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1Chapter 1

Introduction

Integration is a fundamental aspect of analysis, initially as the “inverse” of differentia-
tion. With time aspiring mathematicians learn there is not a single notion of integral,
but several interrelated ones. The purpose of this course is to compare classical inte-
grals, most notably the Riemann and Lebesgue integrals, with oscillatory integrals. Let
us quickly review the first two before we proceed to the third.

1.1 The Riemann integral

The first notion of integral students of mathematics typically encounter is the so-called
Riemann integral. It defines the integral of a function f as the limit of upper or lower
sums, provided both limits exist and coincide; we will briefly review Riemann integra-
tion and its shortcomings in Chapter 2.
The price to pay for the simplicity of definition of Riemann integration (at least on R

and cubes onRd) is that only a relatively small class of functions is Riemann integrable.
Requiring that limits of upper and lower sums exist and agree puts a strong constraint
on the variation of the function.

1.2 The Lebesgue integral

That is the main motivation to introduce the second notion of integration, the Lebesgue
integral, which approaches integration from the measure theoretic end. Not only does
this generalize the notion of integrability beyond integration of suitable subsets on Rd,
rougher functions are integrable. Just like with sums, to be able to declare the sum of
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1 Introduction

the integrals as the integral of the sum of the integrands,∫
f +

∫
g =

∫
(f + g),

we need to work with absolutely integrable functions, i. e. those from

L1(Rd) :=
{
f : Rd −→ C measurable

∣∣ ∫
Rd

dx |f(x)| <∞
}
.

Similarly, for p ∈ [1,∞) we can define the notion of p-integrable functions,

Lp(Rd) :=
{
f : Rd −→ C measurable

∣∣ ∫
Rd

dx |f(x)|p <∞
}
.

These form vector spaces that can endowed with a seminorm

‖f‖Lp(Rd) :=

(∫
Rd

dx |f(x)|p
)1/p

.

Once we identify functions f ∼ g which coincide almost everywhere, we obtain the
Banach spaces Lp(Rd) that commonly used in analysis and functional analysis.
There exist a lot of theory for this type of integrals. For example, Fubini’s Theo-

rem (cf. [LL01, Theorem 1.12]) tells us under what circumstances we are allowed to
exchange the order of integration. Monotone and Dominated Convergence Theorems
give us sufficient conditions when we are allowed to exchange limits and integration.
These are the basis for things like parameter-dependent integrals and exchanging dif-
ferentiation and integration.

1.3 Oscillatory integrals

To motivate why a third notion of integral is useful, we use an example that comes
from operator theory. Here, one wants to define a so-called pseudodifferential operator
via the integral

〈
ϕ,Op(f)ψ

〉
:=

1

(2π)d

∫
Rd

dx
∫
Rd

dy
∫
Rd

dη e−iη·(y−x) ϕ(x) f
(
1
2 (x+ y), η

)
ψ(y).

(1.3.1)

The functions ϕ,ψ ∈ C∞
c (Rd) ⊂ L2(Rd) are smooth functions with compact support

and f ∈ C∞
u,pol(R

d×Rd) is a smooth, polynomially bounded function whose derivatives
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1.3 Oscillatory integrals

are bounded by a polynomial of fixed order. An example coming from physics would
be the semirelativistic Hamilton function

f(x, ξ) =
√
m2 + ξ2 + V (x), m > 0.

The associated operator Op(f) is then called the Weyl quantization of f .
After picking an orthonormal basis {ϕn}n∈N of L2(Rd), the matrix elements

(〈
ϕj ,Op(f)ϕn

〉)
j,n∈N

uniquely determine the operator Op(f), the so-called Weyl quantization of f [Hör79;
Fol89; Rob87]. In fact, the diagonal elements

〈
ϕn,Op(f)ϕn

〉
suffice to define the op-

erator uniquely.
At closer inspection, the integral (1.3.1) is not well-defined as an absolutely conver-

gent integral. For simplicity, let us consider the constant function f(x, ξ) = 1 first. At
the end, we would like to show that Op(1) = idL2(Rd) is the identity operator. Assuming
ϕ,ψ 6= 0, we start by taking absolute values of the right-hand side of

I(ϕ,ψ) :=
1

(2π)d

∫
Rd

dx
∫
Rd

dy
∫
Rd

dη e−iη·(y−x) ϕ(x)ψ(y)

and pulling it into the two inner integral gives an integrand that is independent of the
first integration variable η,

∣∣∣∣ 1

(2π)d

∫
Rd

dy
∫
Rd

dη e−iη·(y−x) ϕ(x)ψ(y)
∣∣∣∣ ≤ (1.3.2)

≤ 1

(2π)d

∫
Rd

dy
∫
Rd

dη
∣∣∣e−iη·(y−x) ϕ(x)ψ(y)∣∣∣

=

∣∣ϕ(x)∣∣
(2π)d

(∫
Rd

dy
∣∣ψ(y)∣∣) ∫

Rd

dη

=

(∣∣ϕ(x)∣∣
(2π)d

‖ψ‖L1(Rd)

)
︸ ︷︷ ︸

<∞

∫
Rd

dη︸ ︷︷ ︸
=∞

= ∞.

