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Abstract—We investigated forces felt by a bare finger in sliding
contact with a textured surface, and how they depend on prop-
erties of the surface and contact interaction. Prior research has
shed light on haptic texture perception. Nevertheless, how texture-
produced forces depend on the properties of a touched object or
the way that it is touched is less clear. To address this, we designed
an apparatus to accurately measure contact forces between a
sliding finger and a textured surface. We fabricated textured
surfaces, and measured spatial variations in forces produced as
subjects explored the surfaces with a bare finger. We analyzed
variations in these force signals, and their dependence on object
geometry and contact parameters. We observed a number of
phenomena, including transient stick-slip behavior, nonlinearities,
phase variations, and large force fluctuations, in the form of
aperiodic signal components that proved difficult to model for fine
surfaces. Moreover, metrics such as total harmonic distortion and
normalized variance decreased as the spatial scale of the stimuli
increased. The results of this study suggest that surface geometry
and contact parameters are insufficient to account to determine
force production during such interactions. Moreover, the results
shed light on perceptual challenges solved by the haptic system
during active touch sensing of surface texture.

I. INTRODUCTION

Perceiving objects via active touch is difficult because there
is no simple relation between an object’s properties and the
mechanical stimuli delivered to the skin, which we could refer
to as the “haptic appearance” of the object. How the object is
oriented with respect to the fingers, how quickly it is scanned,
and how contact is established and maintained also affect the
mechanical stimuli. When an object’s surface texture is felt, the
forces that result depend on the intrinsic mechanical properties
of the object, such as the geometry of the surface texture,
and on factors extrinsic to the object, such as the speed of
exploration or the sliding force applied (Fig. 1D).

Previous studies have demonstrated that individuals adapt
their exploratory movements in ways that may improve in-
formation gained through mechanical stimuli elicited during
such interactions [3], [7], [17], [35]. Prior research has lent
insight into how these mechanical stimuli can be used to aid
perception, how they are affected by the mechanical properties
of the materials [29], [30] and finger [22], [24], and the micro
and macro texture of touched surfaces [8], [9] and finger pads
[5], [26], [28]. Nevertheless, the question of which aspects of
mechanical stimuli are instrumental to the haptic perception of
textured surfaces is still not completely understood. This is in
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part because we have limited knowledge of what mechanical
signals are actually felt by a finger as it explores a textured
surface. The present study aimed to address this gap.

From a perceptual standpoint, the duplex theory of haptic
texture perception indicates that temporal variations of me-
chanical signals (vibrations) and spatially distributed stimu-
lation of the skin jointly contribute to perception [13], [29],
[32], [33]. Prior research has also provided evidence that
reproducing the sequence of forces felt by the skin is sufficient
to facilitate the perceptual identification of surface texture [21],
[31], [32]. However, a small change in contact conditions
can have a large effect on mechanical stimuli delivered to
the finger [6], [26]. This might lead us to believe that the
apparent texture of objects should vary radically, depending
as much on the current conditions of contact as on the felt
object. However, the fact that we can refer to objects as having
surface texture indicates otherwise. As suggested by prior
research [15], [16], [35], the haptic system stabilizes texture
percepts against such variations. This perceptual result might
be referred to as “haptic texture constancy”. Although prior
literature has addressed the problem of texture constancy, there
is no quantitative theory for how surface properties of objects
may be perceptually recovered in the face of this variability.

From an engineering viewpoint, reproducing the full range
of force and displacement stimuli felt by the hand during
palpation is a long term goal of haptic rendering, but, to
date, we have a limited understanding of what these stimuli
are. Prior methods for texture rendering have successfully em-
ployed force, displacement, or acceleration data [27], [31], but
these are of limited use if we wish to simulate the experience of
touching a surface that has not previously been measured, but
is only known through its geometric and material specification.
For example, through surface profilometry and metrology we
can readily measure the physical properties of a surface, but
texture display methods that are based on force sampling are
unable to make use of such data. Existing physically-motivated
approaches to using surface specifications to compute forces
between a rigid tool and a virtual textured surface can yield
evocative experiences [23], but fall short of perceptual realism
and physical accuracy. The complex morphology, and highly
viscoelastic nature of the finger makes it difficult to adapt
existing models for tool-mediated texture rendering to direct
finger contact, although the system identification methods we
investigated here are inspired by such approaches.

