to predict, within the 

range of uncertainty in the predictions, the observed MRIP harvest or discard estimates for that 

year. In general, these predictions are most accurate from 2017 to 2019, perhaps reflecting closer 

coupling of management measures to harvest in most recent years or potentially an improvement 

in MRIP estimates of these data.  

 



The effect of Wave within the model was also logical, increasing both harvest and discards from 

spring with a peak in the summer and then decreasing into the fall and winter. And finally, the 

effect of the different states on harvest and discards also made intuitive sense in that large states 

with high levels of fishing for these species had the strongest effect (e.g. NY and NJ) while 

smaller states with less fishing had negative effects (e.g. DE and MD), all of which were relative 

to the reference state of CT (Tables 1 and 2).   

 

The model diagnostics are largely good for both the harvest and discard models. Residuals are 

generally normally distributed with a mean of zero, though there is some degree of a positive tail 

for both the harvest and discard models depending on the species. There is no patterning in the 

residuals, therefore they appear to be random with even variance across the range (Figures 2, 5, 

8, 11, 14, and 17).     

  

A shape-constrained smoothing function was used for the relationship between bag limit and 

harvest or discards for several of the models. In the first iteration of the recreational harvest 

models, bag limit produced a counterintuitive negative (yet insignificant) relationship with 

harvest. It was postulated that this negative relationship was an effect of a temporal trend 

wherein bag limits were reduced over the time series in response to increased fishing pressure 

due to increasing biomass and availability of the species. Thus, originally an interactive 

smoothing term including bag limit and RHL and/or SSB was introduced to allow the bag limit 

covariate to inform harvest in an intuitive manner. In response to peer review comment, this 

interactive term was removed and bag limit was instead fitted with a monotonically increasing 

shape constrained smoother in some cases. We recognize that there may have been changes in 

management approach over time that influenced the relationship between bag limit and harvest 

and cannot be fully accounted for within the model’s parameterization. Previous conservation 

equivalency analyses of trip-level information indicate that year-to-year changes in bag limit 

produce the intended effect (although sometimes marginal) on recreational harvest so this shape-

constrained smoother is assumed to represent expected real-world dynamics of possession limit 

changes. 

 

Generally, the stock status variables of SSB, RHL, and recruitment (lagged to represent 

recruitment to the fishery) had a marginal impact on the model AIC for summer flounder, scup, 

and black sea bass. In cases where including these variables resulted in only a small change to 

the AIC (less than 2 points), preference was given to their inclusion.  

 

Summer flounder 

 

Season length was not significant in the summer flounder harvest model but was in the discard 

model (Tables 1 and 2) and generally had a positive effect on harvest and discards, meaning as 

season length increases, so do harvest and discards (Figures 1, and 4). 

 

The recreational harvest limit was not included in the final summer flounder discard model but 

was included in the final harvest model. In theory, higher RHLs could be associated with higher 

summer flounder harvest, which seems to be indicated in the harvest model, for discards it is a 

more difficult effect to understand as discards could increase even with an increasing RHL due 

to cohort effects. This coupled with the fact that RHLs before 2019 were based on uncalibrated 



MRIP data makes the link between this variable and eventual harvest and discards by anglers 

likely to be influenced by the uncalibrated MRIP estimated methods, adding variability to the 

effect in the model. This covariate may improve information to both models over time so should 

be kept for potential use moving forward. 

 

The SSB covariate generally had an insignificant (P>0.05) effect on harvest and discards for 

summer flounder. This may be because regulations were set more conservatively in response to 

high fishing pressure in later years of the time series, when spawning stock biomass was 

generally at high levels. The covariate was kept in the discard model due to both the 

improvement in AIC as well as the desire to have either RHL or SSB as a stock status variable in 

each model if possible. 

 

Recruitment was kept in both the discard and harvest models. It was only significant in the 

discard model; it was borderline in the harvest model, but in both cases the covariate improved 

the AIC score and had the intuitive effect of increasing harvest and discards as recruitment 

increased.  