Consequently, the integral I(ϕ,ψ) does not exist as an absolutely convergent integral.
We may try to remedy this by integrating with respect to η last, but that is not of
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1 Introduction

much help either. While for ϕ,ψ ∈ C∞
c (Rd) the estimate∣∣∣∣ 1

(2π)d

∫
Rd

dx
∫
Rd

dy e−iη·(y−x) ϕ(x)ψ(y)
∣∣∣∣ ≤

≤ 1

(2π)d

∫
Rd

dx
∫
Rd

dy
∣∣∣e−iη·(y−x) ϕ(x)ψ(y)∣∣∣

=
1

(2π)d

∫
Rd

dx
∫
Rd

dy
∣∣ϕ(x)∣∣ ∣∣ψ(y)∣∣

= (2π)−d ‖ϕ‖L1(Rd) ‖ψ‖L1(Rd) <∞

is finite as our functions have compact support, the right-hand side is independent of
η, and therefore cannot be integrable with respect to the last, remaining variable η.
Another approach that takes a step in the right direction is to keep the oscillating

phase factor around. Formally, we can reorder the integrals, split the phase factor

e−iη·(y−x) = e−iηx e−iη·y

in two and distribute it amongst the factors to obtain

I(ϕ,ψ) =
1

(2π)d

∫
Rd

dx
∫
Rd

dy
∫
Rd

dη e−iη·xϕ(x) e−iη·yψ(y)

=
〈
Fϕ,Fψ

〉
.

Here, F : L2(Rd) −→ L2(Rd), is the Fourier transform on L2(Rd). This is known to be
a unitary [Lei20, Theorem 6.2.15], i. e.

I(ϕ,ψ) =
〈
Fϕ,Fψ

〉
= 〈ϕ,ψ〉 <∞.

That seems to work as advertised and we were able to circumvent the problems above,
correct? Not quite. The issue is that we have reordered the integral with the help of
Fubini’s Theorem [LL01, Theorem 1.12], and we were only allowed to do so if we know
a priori that the original integral, where we integrate with respect to η last, is absolutely
integrable. But our first estimate (1.3.2) tells us it is not. The second problem concerns
the integral formula for the Fourier transform. We can write F as the integral

(Fϕ)(ξ) = 1

(2π)d/2

∫
Rd

dx e−iξ·x ϕ(x)

only when the function ϕ we want to Fourier transform is integrable. Given that there
are functions ϕ ∈ L2(Rd) that are square integrable, but not integrable, ϕ 6∈ L1(Rd),
the integral above need not exist. Furthermore, the Fourier transform F : L1(Rd) −→
C∞(Rd) ⊂ L∞(Rd) of absolutely integrable functions gives a function that is not nec-
essarily integrable or square integrable. Indeed, defining the Fourier transform as a
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1.3 Oscillatory integrals

isometric map on L2(Rd) is tricker and requires us to take various limits (cf. e. g. [LL01,
Chapter 5.4] or [Lei20, Chapter 6.2.3]).
The last nail in the coffin is that our integral only nicely splits into a product of

two integrals for certain “nice” functions such as f(x, ξ) = const., f(x, ξ) = K(ξ) or
f(x, ξ) = V (x). Perhaps we could deal with different functions on a case-by-case basis,
but obviously a more general integration theory would be very desirable. These are
oscillatory integrals.
What is nice is that all these formal manipulations, which are strictly forbidden with-

out proper justification are completely ok if one works with oscillatory integrals. The
purpose of this lecture is to contrast and compare the different types of integration
and to show their utility with the example of a special class of operators, so-called
pseudodifferential operators. 2020.10.07

5



1 Introduction

6



2Chapter 2

Classical integration theory

To better understand how oscillatory integrals differ from the integrals that have been
introduced prior, we shall review “classical” integration theory, i. e. the Riemann and
the Lebesgue integral. They differ in how we slice up the integral: to define the Rie-
mann integral, we partition the domain and compare upper and lower sums. For a func-
tion to be Riemann integrable, its variation needs to be “well-behaved”. In contrast,
the Lebesgue integral looks at the level sets and measures their “volume”. Lebesgue in-
tegrability allows the function to be less nicely behaved, but the price we have to pay is
that the level sets need to be “nice” (measurable). Fortunately, this price is worth pay-
ing, since not only are “more” functions Lebesgue integrable than Riemann integrable,
the Lebesgue integral plays nicer with limits.

2.1 The Riemann integral and its shortcomings

The starting point of the Riemann integral is a partition of the domain. While we
can introduce Riemann integrals over Rd, we shall stick to the one-dimensional case
for simplicity. Suppose we are given a real-valued function f : [a, b] −→ R over an
interval, and we would like to define ∫ b

a

f.