In this study, building on our preliminary work [11], we
developed a novel system for accurately capturing end-point
forces felt by a finger sliding on a textured surface. We
analyzed the extent of variation of these force signals in the
temporal and spatial domains, and attempted to relate these to



IEEE TRANSACTIONS ON HAPTICS, VOL. X, NO. X, JANUARY 20XX

A Force Sensors ) B

Fig. 1. A Isometric illustration of the apparatus. B Front view of the apparatus
illustrating normal and tangential force decomposition during sliding contact
with the finger. C Photo of the apparatus. D Relation between intrinsic surface
geometry, fingertip position z(t), scanning speed v(¢), and mechanical forces
Fp(t) and Fr(t) exerted by the finger.

the geometry of the surface and contact parameters, including
sliding speed and contact force, with the aim of characterizing
the relation between both. The resulting force signals proved
remarkably unpredictable, reinforcing the challenge involved
in haptic texture perception.

II. METHODS

We created a system for capturing mechanical interactions
and kinematics of a finger sliding on textured surfaces, which
we fabricated to precise geometric specifications. The sur-
faces were sinusoidal gratings, with different wavelengths
and amplitudes. We measured force and kinematic data as
individuals explored these surfaces with their index fingers,
at specified speeds and normal forces. In order to identify
invariant properties of these interactions, we analyzed the force
patterns in the spatial domain, and aligned them, compensating
for fine variations in contact position from trial to trial. We
used signal analysis and system identification methods to
characterize the resulting force patterns and to quantify the
possibility of predicting forces from texture geometry.

A. Measurement Apparatus

The apparatus included a novel force sensing instrument,
an optical motion capture system, data acquisition hardware,
and a personal computer running custom software, including
a graphical user interface (GUI) that was used to monitor data
collection and provide feedback during the experiments.

We designed and fabricated a custom sensing instrument
(Fig. 1) to precisely capture forces applied by a finger sliding
on a textured surface. The sensor consisted of a rigid tray
suspended on a compliant mechanism. Two pairs of flexure
hinges provide constraints that limit the motion in all but the
horizontal and vertical directions. The device structure was
designed using compliant mechanism theory [19], solid (CAD)
modeling and simulated using finite element method numerical
simulation (COMSOL Multiphysics, Boston, MA), ensuring
a usable measurement bandwidth extending to 500 Hz. We
fabricated the rigid sections of the device from type 6010
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Fig. 2. Frequency Response Function (FRF) of the force sensing apparatus in
the tangential direction. Twenty individual trials in gray, average in black. The
FRF shows a resonant mode above 500 Hz and low amplitude interference
from the power supply at 60 Hz and its harmonics. The usable bandwidth is
approximately from 15 - 500 Hz.

aluminum alloy using precise electrical discharge machining,
and constructed the flexures from 0.25 mm type 1095 spring
steel. The top section of the tray (top dimensions 120x25 mm)
was specified to support textured surfaces that were to be used
for the measurements.

Electronic sensing was performed by a pair of piezoelectric
force sensors (Model 9712A5, Kistler Instruments, Winterthur,
Switzerland) terminating on hemispherical contact buttons, and
positioned to contact the tray at 45 © angles (Fig. 1B), allowing
normal and tangential force components to be measured. The
sensors were powered using an Integrated Electronics Piezo
Electric (IEPE) compliant supply (Model 5134, Kistler Instru-
ments), and signals from each sensor were conditioned and
digitized (55.6 us sample period, 16 bits) using data acquisition
hardware (NI 9215 and Compact DAQ, National Instruments
Inc., Austin, TX).

Due to the 45° orientation, the force signals F} and Fb
measured by the sensors are linear combinations (with equal
weights) of the force components normal and tangential to the
surface, Fy and Fr, of the resultant force applied to the tray

1 1
FNZE(FH + Fy), FTZE(F1—F2) (H

An experimental frequency response function (FRF) was
measured using a pendulum to strike the tray horizontally on a
flat sample fabricated using the same material as the sinusoidal
gratings. A total of 20 trials were measured and the frequency
response was obtained by transforming the resulting force
signals using the Fourier transform (Fig. 2). We calibrated the
electronic sensor using a step force input of known magnitude,
the electronic measurements required an amplification of 3.7
dB relative to the manufacturer’s specifications.

Kinematic trajectories of the finger were captured using
an optical motion capture system (V120:Trio Natural Point,
Corvallis, OR). This system tracked a small reflective marker
that was adhered to the fingernail in a standardized location.
The optical motion capture system operated with a sampling
period of 8.3 ms and an approximate spatial resolution of
0.2 mm. It was positioned and calibrated to have the zero
reference at the center of the apparatus along the x axis (Fig. 3).
Data acquisition and optical motion capture were managed
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Fig. 3. A Experimental system designed to measure displacement, normal

and tangential forces during sliding contact between a finger and a textured
surface. Top (B) and front (C) view illustrations of one of the eight textured
surfaces (all sinusoidal surfaces) used in the experiment; Top dimensions as
shown. Eight different textures were employed, differing in a single parameter
(spatial scale).

by a computer running a custom software GUI (MATLAB
Release 2014b, The MathWorks, Inc., Natick, Massachusetts)
that controlled the data recording process.