 

Black Sea Bass 

 

One important note is that the dataset for black sea bass was truncated to start in 2009. This was 

done due to conflating signals and a rapidly changing population during the full time period, 

producing illogical effects in the model. This was done to respond to some of the critique from 

the peer reviewers. Truncating the time period to the past 10 years provided enough historical 

data for the model to generate parameters, while not pulling in data that confounded the analysis.  

 

Season length was significant in the black sea bass harvest model but was not in the discard 

model (Tables 1 and 2) and generally had a positive effect on harvest and discards, meaning as 

season length increases, so do harvest and discards (Figures 7 and 10). 

 

The recreational harvest limit was not included in the final black sea bass discard model but was 

included in the final harvest model. The logic for this is the same as noted in the summer 

flounder section. This covariate may improve information to both models over time so should be 

kept for potential use moving forward. 

 

The SSB covariate generally had an insignificant (P>0.05) effect on harvest and discards for 

summer flounder. This may be because regulations were set more conservatively in response to 

high fishing pressure in later years of the time series, when spawning stock biomass was 

generally at high levels. The covariate was kept in the discard model due to both the 

improvement in AIC score as well as the desire to have either RHL or SSB as a stock status 

variable in each model if possible. In the case of black sea bass, the effect was a negative effect, 

meaning as SSB increased, discards increase. This could be due to the effects of cohorts moving 

into the population that take a while to reach harvestable size, so add more to discard totals than 

was seen for summer flounder. 

 

Recruitment was kept in the harvest model but not in the discard model. It was not significant in 

the harvest model but improved the AIC score, therefore was kept. In the discard model it was 



also not significant and degraded the AIC score. In the harvest model recruitment had the 

intuitive effect of increasing harvest as recruitment increased. 

 

Scup 

 

Harvest and discard models for scup were fitted to data from 2003 to 2019, the most recent year 

for which stock status estimates are available. Scup is managed with different regulations for the 

private sector and the for-hire sector. The harvest and discard models for this species 

incorporated a “mode” term, which accounts for the higher magnitude of scup landings from the 

private/rental/shore mode compared with the for-hire mode.  

 

Monotonically increasing and decreasing smoothers were fitted to bag limit for scup harvest and 

discards, respectively. As with summer flounder, temporal trends in the management approach 

may influence the relationship between bag limit and harvest; bag limits were more variable in 

the early years of the data and became relatively static during the last six years of the time series. 

 

As with the summer flounder models, season length was marginally insignificant in the scup 

models (Tables 1 and 2) but had a positive effect on harvest and discards, meaning as season 

length increases, so do harvest and discards (Figures 13 and 16). 

 

The SSB covariate had an insignificant (P>0.05) but positive effect on scup harvest and was 

included in the final harvest model. Similar to bag limit, this variable may be influenced by 

temporal shifts in the management approach, as fishing pressure increased in later years of the 

time series when scup spawning stock biomass was at high levels. For the discard model, RHL 

was included as a stock status variable and had an insignificant yet negative relationship with 

discards. The relationships between management and stock status variables and discards is less 

straightforward than those for harvest. As scup availability increases, fishing pressure could 

increase, which may result in higher discard rates corresponding to increased fishing effort. 

Another possibility is that increases in SSB and RHL may be driven by large cohorts coming into 

the population. This could increase discards in the short term as those age classes are still too 

small to be harvested by the fishery. However, the increased availability of scup to recreational 

harvesters via an increased RHL may also result in fewer regulatory discards as management 

measures are liberalized, reducing regulatory discards of the species.   