The idea of the Riemann integral is to divvy up the interval

[a, b] =

n−1⋃
k=0

[xk, xk+1]

7



2 Classical integration theory
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Figure 2.1.1: Upper and lower sums approximate the area under the curve from above
and below. Unlike indicated in this picture, upper and lower sums need
not converge to the same value, though.

into a finite collection of smaller intervals, where xk < xk+1 to avoid that intervals
reduce to a single point and the endpoints x0 = a and xn = b are the endpoints of the
original interval. We call such a finite sequenceP = (xk)

n
k=0 =

(
a = x0, x1, . . . , xn = b

)
of points, thought of as an ordered set, a partition of [a, b]. To each partitionP we define
upper and lower sums

U(f, P ) :=

n−1∑
k=0

sup
x∈[xk,xk+1]

f(x) (xk+1 − xk), (2.1.1a)

L(f, P ) :=

n−1∑
k=0

inf
x∈[xk,xk+1]

f(x) (xk+1 − xk). (2.1.1b)

We say the partition P is finer than a second partition P ′, or P ≤ P ′ for short, if and
only if all xk from P are also contained in P ′, i. e. xk = x′j for all k = 0, . . . , n and some
index j. Pictorially, the finer partition P is a subdivision of the coarser subdivision P ′.
Note that we need not be able to compare two partitions: P ≤ P ′ implies all that

all beginning and endpoints of the sub intervals of P ′ are beginning and endpoints of
intervals of P . That is why the set of partitions forms a partially ordered set, i. e. a
relation P ≤ P ′ that satisfies the following axioms:

(a) P ≤ P (reflexivity)

(b) P ≤ P ′ and P ′ ≤ P implies P = P ′ (antisymmetry)

(c) P ≤ P ′ and P ′ ≤ P ′′ implies P ≤ P ′′ (transitivity)

8



2.1 The Riemann integral and its shortcomings
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Figure 2.1.2: Partitions are ways to subdivide the interval [a, b] we integrate over into
smaller subintervals. Partitions can be refined by subdividing some of
the subintervals into even smaller subintervals. However, two arbitrary
partitions are usually not refinements of one another.

Even though we may not be able to compare P and P ′, there exists a partition Q such
that P ≤ Q and P ′ ≤ Q. The smallest such partition is P ∨ P ′ where we take all the
xk and x′j , order them by size and discard duplicates to obtain another partition. This
last property, makes the set of partitions into a directed set.

(d) For any two partitions P and P ′ there exists another partition Q with P ≤ Q and
P ′ ≤ Q (existence of an upper bound).

Another way to quantify the size of a partition is to look at the length of the largest
interval it contains, i. e. the mesh or norm,

‖P‖ := max
k=0,...,n−1

(xk+1 − xk).

The value of the upper sum

U(f, P ) ≤ U(f, P ′) ∀P ≤ P ′

can only go down if we refine the partition, i. e. in this sense U(f, P ) is non-increasing.
Similarly, the lower sum is non-decreasing,

L(f, P ) ≥ L(f, P ′) ∀P ≤ P ′.

Putting all inequalities together, we can summarize the situation as

L(f, P ′) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P ′) ∀P ≤ P ′. (2.1.2)

9



2 Classical integration theory

Evidently, if f is bounded from above and below on this interval, then this would mean
that upper and lower sums are bounded from below and above,

(b− a) inf
x∈[a,b]

f(x) ≤ L(f, P ) ≤ U(f, P ) ≤ (b− a) sup
x∈[a,b]

f(x).

Now if we could formalize the limit

lim
∥P∥→0

U(f, P )

for the upper sum, we know this limit had to exist: non-increasing sequences that are
bounded from below must have a limit. However, the notion of sequence is not general
enough to make our ideas mathematically rigorous. Instead, we need to notion of

Definition 2.1.1 (Net) (1) Let P be a directed set, i. e. a set whose elements satisfy
(a)–(d) above, and X a topological space1. Any function f : P −→ X is a net.

(2) We say a net f converges to g ∈ X ,

lim
P
f(P ) = g,

if and only if for every neighborhood U of g ∈ X the net f(P ) is eventually in U , i. e.

f(P ) ∈ U ∀P ≤ P0.

Example (Sequences are a special case of nets) (1) To see that nets are a general-
ization of the notion of sequence, we need to check that sequences are nets. A
sequence (fn)n∈N in a space X can be thought of as a function f : N −→ X . The
natural number come equipped with a partial order through the usual≤, although
here the order is total (since for two positive integers a 6= b we either have a ≤ b

or b ≤ a).

(2) A sequence fn → g converges if and only if for any neighborhood U of g there
exists N so that fn ∈ U holds for all n ≥ N . (Note that perhaps confusingly, ≥
plays the role of ≤ in the above definition. The reason is that we have adopted
notation for nets that imitates the limit ε→ 0 rather than the limit n→ ∞.)

With this definition in hand, we can define Riemann integrability.

1A topology defines the notion of open or, equivalently, the notion of closed sets. In metric spacers, the
topology that is usually considered is generated by open balls. We will make this precise later in Defini-
tion 2.2.5.