B. Textured Surfaces

We fabricated textured surfaces with known geometries,
which were specified through height functions h(x), in or-
der to study the variation of forces with surface geometry
during sliding touch of these surfaces with the finger. These
surfaces were sinusoidal surfaces with height profiles given by
h(z) = Asin(2ma /). Amplitude A and spatial wavelength A
varied for each sample. Eight such surfaces were used in the
experiment, with A = 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5
mm, 3 mm, 3.5 mm and 4 mm (similar range to the stimuli
used in previous studies of texture perception from resultant
end point forces [12], [18]). The amplitude of each sinusoidal
surface was equal to a fixed fraction of the wavelength for
all samples, A = 0.1, ensuring that the maximum slope was
constant for all sinusoidal surfaces — only the scale varied.
We considered different surface geometries and amplitude-
wavelength relations in this work, but elected to focus on a
single effective parameter (scale), for practical reasons, and to
aid the interpretation of the results. All surfaces were 120 mm
long and 25mm wide (Fig. 3 B,C). The surfaces were modeled
parametrically in software and fabricated using a photopolymer
resin 3D printer (Objet 30, Stratasys Inc., Boston, USA) yield-
ing an artifact-free finish at the scales of interest (approximate
resolution: 100 um). No further processing was performed to
modify the surface finish. The surfaces were firmly affixed
to the measurement apparatus with two-sided adhesive tape
during the experiments.

C. Measurement Procedure

The measurement apparatus was used to capture normal
forces, tangential forces, and movement during sliding contact

TABLE 1. MEASUREMENT CONDITIONS FOR THE EXPERIMENT
Conditions
C1 Cc2 C3 C4
Prescribed sliding speed v 80 mm/s 80 mm/s 120 mm/s 120 mm/s
Prescribed normal force f 03N I N 03N IN

of a bare finger on a textured surface. Nine individuals partici-
pated in this experiment (5 male and 4 female, ages 19 to 28).
None evidenced any abnormality of biomechanics or function
of the finger or hand, and all were right hand dominant. Each
participant was seated in front of the apparatus with the right
elbow supported and forearm held at a comfortable angle. They
each performed sliding touch of the eight different sinusoidal
surfaces a total of 30 times in alternating directions, using
the second digit of the right hand. There were four different
measurement conditions (Table. I), which varied in nominal
scanning speed (80 mm/s and 120 mm/s) applied normal force
(0.3 N and 1 N).

In order to enable participants to produce normal forces and
sliding speeds close to those that were specified during the
experiment, feedback was provided during practice trials via
an automated system. A graphical user interface indicated the
force level to be produced relative to that performed by the
participant during the trial. An audio metronome was used to
enforce sliding speed, by indicating the regular tempo at which
the finger was to be slid across the surface. Participants were
readily able to follow the metronome, but there were variations
in force and speed trajectories, due to normal human motor
control limitations, as discussed below. Training was provided
in advance of each of the four measurement conditions and
continued until the participant achieved consistent performance
as determined by the experimenter. Prior to data collection in
each condition, each of the sinusoidal gratings and finger pad
were cleaned using a cotton cloth and isopropyl alcohol.

D. Data Processing

The discrete time signals from each force sensor were
digitized, and used to compute normal and tangential force
components Fy(t) and Fr(t) (Eq. 1). The measurement
conditions were indexed by the surface texture wavelength A,
and the prescribed force level f and prescribed speed v. We
also recorded the position p(t) of the finger, but only the a-
component was employed. Subsequent processing stages are
summarized in Fig. 4. The force signals were band pass filtered
to remove effects of motor variability and high frequency
artifacts. This was accomplished with a zero-phase filter with
cutoff frequencies of 15 and 500 Hz. Three zero-phase notch
filters (60 Hz, 180 Hz and 300 Hz) were used to eliminate a
small amount of power supply interference (Fig. 2); the narrow
bandwidth and linear phase response ensured the filter could
correct for this interference without significantly affecting the
measurements. Position information was re-sampled to 18 kHz
to match the sampling frequency of the force data.