 

Discussion 

One of the key features of this work was the development of the recreational fleet dynamics 

models that can be used for management purposes. The models appear to perform well relative to 

being able to predict within the range of the MRIP estimates, and the output from the models is 

in line with the logical outcome of different management changes. The recreational fleet 

dynamics models have benefits to the overall management program for the recreational summer 

flounder, scup, and black sea bass fisheries in that this approach can be used as a new tool in the 

year-to-year management of these fisheries versus the current approach of independently 

analyzing the effects of the different management options (e.g., bag limit, season length, and 

minimum size). The modeling approach developed in this project could be preferred as it can 

more rigorously account for the interactions between these different measures in a more 

synthetic way; it is based off of empirical information not just from the most recent years but 



from all (or most) years in the time series, it is a single tool that can be used consistently by all 

states involved, and it has the attribute of generating uncertainty estimates, which is critical if the 

objective of regulatory stability is favored by managers. This tool can also be used in the 

evolution of the “Harvest Control Rule” approach to recreational management in that it can be 

used a priori to set the various steps in the management system in a way that accounts for 

uncertainty, and gets the fishery into a range that will align with the needed harvest limits given 

current stock status. 

 

Changes will need to be made to the existing management process to accommodate the findings 

of this work. There is currently a need to adjust annually to make sure harvest is remaining under 

the RHL. In more recent time, there has been some move to incorporate some flexibility into the 

process by allowing for some subjective use of the uncertainty in the harvest estimate from 

MRIP, so there is some precedent to incorporating a technique like that highlighted by this work. 

The approach should be further refined and made more systematic by incorporating a control rule 

structure around the process. The following is an example of an approach that could be used as a 

control rule in the recreational fishery for summer flounder, scup, or black sea bass, and with 

proper development, could be extended to other similar recreational fisheries: 

1. Determine spatial extent to be used (state-by-state, regional, coastwide) 

2. Use the recreational fleet dynamics model to estimate harvest for the current fishing year 

(conversely, the direct estimate from MRIP could be used with its internally estimated 

uncertainty bounds) 

3. If the RHL for the given spatial extent falls within the 95% confidence bounds of the 

estimated harvest in year t, do not change regulations, otherwise, 

4. If the RHL for the given spatial extent falls outside of the 95% confidence bounds of the 

estimated harvest in year t: 

a. Generate a harvest estimate for year t+1 using the recreational fleet dynamics 

model for the appropriate spatial extent 

b. Modify the regulatory parameters in the model until the estimated year t+1 

harvest includes the RHL within its 95% confidence bounds 

5. Set the result from step 3 or 4 as the management program in year t+1, and repeat the 

process at the end of year t+1 

This control rule maintains an annual process, however regulations may or may not change in 

any given year based on the current year’s harvest and uncertainty estimates. Modifications 

could include increasing or decreasing the 95% confidence bounds to some other value based on 

the Councils risk tolerance, increasing the time step to something other than 1 year to enact the 

process, and changing from harvest estimates to catch estimates in an effort to account for 

mortality that includes discards rather than only harvest.   

 

Overall this approach appears to be effective and can provide a better alternative to the current 

management strategy being used for summer flounder, scup, and black sea bass. The application 

could be extended to other fisheries as well, namely bluefish. 
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Table 1 – Model output and diagnostics from the recreational fishery fleet dynamics GAM for 

the harvest models.  

 

Summer Flounder: 

 
 

 

 

 

 

 

 

 

 

 

 

 



Black Sea Bass: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Scup: 

 

 
 

 
 

 

 

 

 

 

 

 

 

 



 

 

Table 2 – Model output and diagnostics from the recreational fishery fleet dynamics GAM for 

the discard models.  