10



2.1 The Riemann integral and its shortcomings

Definition 2.1.2 (Riemann-integrability) (1) We call a non-negative function f : [a, b] −→
[0,∞] Riemann-integrable if and only if the limits of the nets

U(f) := lim
P
U(f, P ),

L(f) := lim
P
L(f, P ),

exist and agree, U(f) = L(f). In that case we write∫ b

a

f := U(f) = L(f)

for the (Riemann) integral of f .

(2) A real-valued function f : [a, b] −→ R is called Riemann-integrable if and only if its
positive part f+ := max{f, 0} and its negative part f− := max{−f, 0} are Riemann-
integrable.

(3) A complex-valued function f : [a, b] −→ C is called Riemann-integrable if and only if
its real and imaginary part are Riemann-integrable in the sense of (2).

Given that L and U are monotonous, equation (2.1.2), we can replace the limits of the
nets with

L(f) = sup
P∈P

L(f, P ),

U(f) = inf
P∈P

U(f, P ).

So when f is a bounded function on [a, b] the limits of upper and lower sum always
exist; and when f is not, then U(f) = +∞ and L(f) may or may not be finite. That
frees us from having to establish the existence of the limits that define L(f) and U(f).

Example (Integrating f(x) = x3 on [0, 1] by hand) From calculus we already know
how to integrate

∫ 1

0
xn = 1/n. But we would like to confirm

∫ 1

0
x3 = 1/4 by hand, us-

ing upper and lower sums. Given that f(x) is strictly monotonous on R, maxima are
attained on the upper end of each interval and minima on the lower end,

sup
x∈[xk,xk+1]

f(x) = f(xk+1) = x3k+1,

inf
x∈[xk,xk+1]

f(x) = f(xk) = x3k.

11



2 Classical integration theory

Consequently, upper and lower sums are

U(f, P ) =

n−1∑
k=0

x3k+1 (xk+1 − xk),

L(f, P ) =

n−1∑
k=0

x3k (xk+1 − xk).

Without loss of generality, wemay assume that we are using equipartitionsPn, i. e. xk =
k/n. Then the interval width is a constant xk+1 − xk = 1/n, and upper and lower sums
then simplify to

U(f, Pn) =

n−1∑
k=0

(k + 1)3

n4
,

L(f, Pn) =

n−1∑
k=0

k3

n4
.

These sums can be evaluated explicitly,

n−1∑
k=0

(k + 1)3 =

n∑
k=1

k3 =
(n2 + n)2

4
,

and in the limit as n→ ∞ the upper sum gives

lim
n→∞

U(f, Pn) = lim
n→∞

n4 + 2n3 + n2

4n4
=

1

4
.

Since upper and lower sum only differ by U(f, Pn) − L(f, Pn) = n/n4 = 1/n3 → 0, the
lower sum attains the same limit.
While choosing an equipartition Pn was arbitrary, since a subnet of a convergent net

must approach the same limit, we deduce
∫ 1

0
x3 = 1/4 as expected.2

The Riemann integral has a few fundamental properties that make it useful:

Proposition 2.1.3 (1) The Riemann integral is linear, i. e. if f and g are integrable
functions and µ ∈ R, then f+µ g is a Riemann integrable function, and the Riemann
integral is given by ∫ b

a

(f + µ g) =

∫ b

a

f + µ

∫ b

a

g.

2The mathematical definition of a subnet is a bit more delicate since properties (a)–(d) must still hold for
the subset of the directed set and must be big enough to accommodate the limit. But for our purposes it
suffices to say that subnets generalize the notion of subsequence.

12



2.1 The Riemann integral and its shortcomings

(2) For any Riemann-integrable function f and a < c < b the Riemann integral splits∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

(3) Continuous functions f ∈ C([a, b],R) are Riemann-integrable.

(4) Functions that are continuous everywhere on [a, b] except for a finite number of points
are Riemann-integrable.

(5) Non-decreasing and non-increasing functions are Riemann-integrable.

Proof We leave the proofs of (1)–(2) as an exercise to the readers.
To see that continuous functions are Riemann-integrable, item (3), we note that

continuous functions on the compact interval [a, b] are uniformly continuous. So by
definition of uniform continuity, given any ε > 0 we can find a δ > 0 so that |f(x) −
f(y)| < ε as long as |x− y| < δ.
So let P be a partition whosemesh ‖P‖ < δ is fine enough. Then on each subinterval,

the difference between

sup
x∈[xk,xk+1]

f(x)− inf
x∈[xk,xk+1]

f(x) = max
x∈[xk,xk+1]

f(x)− min
x∈[xk,xk+1]

f(x)

= max
x,y∈[a,b]

|f(x)− f(y)| < ε

is at most ε. Consequently, the difference between upper and lower sums is also
bounded by ε,

U(f, P )− L(f, P ) =

n−1∑
k=0

(
sup

x∈[xk,xk+1]

f(x)− inf
x∈[xk,xk+1]

f(x)
)
(xk+1 − xk)

<

n−1∑
k=0

ε (xk+1 − xk) = ε (b− a),

since the sum is telescoping and only the first and last term survive. Seeing as ε > 0

can be chosen arbitrarily small, upper and lower sums converge to the same limit.
We leave the modifications to allow for finitely many discontinuities, item (4), to the

readers.
Lastly, for item (5) we pick any partition P and estimate the difference between up-

per and lower sums. It suffices to treat only the non-decreasing case, the non-increasing
case is analogous. Owing to the non-decreasing nature of the function, minima are