Further analysis focused on the tangential (frictional) force
component Fir(t). We segmented these signals into trials, each
of which consisted of one left-to-right scan of the middle
80 mm of the respective surface. We eliminated 20 mm at
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Fig. 4.  Signal processing of the measurements captured in the present
investigation, including both time and space domain processing.
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Fig. 5. Example tangential force signals with and without stick-slip. A Trial
without stick-slip events, A = 0.5 mm, prescribed speed v = 80 mm/s,
prescribed normal force f = 1 N. B Trial exhibiting stick-slip oscillations,
A= 0.5 mm, v =80 mm/s, f =1 N. C Trial exhibiting transient stick-slip
events, A = 0.5 mm, v = 80 mm/s, f =1 N.

each end of the trial to avoid transient effects accompanying
the change in direction of motion. For each of the eight
wavelengths, two force levels, and two speeds, we considered
ten left-to-right trials from each of the nine participants,
yielding a total of 2880 signals that were used for our analysis.
Using the method of Wiertlewski et al. [32], we transformed
the tangential force for each trial from the time to the spatial
domain, yielding a spatial force pattern Frr(x) given by

Fr(x) = Fr((X~(z)) @)

Here, Fr(t) and X(t) are piecewise linear approximations to
F(t) and z(t). The inverse function of X (t) was resampled at
regular distances, yielding a spatial sample period of 0.01 mm.
The resulting spatial domain tangential force data were filtered
using a zero-phase high-pass filter with cut-off frequency at 0.2
mm~! to eliminate slow varying fluctuations in the data.

E. Stick Slip Phenomena

A small number of trials in each condition (fewer than three
for every participant) exhibited periodic or transient frictional
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Fig. 6. Example trial, A = 1.5 mm, prescribed speed v = 120 mm/s,
prescribed normal force f = 0.3 N. A Before amplitude demodulation.
Force Frr(z) in black, envelope Fg(x) in dashed lines. B Demodulated force
pattern, Frp(z).

stick slip events, marked by a sustained increase of force
magnitude followed by a rapid decrease in force (Fig. 5).
Consistent with expectations from basic mechanics, these
could be assumed to reflect the occurrence of static finger-
surface contact (sticking), followed by the rapid resumption of
sliding motion (slip) [2], [20], [25]. Although interesting, these
events occurred sparsely and at irregular intervals, and were
larger in force magnitude than the regular variations in texture-
produced forces that we observed. Consequently, we removed
trials in which stick slip events were identified, eliminating
a number between 0 and 2 trials for each participant and
condition (0 being the common case).

FE. Amplitude Demodulation

In order to eliminate effects of amplitude modulation in the
force signals, which were due to changes in the average normal
force applied caused by variations in motor activity during
sliding of the finger, we processed the force signals in order
to remove the modulating effects of an envelope signal Fg(z)
using a square law envelope detector, given by

Fr(z)Fp(x), ()
\/FT(Z’)2 *hLPF(IL') (4)

Here hypr(x) is a zero-phase low-pass filter (cutoff freq. 0.05
mm~1), and * denotes convolution. For each trial, we divided
the force signal by the envelope estimate, and normalized the
resulting signal (peak amplitude 1 mN), see Fig. 6.

FT(LL') =
FE(.%) =

G. Optimal Phase Alignment

In order to facilitate the analysis of trial to trial variations
in force signals, we processed the force data to compensate
for fine differences in contact position between the finger and
the surface, which could be attributed to finger orientation
or mechanical factors, using an optimization based phase
alignment method, and performed an inter-session alignment
in order to eliminate phase artifacts due to small variations in
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4: while (C < 1.05 C') do
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7. end for
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11: end while

Fig. 7. Trial alignment algorithm; The quantities C' and F'7 were computed
on the middle 60 mm of each trial.

system calibration between measurement sessions. The tech-
nique we used was inspired by methods previously developed
for image comparison in computer vision [14]. The essence of
the approach is to determine a rigid displacement 7 (in mm) for
every trial such that the difference between the force patterns
in the ensemble of trials is minimized. To this end, we first
aligned all trials in each condition (A, v, f) for each participant,
in order to compensate for contact mechanical variations due to
participant motor behavior. We then estimated a constant phase
shift between participants, in order to compensate for artifacts
of the measurement configuration (i.e., slight differences in the
position of the optical marker and surface position).

To align trials, we used an optimization algorithm (Fig. 7)
similar to expectation-maximization, which alternately com-
puted the mean force pattern F'r(x) for a given set of offset
values 7; (¢ indexes the measurement trial)

_ 1<
Fr(x) =~ > FPri(z+m)
=1

and selected the displacements 7; that maximized, in the
respective condition, the (normalized) resultant correlation
coefficient C' with the mean force pattern Fr(z),

E(XY) - E(X)E(Y)
VE(X?) - E(X)?\/E(Y?) - BE(Y)?