 

Summer Flounder: 

 
 

 

 

 

 

 

 

 

 

 



Black Sea Bass: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Scup: 

 
 

 
 

 

 

 

 

 

 

 

 

 



Table 3 – Model testing configurations with associated AIC scores for the summer flounder harvest 

model 

Model Yr Min 

Size 

Wave State Open 

Days 

Bag SSB Recruit RHL AIC 

1 X X X X X X X X X 20833 

2 X X X X X X X X  20835 

3 X X X X X X  X X 20835 

4 X X X X X X X   20833 

5 X X X X X X    20834 

6 X X X X X     20834 

7 X X X X      20837 

8 X X X       21490 

9 X X        21780 

10 X         21839 

Final X X X X X X  X X 20835 

 

Table 4 – Model testing configurations with associated AIC scores for the summer flounder discard 

model 

Model Yr Min 

Size 

Wave State Open 

Days 

Bag SSB Recruit RHL AIC 

1 X X X X X X X X X 14642 

2 X X X X X X X X  14641 

3 X X X X X X  X X 14641 

4 X X X X X X X   14645 

5 X X X X X X    14645 

6 X X X X X     14647 

7 X X X X      14669 

8 X X X       15474 

9 X X        15695 

10 X         15711 

Final X X X X X X X X  14641 

 
Table 5 – Model testing configurations with associated AIC scores for the black sea bass harvest model 

Model Yr Min 

Size 

Wave State Open 

Days 

Bag SSB Recruit RHL AIC 

1 X X X X X X X X X 7503 

2 X X X X X X X X  7503 

3 X X X X X X  X X 7500 

4 X X X X X X X   7501 

5 X X X X X X    7499 

6 X X X X X     7496 

7 X X X X      7513 

8 X X X       7750 

9 X X        7762 

10 X         7799 

Final X X X X X X  X X 7500 

 

 



Table 6 – Model testing configurations with associated AIC scores for the black sea bass discard model 

Model Yr Min 

Size 

Wave State Open 

Days 

Bag SSB Recruit RHL AIC 

1 X X X X X X X X X 9185 

2 X X X X X X X X  9184 

3 X X X X X X  X X DNC 

4 X X X X X X X   9183 

5 X X X X X X    9182 

6 X X X X X     9181 

7 X X X X      DNC 

8 X X X       9437 

9 X X        9540 

10 X         9554 

Final X X X X X X X X  9183 

 

 
Table 7 – Model testing configurations with associated AIC scores for the scup harvest model 

Model Yr Mode State Wave Min 

Size 

Open 

Days 

Bag SSB Recruit RHL AIC 

1 X X X X X X X X X X 14485 

2 X X X X X X X X X  14482 

3 X X X X X X X  X X 14483 

4 X X X X X X X X   14480 

5 X X X X X X X    14479 

6 X X X X X X     14488 

7 X X X X X      14507 

8 X X X X       14517 

9 X X X        14511 

Final X X X X X X X X   14480 

 

Table 8 – Model testing configurations with associated AIC scores for the scup discard model 

Model Yr Mode State Wave Min 

Size 

Open 

Days 

Bag SSB Recruit RHL AIC 

1 X X X X X X X X X X 15150 

2 X X X X X X X X X  15148 

3 X X X X X X X  X X 15148 

 X X X X X X X  X  15146 

 X X X X X X X   X 15147 

4 X X X X X X X X   15147 

5 X X X X X X X    15145 

6 X X X X X X     15155 

7 X X X X X      15159 

8 X X X X       15157 

9 X X X        15232 

Final X X X X X X X  X  15146 

 

 

 



Table 9 – Responses to peer review comments. 

Issue 
Page(s) of peer 
review report Resolved?  Notes 

Model selection process unclear pg. 1-2, 5-6 Y 
Tables above and text 
should clarify 

Should use same variables for 
harvest and discards pg. 5 N 

Felt it was logical that 
the variables might be 
different between the 
models 

Investigate performance of 
modeling harvest and discards 
together  N Future work 

Year should be categorical 
variable pg. 3 Y 

Included as a random 
effect 

Should be able to predict zero 
harvest during fishery closure pg. 4, 6 N 

Even when fisheries 
are closed, there are 
often landings that 
occur 

Wave should be categorical 
variable pg 7 N 

We expect there to be 
some sort of seasonal 
trend in the wave 
covariate (ie adjacent 
waves should be more 
similar than distant 
waves) 