13



2 Classical integration theory

attained on the left of any interval while maxima are necessarily on the right. Conse-
quently, the difference reduces to a telescoping sum,

U(f, P )− L(f, P ) =

n−1∑
k=0

(
f(xk+1)− f(xk)

)
(xk+1 − xk)︸ ︷︷ ︸

≤∥P∥

≤ ‖P‖
n−1∑
k=0

(
f(xk+1)− f(xk)

)
= ‖P‖

(
f(b)− f(a)

) ∥P∥→0−−−−−→ 0.

The right-hand side goes to 0 as we make the mesh finer and finer, and hence, the
difference of upper and lower sums converges to 0. Given that lower (upper) sum are
non-decreasing (non-increasing) as ‖P‖ → 0 and bounded from above (below), upper
and lower sums themselves converge. Therefore, f is Riemann-integrable. □

Example (1Q is not Riemann-integrable) The assumption that f has only finitelymany
discontinuities in item (4) is essential. A classical counterexample is the indicator func-
tion on the rationals

f(x) := 1Q(x) =

{
1 x ∈ Q
0 x ∈ R \Q

.

Given that all subintervals contain both, countably infinite rational and uncountably
infinite irrational numbers, the lower sum is always 0 while the upper sum is always 1,

L(1Q, P ) = 0 6= U(1Q, P ) = 1.

So this function is not Riemann-integrable. It is, however, Lebesgue-integrable.

The Riemann integral can be extended in a variety of ways. For example, rather than
looking at intervals [a, b] ⊂ R of the real line, we can look at compact subsets of Rd.
In that case, cubes [a, b] :=

∏d
j=1[aj , bj ] take the place of intervals. We can also define

integrals of C-valued functions by viewing any complex number z = x + iy ∈ C '
R2 as the sum of real and imaginary part. Similarly, extensions to Rn and Cn are
straightforward. The definition of improper integrals, e. g. integrals over over [0,∞)

or the entire real line R = (−∞,+∞), is more subtle, but possible.2020.10.14

2.2 The Lebesgue integral

Riemann integration starts by slicing up the domain of integration “vertically” into
subintervals (d = 1) or cubes (d > 1). The definition of the Riemann-integrability asks

14



2.2 The Lebesgue integral
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Figure 2.2.1: The Riemann integral corresponds to carving up the area under the curve
vertically. Lebesgue proposed to slice horizontally and approximate the
area under the curve by layers. Because of the resemblance, this is usually
called the layer cake representation.

us to control the variation of the function. At the end of the day that places very strong
restrictions on the class of functions that are Riemann-integrable.

What we would instead like to do now is slice our region of integrability “horizon-
tally” and approximate the integral by a “layer cake”. For simplicity, let us consider a
f : R −→ [0,∞) be a non-negative function. Then we would like to approximate the
integral by finitely many layers via e. g. an upper sum of the form

n−1∑
k=0

Vol
({
x ∈ Rd | yk ≤ f(x) ≤ yk+1

})
yk+1 ≈

∫
R
dx f(x).

Here, Vol(Ω) measures the volume of the set Ω ⊆ Rd; for d = 1 and Ω = [a, b] the
natural choice is to use the interval length Vol([a, b]) = b − a. That almost looks like
a Riemann integral for good reason, but at the same time clearly illustrates the trade-
off: (1) we will need to find a “volume” function. And (2) the preimages of f need to
produce “nice” sets that have a volume associated with them.

Mathematically, the idea of a volume map is implemented by a so-calledmeasure and
since the reader will likely encounter more general forms of measures in their career,
we will give a short primer on measure theory.

15



2 Classical integration theory

2.2.1 A primer onmeasure theory

Assigning a “volume” to sets is not as easy as it looks at first glance, for example, it will
turn out that not all sets can bemeasured. That is encapsulated in the so-called Banach-
Tarski Paradox, which shows how to decompose a ball BR := {x ∈ R3 | |x| ≤ R}
into a finite number of (disjoint) pieces and reassemble them only to get two spheres.
Put another way, this procedure doubles the volume. The resolution of this paradox
is simple: our geometric intuition is betraying us, since the pieces we have cut the
sphere into do not have a volume associated with them. So the cutting and reassembly
procedure is “discontinuous” with respect to the volume measure.

2.2.1.1 Essential definitions

The starting point is the definition of σ-algebra andmeasurable space. In the following,
we shall always assume that X is a set and P(X) is the power set, i. e. the set of all
subsets of X.

Definition 2.2.1 (σ-algebra and measure space) A σ-algebra Σ ⊆ P(X) is a set of
subsets of X with the following three properties:

(a) ∅ ∈ Σ

(b) Σ is closed under countable intersections, i. e. if I is a countable index set and
{Aj}j∈I ⊆ Σ, then also

⋂
j∈I Aj ∈ Σ.