1 & —
~>_o(Fri(w+7),Fr) 6)

i=1

p(X,Y) =

®)

6:

Here p(X,Y) is Pearson’s correlation coefficient. These two
steps were iterated until convergence. The value C' employed
here is similar to the r? value for a regression fit. 7; was
constrained to the range from -2 to 2 mm, and the minimum
permissible change in displacement was 10 pm. The algorithm
terminated when C' increased by less than 5% (Fig. 7).

H. Signal Entropy

Inspired by prior literature on image alignment [10], [14],
we used entropy as an independent assessment of the quality
of the phase alignment of the force signals, by computing its
change, in each condition (\, v, f), before and after alignment.

Entropy provides a nonparametric measure of the degree of
disorder or dispersion in a distribution of values. Denote by
Dy o, ¢ (F)(z) the empirical distribution (histogram) among all
trials of force values at position x in condition (A, v, f). The
empirical entropy of the ensemble of N signal values at x is
given by

Hyg (@) = =3 D(Fr(a));logy D(Fr(@); (D)

where D(Fr(z)); is the number of values of Fr(z) in the
jth histogram bin. We computed the total entropy among all
trials in each condition by integrating the pointwise empirical
entropy over the sample

F,\;U’f = /H)\7U7f(x) dd? (8)

The change in entropy after alignment provided a measure
of the extent to which the rigid translations 7; resulting from
the alignment procedure reduced trial to trial variability in the
force signals. Stated differently, the entropy values quantified
how well the observed variability in force signals could be
accounted for by small trial to trial changes in contact position.

1. Signal Variance

In order to compare the extent of variation in force signals
Fr across trials in each condition (A, v, f), we computed the
ratio of the average signal variance to the RMS amplitude of
the mean force pattern F'p(z). This ratio, which we refer to
as Variance-to-Power Ratio (VPR), is given by

1 n
_ w21 Var(FT(»T))>
VPR = 100( s (o (2)) : )
1 N
rms(X) = N;'X”P' (10)

This ratio was higher when the signal mean in a given
condition was less representative of the individual trial mea-
surements.

J. Nonlinear Distortion

Forces produced as a result of mechanical interactions
associated with sliding contact of a finger against a textured
surface can exhibit significant nonlinearities [1], [31]. The
sinusoidal excitation of a nonlinear dynamical system can
yield harmonic signal distortion, which is reflected in the total
harmonic distortion (THD) of the input-output response of the
system given by

rms(Fp — Hp)
rms(Hp)

We computed THD in each condition (A, v, f) in order to
quantify the extent to which our measurements may have
reflected such nonlinearities. We extracted the first harmonic
component of the signal Hy (which coincided with the spatial
frequency of the surface) using a band pass filter with a narrow
bandwidth of 0.04 mm~! about the fundamental frequency.

THD = (11)
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Fig. 8. Nonlinear dynamical system model mapping an input geometry h(z)
to output force pattern Fr(t). Parameters include the speed v, contact force
f. It could be assumed to depend on other factors such as temperature and
humidity.

K. Predictive Modeling

We measured force signals produced by interactions between
the finger and the textured surface. In order to shed light on
these interactions, we adopted an input-output system model
with the surface texture height function h(z) as the input and
the friction force Fr(x) as output (Fig. 8). Other parameters
affecting the interaction (sliding speed, normal force, humidity,
etc.) were regarded as constant (the foregoing processing
helped to ensure this). We adopted a deterministic model, since
the fundamental physical processes involved are not stochastic
at the length scales of interest, and utilized nonlinear models,
since such interactions are known to possess nonlinearities (as
further supported by the outcome of the foregoing analysis;
See Results, below).

To model our data, we adopted a general black box nonlinear
system modeling approach, utilizing Nonlinear Auto Regres-
sive Exogenous (NLARX) Models (Fig. 9). We trained these
models on a subset of our data, and assessed their ability to
predict forces from surface texture using an independent data
set as a control.