Out of sample predictions at the 
state level  should be shown  pg. 6 Y 

Could be done as 
additional diagnostic 

Name of the model should be 
revised, as it does not capture 
behavior of anglers or the fleets pg. 1, 3  N 

Happy to discuss a 
new name with the 
MC 

Selection of interaction terms 
should be revisited  pg 5-6 Y 

Interactions were 
removed 

Counterintuitive relationship 
between bag and harvest pg. 5-6 Y 

Subsequent work 
resolved this issue 

 

 

 

 



  

Figure 1 – Output on the covariate effects from the recreational fishery fleet dynamics GAM for 

the summer flounder harvest model. 

 

 



  

Figure 2 – Model diagnostics for the recreational fishery fleet dynamics GAM for the  summer 

flounder harvest model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 3 – Retrospective analysis using simulated data from the summer flounder SCAM and 

comparing it to MRIP summer flounder harvest estimate for years 2014 - 2019. The box and 

whisker plot is the model estimate with uncertainty and the red dot is the “observed” MRIP 

estimate. 



 

  

Figure 4 – Output on the covariate effects from the recreational fishery fleet dynamics GAM for 

the summer flounder discard model. 

 



  

Figure 5 – Model diagnostics for the recreational fishery fleet dynamics GAM for the  summer 

flounder discard model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 6 – Retrospective analysis using simulated data from the summer flounder SCAM and 

comparing it to MRIP summer flounder discard estimate for years 2014 - 2019. The box and 

whisker plot is the model estimate with uncertainty and the red dot is the “observed” MRIP 

estimate. 

 



 

Figure 7 – Output on the covariate effects from the recreational fishery fleet dynamics GAM for 

the black sea bass harvest model. 

 

 



  

Figure 8 – Model diagnostics for the recreational fishery fleet dynamics GAM for black sea bass 

harvest model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 9 – Retrospective analysis using simulated data from the black sea bass SCAM and 

comparing it to MRIP black sea bass harvest estimate for years 2014 - 2018. The box and 

whisker plot is the model estimate with uncertainty and the red dot is the “observed” MRIP 

estimate. 

 



 

Figure 10 – Output on the covariate effects from the recreational fishery fleet dynamics GAM for 

the black sea bass discard model. 

 

 



  

Figure 11 – Model diagnostics for the recreational fishery fleet dynamics GAM for black sea 

bass discard model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 12 – Retrospective analysis using simulated data from the black sea bass SCAM and 

comparing it to MRIP black sea bass discard estimate for years 2014 - 2018. The box and 

whisker plot is the model estimate with uncertainty and the red dot is the “observed” MRIP 

estimate. 

 

 

 

 

 

 

 

 



 
 

Figure 13 - Output on the covariate effects from the SCAM for scup harvest.  

 

 

 

 



 
 

Figure 14 – Model diagnostics for the recreational fishery fleet dynamics GAM for the scup 

harvest model. 

 

 

 

 

 



 
 

 

Figure 15 – Retrospective analysis using simulated data from the scup harvest SCAM and 

comparing it to MRIP scup harvest estimates for years 2014 - 2019. The box and whisker plot is 

the model estimate with uncertainty and the red dot is the “observed” MRIP estimate. 

 

 

 

 

 



 
 

Figure 16 - Output on the covariate effects from the SCAM for scup discards. 

 

 

  



 
 

Figure 17 – Model diagnostics for the recreational fishery fleet dynamics GAM for the scup 

discard model. 

 

 

 



 

 

Figure 18 – Retrospective analysis using simulated data from the scup discard SCAM and 

comparing it to MRIP scup harvest estimates for years 2014 - 2019. The box and whisker plot is 

the model estimate with uncertainty and the red dot is the “observed” MRIP estimate. 

 