(c) Σ is closed under complements, i. e. A ∈ Σ implies Ac := X \A ∈ Σ.

Elements of Σ are called measurable sets and the pair (X,Σ) is a measurable space.

Remark 2.2.2 We could have equivalently replaced (b) with the assumption that

(b’) Σ is closed under countable unions.

Example (The power set is a σ-algebra) It is an easy exercise to show that the power
set is a σ-algebra. In fact, it is always the largest σ-algebra for a given set X.

(a) ∅ ∈ P(X) is contained in the power set.

(b) Countable intersects of subsets give another subset, which by definition is con-
tained in P(X).

(c) The complement of a set A is just another subset of X, and as such, an element of
P(X).
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2.2 The Lebesgue integral

At this point we could ask: why do we need to introduce σ-algebras in the first place,
why not work on the power set instead? Even for the Lebesgue measure, we cannot
work on the power set, though. Even though I have not defined what a measure is at
this point, the following theorem holds true:

Theorem 2.2.3 The only measure µ : P(X) −→ [0,∞] on the power set P(R) that
satisfies

(a) µ
(
[0, 1)

)
<∞ and

(b) µ(x+A) = µ(A) (invariance under translations)

is the trivial measure µ = 0.

The proof is part and parcel of any course on measure theory worth its salt. For the
purpose of this course, more important than the (rather instructive) proof is its content,
namely that in general we cannot assign a volume to all subsets, only sufficiently nice
ones. That is why we need to deal with σ-algebras. One nice fact about σ-algebras is
as follows:

Theorem 2.2.4 The intersection of any family of σ-algebras is again a Σ-algebra.

That little factoid allows us to characterize σ-algebras by generating sets S ⊆ P(X) as
the σ-algebra

Σ(S) :=
⋂

Σ⊆P(X) σ−algebra
S⊆Σ

Σ

as the intersection of all σ-algebras containing S.

2.2.1.2 Comparison between σ-algebras and topology

It is useful and necessary to contrast and compare the notions of σ-algebra with the
notion of topology.

Definition 2.2.5 (Topology) A topologyO ⊆ P(X) is the collection of sets which are by
definition open, i. e. it is a set of subsets with the following properties:

(a) ∅, X ∈ O

(b) O is closed under finite intersections, wheneverO1, . . . , On ∈ O, then also
⋂n
j=1Oj ∈

O.

(c) O is closed under arbitrary unions, i. e. for any O′ ⊆ O we have
⋃
O∈O′ O ∈ O.

17



2 Classical integration theory

The pair (X,O) is called a topological space.

Remark 2.2.6 (1) We have characterized a topology in terms of open sets. Equiva-
lently, we could have singled out closed sets, neighborhoods or e. g. used Kura-
towski’s closure axioms.

(2) Certain sets like ∅ andX are closed and open (sometimes abbreviated with clopen)
at the same time.

There is a huge zoology of topological spaces, e. g. Hausdorff spaces and Polish spaces,
but we will not get into this here. One important fact is that a topology gives rise to
a notion of convergence. A neighborhood of a point is a set that characterizes what is
happening in the vicinity of the point.

Definition 2.2.7 (Neighborhoods) Let (X,O) be a topological space. A neighborhood
of a point x ∈ X is any set U so that

(a) x ∈ U and

(b) there exists an open set O ∈ O with O ⊆ U .

With that settled, we define convergent sequences as follows:

Definition 2.2.8 (Convergent sequences on topological spaces) Let (X,O) be a topo-
logical space. Then a sequence (xn)n∈N is said to converge to x ∈ X if and only if for every
neighborhood U of x there exists N ∈ N so that xn ∈ O for all n ∈ N.

Convergent nets are defined in an analogous fashion.
σ-algebras and topologies create very different structures. For example, functions

which are compatible with respect to σ-algebras are called measurable.

Definition 2.2.9 (Measurable function) Suppose f : X −→ Y is a function between
two measurable spaces (X,ΣX) and (Y,ΣY ). We call f measurable if and only if preim-
ages of ΣY -measurable sets are ΣX -measurable,

AY ∈ ΣY =⇒ f−1(AY ) ∈ ΣX .

Functions which are compatible with respect to topologies are continuous:

Definition 2.2.10 (Continuous function) Suppose f : X −→ Y is a function between
two topological spaces (X,OX) and (Y,OY ). We call f continuous if and only if preimages
of neighborhoods in Y are neighborhoods in X,

neighborhood NY of f(x) =⇒ f−1(NY ) neighborhood of x.
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2.2 The Lebesgue integral

For e. g. metric spaces, this definition is equivalent to sequential continuity defined
as follows: if (xn)n∈N is a sequence in X converging to x ∈ X, then

(
f(xn)

)
n∈N is a

convergent sequence in Y that converges to f(x),

lim
n→∞

f(xn) = f
(
lim
n→∞

xn
)
.

For general topological spaces, sequential continuity need not be the same as continuity,
though.
Very often, though, (X,O) is a topological space on which we would like to define

a σ-algebra that is compatible with the topology. In that case, we pick the so-called
Borel σ-algebra.