The NLARX model related an input signal u(z) = h(x)
to an output y(z) = Fr(z) via a time delay nonlinear
autoregression. The vector of regressors r(z) at each = was
given by

r(r) =

(u(z) u(x = 96) -+ u(z — (n; — 1)9)
y(x —6) - ylxr —n,d0))T (12)

where 6 = 0.01 mm is the spatial sampling interval. The output
Y = Ylin +Yn1 Was a sum of linear and nonlinear terms (Fig. 9),
with a linear part given by

yin(z) = alr(z) (13)

where a is a vector of linear regression weights that were
estimated from data. The nonlinear component had the form
of a wavelet nonlinearity

Ny

yni(x) = Zam(ﬁi(r(x)—f—ci))7 (14)
i=1

k() = (N — [[uf?)e= 05" (5)

The parameters o, 3; and c; were the wavelet coefficient,
dilation, and translation parameters that were estimated from
data as part of the regression. The number of parameters and
model order were determined by values (Table II-K) obtained
via model selection (see below). Estimation was performed
with Levenberg-Marquardt search, using the Matlab system

NLARX Model

Regressors

Linear Process (x) = F.(x)
Ut =hix) u(x), u(x-1) Ig 4 >
P i
| 1
R /

Fig. 9. Block diagram of the Non Linear Auto-Regressive eXogeneous
(NLARX) model.

identification toolbox (Matlab Release 2014b, The MathWorks,
Inc., Natick, Massachusetts).

The NLARX model structure was selected because it pro-
vided a higher average goodness of fit (GOF) metric (on the
data subset tested) than that of several other model alternatives
that we evaluated, which included Hammerstein-Weiner (with
static nonlinearity) models and linear autoregressive models.
The nonlinear part of the NLARX model used was chosen to be
modeled by a wavelet network. This type of nonlinearity was
selected because its use resulted in a higher average GOF (on
the data subset tested) than that of other evaluated alternatives,
including single and multiple layer sigmoidal neural networks

The regression weights (a, m, oy, B;, ¢;) were estimated to
minimize the RMS error €(y, 3)) between the measurements
y(z) and the model output §(x), where

Syl = 1§
Wi =1-——=, I==) 7. (16)
ly — 9 n ;

We estimated an NLARX model for each trial in the spatial
domain (60 mm in length), using the first 40 mm for model
estimation, and the second 20 mm for testing. Our test criterion
was the GOF metric

GOF =1 - €(y,9) a7

Before training and testing, we used a model selection pro-
cedure to determine the order parameters n;, n,,ni and n.,
best suited to each measurement condition (Table II-K). In
order to avoid overfitting, we used independent data sets for
this purpose, consisting of ten randomly selected trials in
each measurement condition; these trials were subsequently
excluded from training and testing. A grid search over all even
values of the model order parameters was used in order to
select those that maximized the sum of GOF metrics between
the trials in each respective condition (Table II-K).

TABLE II. NLARX MODEL PARAMETERS AND SEARCH RANGE
Parameter Description Span
n; =2k Num. Input regressors k=123, ... ,15
ne = 2k Num. Output regressors k=0,12,..,15
Ny =5k + 1 Num. Wavelets k=0,1,2,3,4,56,7
ny =4k Num. Nonlinear regressors  k = 0,1,2,3,4,5

ITII. RESULTS
A. Force Patterns Before and After Phase Alignment

The ensemble of trials in each condition exhibit significant
variation about the mean F'r-(z) (Fig. 10) both before and after
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Fig. 11. Normalized correlation C vs. sinusoidal surface wavelength under
four measurements conditions, before and after alignment. The alignment
process increases considerably the normalized correlation in all cases.
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Fig. 12. Empirical entropy H g vs. wavelength X in all four conditions v, f.
After the alignment process, the signals show a reduction in the average spatial
entropy, indicating a reduction in the variability between trials.

phase alignment of trials. However, the amplitude of the mean
signal was increased in all conditions. After alignment, the
value of the normalized correlation coefficient C' increased in
all conditions (A, v, f), and increased by more than 100% in 29
out of 32 conditions (Fig. 11). We used entropy values H ,
as an independent and nonparametric measure of the spread
between trials. In all 32 conditions, the value of H decreased
after alignment, indicating that entropy was reduced (Fig. 12).

The distribution of displacements 7 that were obtained
through the optimal alignment procedure provide an indication
of the extent of variability in the effective phase offset between
force patterns from trial to trial (Fig. 13,14). Although phase
aligning the force signals greatly increased the correlation
between trials and decreased the entropy, the values of T
needed to achieve this were very small, on the order of 0.1 mm.
No qualitative differences were observed between conditions,
and the distribution of displacements was also qualitatively
similar for different subjects (Fig. 14).

B. Force Patterns in Spatial Domain

At all but the shortest wavelength A, the mean force signals
Fr(x) exhibit quasiperiodicity in all conditions, with the
wavelength of force oscillation equal to that of the surface
(Fig. 10). Individual trials also exhibited irregular quasiperiod-
icity (e.g., Fig. 8). We further measured the extent of variance

7
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Fig. 13. Phase alignment histogram grouped by participant. Typical values

of 7 were small, approximately 0.1 mm.
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Fig. 14. Phase alignment histogram for all participants.

about the mean signal in each condition using a variance-
to-power ratio (VPR, Fig. 16). In all conditions, the highest
two values occurred at the shortest wavelength, and the lowest
value occurred at one of the longest wavelengths, indicating
that there was more variance about F'r(x) at low wavelengths,
and that the mean F'z(x) was more representative at long
wavelengths. The data analysis in the spatial frequency domain
provided evidence of nonlinearities, in the form of frequency
content that was harmonically related to the periodicity of
the surface texture (Fig. 15). The nonlinearity of the finger-
surface interactions is evidenced by the multiple harmonics that
are present in the force data. Consistent with prior literature
[11], [31], the harmonic amplitude decreased with increasing
harmonic number.

Total harmonic distortion (THD) was used to measure
nonlinearity in the source interactions (Fig. 17). These values
decreased with wavelength for all values of (v, f), indicating
an increasingly nonlinear relationship between force and sur-
face geometry at smaller spatial scales, or shorter wavelengths.

C. Predictive Modeling

We assessed the extent to which force patterns Fp ; () could
be predicted from surface height h(x) using Nonlinear Au-
toregressive Exogenous (NLARX) modeling. The prediction
quality on the test set is shown for all conditions (v, f)
in Fig. 18. A separate model was fit for each trial, and the
model structure was constant for all trials in a given condition
(A\v, f). We assessed fit quality by computing the average
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GOF metric for each trial on a moving 4 mm prediction win-
dow (Fig. 18). The GOF metric could be positive or negative,
with higher (more positive) values indicating a better fit. The
results increase from near zero at small wavelengths to values
of approximately 10, indicating relatively poor predictability in
all conditions, but especially so at small spatial wavelengths.

We further investigated the predictability of force patterns
from surface geometry by computing correlation values be-
tween the model predictions and measurements on a 4 mm
prediction horizon, by averaging values of Pearson’s corre-
lation coefficient between trials (Fig. 19). The highest mean
correlation values, near p = 0.5, were observed at the longest
wavelengths, indicating that model predictions best matched
measurements for the most slowly varying surfaces, but also
reinforcing the observation that the force data exhibited im-
portant variations, even within a single trial.

IV. DISCUSSION

The results provide concrete insight into the frictional forces
that are produced during bare finger sliding contact, and their
relation to the geometry of the underlying surface, as well as
interaction parameters (v, f). Most notably, the data we cap-
tured exhibited large variability between trials, in essentially
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Fig. 18. Average of NLARX prediction GOF at 4 mm prediction window

computed in 90 trials per each wavelength and experimental conditions
(A, v, f). Each box plot delimits the region where 80 % of the samples lie,
median values marked as dashed lines, outliers marked as gray crosses (Some
data points are outside the plot area).
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Fig. 19. Average of NLARX prediction correlation at a 4 mm prediction

window computed in 90 trials per each wavelength and experimental condi-
tions (A, v, f). Each box plot delimits the region where 80 % of the samples
lie, median values marked as dashed lines, outliers marked as gray crosses
(Some data points are outside the plot area).

all conditions. We hypothesize that this variability is due, in
part, to small trial to trial variations in contact conditions.
Indeed, our results show that by introducing small signal-
dependent offsets in displacement, which were determined
through optimization to be on the order of 100 pm, it was
possible to greatly increase the amplitude of the mean force
pattern in every condition (X, v, f), and to reduce the empirical
entropy of the force signal ensemble.

Our analysis methods, including spatial domain process-
ing and amplitude demodulation, expressly compensated for
variations in applied force f and speed v. Nonetheless, it is
also possible that small trial-to-trial variations in applied force
and speed contributed to the trial-to-trial variations in force
that were observed. A further cause may be the nonlinear
dynamical nature of the interactions themselves, which can
exacerbate all of the aforementioned effects, since nonlinearity
is known to amplify dynamical sensitivity to initial conditions.
Our analysis demonstrated that at least one measurement of
nonlinearity, THD, was highest for textures with the small-
est wavelengths. The presence of such nonlinearities was
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consistent with predictions from prior literature [32]. These
same textures exhibited the highest Variance-to-Power Ratio
(in all conditions (v, f)), indicating that highest trial-to-trial
variability where interactions were found to be most nonlinear.
Nonetheless, the analysis revealed that several signal features,
including the fundamental frequency of spatial force patterns,
were stable and well preserved, especially for A > 1 mm,
despite these variations. Such signal components might be
hypothesized to be cues that aid the perceptual recovery of
surface texture. For smaller wavelengths (A = 0.5,1 mm),
however, the fundamental and harmonic components of the
signals were less prominent.