Definition 2.2.11 (1) Let (X,O) be a topological space. Then the Borel σ-algebraB(X) :=

Σ(O) is the σ-algebra generated from the open (or equivalently, the closed) sets.

(2) The measurable space
(
X,O,B(X)

)
is called a Borel space.

(3) Measurable functions between Borel spaces are Borel functions.

Remark 2.2.12 We will frequently work with R and C. Unless explicitly stated other-
wise, we will always use the corresponding σ-algebras B(R) and B(C).

2.2.1.3 Measures

A measure is a non-negative function on the Σ-algebra that is compatible with the
structure of a σ-algebra.

Definition 2.2.13 (Measure and measure space) Let (X,Σ) be a measurable space. A
measure is a function

µ : Σ −→ [0,∞]

with the following properties:

(a) µ(∅) = 0

(b) µ is σ-additive, i. e. for a countable collection {Aj}j∈I ⊆ Σ of mutually disjoint sets,
we have

µ
(⋃
j∈I

Aj

)
=
∑
j∈I

µ(Aj)

The triple (X,Σ, µ) is then called a measure space.
Furthermore, we distinguish between the following types of measures:
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2 Classical integration theory

(1) We call µ trivial if and only if µ = 0.

(2) We call µ finite if and only if µ(X) <∞.

(3) We call µ σ-finite if and only if there is a countable cover {Xj}j∈I , I ⊆ N, such that
Xj ∈ Σ and µ(Xj) <∞ for all j ∈ I.

(4) We call µ a probability measure if and only if µ(X) = 1.

Example (The Dirac measure on R) Let Σ ⊆ P(R) be any σ-algebra and define the
Dirac measure at 0 as

µDirac(A) :=

{
1 0 ∈ A

0 0 6∈ A

for any A ∈ Σ that is measurable. Let us check whether µDirac satisfies the axioms of a
measure.

(a) µDirac(∅) = 0 as 0 6∈ ∅

(b) Let {Aj}j∈I be a countable collection of mutually disjoint sets, where the index
set is either finite, I ' {1, . . . , n} or countably infinite, I ' N. Since the sets are
mutually disjoint, then 0 lies in at most one of the sets.

When 0 6∈
⋃
j∈I Aj , then the σ-additivity condition amounts to 0 = 0.

In the other case, when 0 ∈
⋃
j∈I Aj , then 0 ∈ An lies in exactly one An. Now

σ-additivity reduces to 1 = 1.

Σ could be any σ-algebra, including the entire power set.2020.10.21

σ-additivity of measures has some powerful implications.

Theorem 2.2.14 Let (X,Σ, µ) be a measure space. Then the following holds true:

(1) A ⊆ B implies µ(A) ≤ µ(B) for any A,B ∈ Σ (monotonicity).

(2) µ(An) → µ(A) if An ↗ A (continuity from below), where An ↗ A means we are
given a non-decreasing sequence of nested sets An ⊆ An+1 with A =

⋃
n∈NAn.

(3) µ(An) → µ(A) if An ↘ A (continuity from above), where An ↘ A means we are
given a non-increasing sequence of nested sets An ⊇ An+1 with A =

⋂
n∈NAn.

What is often used to construct measures is that they are uniquely determined on a
“sufficiently large” set, which generates the σ-algebra.

Theorem 2.2.15 (Uniqueness of measures) Let S ⊆ Σ be a collection of sets with the
following properties:
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2.2 The Lebesgue integral

(a) S generates Σ = Σ(S).

(b) S is closed under finite intersections.

(c) S contains a sequence of increasing sets Xn ↗ X of finite measure, µ(Xn) <∞.

Then µ is uniquely determined by its values on S.

The proof is a not difficult, but requires the notion of Dynkin system, which is defined
just like a σ-algebra, but σ-additivity is only assumed to hold for countable collections
of mutually disjoint sets. Premeasures are “measures on Dynkin systems”, meaning
they satisfy the exact same axioms as measures, just on Dynkin systems rather than
σ-algebras. Other collections of sets enter in measure theory, e. g. semialgebras and
algebras.
But within this context the purpose is always the same: suppose we are given a map

µ̃ : Σ̃ −→ [0,∞] on some suitable set of sets Σ̃ ⊆ P(X). Under what circumstances
does there exist a unique extension of µ̃ to a bona fide measure µ : Σ −→ [0,∞] on
a σ-algebra Σ ⊇ Σ̃? This way it often suffices to specify measures on smaller gen-
erating sets. For example, the Lebesgue measure can be constructed from such an
“almost-measure” on e. g. semiopen cubes of the form [a, b) :=

∏d
j=1[aj , bj), where

a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ Rd and aj ≤ bj is assumed for all j = 1, . . . , d. That
is, specifying

λ
(
[a, b)

)
:=

d∏
j=1

(bj − aj)

completely suffices.
The constructions are not difficult, but require us to keep track of the subtle differ-

ences between premeasures, outer measures and measures. Given the time constraint,
I refer the interersted reader to [Tes19, Chapter 8].
A particularly important role are sets of measure 0.