Although we evaluated a large number (nearly 8000) candi-
date models for predicting spatial force patterns Frr(x) from
surface height h(z), the NLARX system models we estimated
from data proved to have limited predictive power, even when
evaluated on a short horizon of 4 mm, possibly due to the
aforementioned signal variability. Consequently, it was difficult
to identify any clear relation between the interaction conditions
and the quality of fit (GOF metric) or the correlation between
the true and predicted force pattern. However, we did observe
modestly higher correlation values in the long wavelength
conditions, which might indicate that prediction is somewhat
more accurate at longer spatial scales. In previous work (using
data captured from a different apparatus and different textured
surfaces), we observed that it was possible to predict the mean
force pattern F'p(x) with reasonable quality using similar
models, and that prediction quality was dramatically better at
wavelengths A of at least 3 mm [11]. However, perhaps due to
the overwhelming variability in the force signals recorded in
individual trials, as were analyzed in the present experiment, no
clear conclusion could be drawn here about the predictability
of forces produced from interaction with long versus short
wavelength surface textures.

V. CONCLUSION

The forces that result from sliding contact of a bare finger
with a textured surface depend on a number of factors, includ-
ing the geometry of the surface, the detailed nature of finger-
surface contact, and the time-varying exploratory trajectory
of the finger. Here we focused on the integrated (resultant)
frictional force between the finger and surface. Our results
suggest that macroscopic knowledge of these parameters is
insufficient to constrain force production. Even when sliding
over very regular textures, and correcting for temporal and
contact differences, frictional forces were observed to vary
greatly from moment to moment and trial to trial.

Although our study did not directly investigate texture
perception, it does raise relevant questions. Informally, the
textured surfaces used in this investigation all feel highly
regular; when exploring them with the finger one is left with
the impression of a perceptually constant, regular, corrugated
surface. This stands in stark contrast to the variability seen in
individual force trials, from which one might, a priori, expect a
perceiver to feel something different every time that the finger
is stroked along the sample. How is the apparent perceptual
stability of surface texture achieved, and which features of

these signals enable the nervous system to solve this problem?
The latter question is also highly relevant to the problem of
haptic rendering. Many techniques have been developed for
accurately reproducing frictional forces produced by a virtual
surface, including those based on force feedback devices [4]
and surface haptic displays [34]. Although other possibilities
have been explored in the literature, one attractive option is
to specify the surface texture geometrically, in the spatial
domain. However, our results strongly suggest that such a
specification, even when combined with measured interaction
parameters (such as speed, position, and normal force), are
by themselves insufficient to constrain the actual forces that
should be produced in order to simulate interactions with
the surface. Consequently, it is far from clear what rendering
algorithm might be appropriate for producing realistic texture-
generated forces from geometric surface specifications. One
approach to this problem could be based on perceptual criteria,
but as alluded to above, it is not obvious what the most
perceptually salient features of these force signals may be.

Despite the promising nature of this study, several open
questions remain, and additional research could shed further
light on them. Based on our experiment, it was not possible to
definitively identify the origin of the force fluctuations that we
observed. Possible factors include the continuum dynamics of
the finger pad, interactions with the finger ridges, the multi-
contact surface that is involved, the presence of unstable stick-
slip motion, or other unstable or chaotic modes of oscilla-
tion (possibly created by nonlinearities in the finger-surface
interaction forces). In order to clarify which of these may be
important, further research is needed on the dynamics of force
production between the bare finger and a textured surface.
Although the measurement apparatus presented here improves
greatly on that presented in our preliminary work [11], one
with greater temporal resolution and bandwidth would further
aid this line of inquiry. A system that facilitates direct mea-
surement of the complex contact geometry and local forces
would allow a more direct investigation of the mechanics
involved, but such a device has not yet been realized. The
nonlinear models that we developed, after extensive search in
model space, used data driven system identification methods
that proved unable to fully capture the dynamics of finger-
surface interactions. While this suggests the challenging nature
of this task, further work is needed in order to explore what
model structures might more effectively capture the dynamics.
In future efforts, we aim to develop force production models
that explicitly integrate models of contact mechanics and finger
dynamics. This work will also be complemented by research
aimed at identifying the mechanical signal features that are
most salient to texture perception. Finally, we studied force
production for a limited range of surfaces, materials, and
interaction parameters. We plan to generalize further in future
work using periodic and non-periodic textured surfaces with
different shapes and study the frictional forces elicited to better
understand the how the texture profile and the finger account
for their generation.
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