Definition 2.2.16 Let (X,Σ, µ) be a measure space.

(1) A null set or set of measure 0 is a set N ∈ Σ with µ(N) = 0. The set of null sets is
denoted with N .

(2) We say a condition holds µ-almost everywhere if the set of exceptions is a null set.
In case the measure can be implied from the context, we will shorten it to “almost
everywhere”. If µ is a probability measure, we will also say “almost surely” or “with
probability 1”.

(3) The measure µ is complete if any subset N ′ ⊂ N of a null set N is again measurable
and hence, a null set.
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2 Classical integration theory

These sets are important, because they allow us to quantify how often exceptions occur.
Probably one of the better known ones is equality of functions, which will play a crucial
role when we introduce Lp-spaces.

Example Later on we will identify functions f ∼ g that agree almost everywhere if
there exists a null set N so that

f(x) = g(x)

holds for all x ∈ X \N .

2.2.2 Integration with respect to measures

Measures determine a notion of volume, and we are almost in a position to make the
layer cake representation rigorous. So in what follows, (X,Σ, µ) is a measure space,
that we will frequently abbreviate withX when there is no risk of confusion as to what
the σ-algebra and measure µ are. The starting point of introducing the integral is to
define it for simple function. Moreover, R and C shall always be endowed with their
standard Borel σ-algebras.
We will start with the smallest building block, the characteristic function

1A(x) :=

{
1 x ∈ A

0 x 6∈ A

associated to a measurable set A ∈ Σ. This defines a measurable function (the proof is
left as homework to the readers); to be precise, the target space of 1A : X −→ R,C is
either R or C endowed with the Borel σ-algebra.
The integral of characteristic functions is just the volume of the measurable set A,∫

X

1A :=

∫
X

dµ(x) 1A(x) := µ(A).

Given that we want our integral to be linear, we can extend this definition to simple
functions

f(x) =

n∑
k=1

ck 1Ak
(x), ck ∈ C, Ak ∈ Σ ∀k = 1, . . . , n,

that are finite linear combinations of characteristic functions and set∫
X

dµ(x) f(x) :=
n∑
k=1

ck µ(Ak).
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2.2 The Lebesgue integral

However, as innocent as this may look, this definition has a serious flaw: what happens
if some of the µ(Ak) = ∞ have infinite measure? In the simplest case we have to decide
what 4 · ∞ − 3 · ∞ is without running afoul of σ-additivity. Moreover, looming on the
horizon is the topic of limits of simple functions. Essentially, we are presented with
two options:

(1) We can restrict ourselves to simple functions where all µ(Ak) <∞.

(2) We can consider only simple functions where the coefficients ck ≥ 0 are non-
negative.

Initially, either way may work, but once we want a lasting definition that is compat-
ible with limits, we quickly see that the second option is much more tractable. In
essence, we just have to worry about the summability of non-negative sequences, i. e. it
is straightforward to declare what

∞∑
k=1

ck µ(Ak)

is even when the sum diverges to∞ for one reason or another.
That definition also allows us to extend the definition of the Lebesgue integral to R-

and C-valued functions: we merely require that |f | is Lebesgue-integrable in the sense
of non-negative functions. Behind the scenes, we are using the fact that even in the
limit absolutely convergent sums retain linearity.
So for the moment, let us assume that s : X −→ [0,∞] is a non-negative simple

function and A ∈ Σ be some measurable set. Then we can define the integral as∫
A

dµ s :=
n∑
j=1

cj µ
(
Aj ∩A

)
. (2.2.1)

We use the previously used conventions n+∞ = ∞, n · ∞ = ∞ and set 0 · ∞ := 0.
The extension of this definition to a broader class of functions will give us the Lebesgue

integral. So let us collect some properties first:

Lemma 2.2.17 Let c ≥ 0 and s, s1, s2 ≥ 0 be non-negative, simple functions. Then the
Lebesgue integral (2.2.1) has the following properties:

(1)
∫
A

dµ s =
∫
X

dµ (1A s)

(2) If {Aj}j∈I be a countable collection of disjoint sets, the integral is σ-additive,∫
∪

j∈I Aj

dµ s =
∑
j∈I

∫
Aj

dµ s.
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2 Classical integration theory

(3)
∫
A

dµ c s = c

∫
A

dµ s

(4)
∫
A

dµ (s1 + s2) =

∫
A

dµ s1 +
∫
A

dµ s2

(5) A ⊆ B implies
∫
A

dµ s ≤
∫
B

dµ s.

(6) s1 ≤ s2 implies
∫
A

dµ s1 ≤
∫
A

dµ s2.

All these properties follow directly from the definition properties of measures, σ-algebras
and simple functions.

Definition 2.2.18 (Lebesgue integral of non-negative functions) Let f : X −→ [0,∞]

be a non-negative, measurable function on the measure space (X,Σ, µ). The Lebesgue in-
tegral is defined as ∫

X

dµ f := sup
s simple function

s≤f

∫
X

dµ s. (2.2.2)

When the supremum on the right is finite, we say the function is (Lebesgue-)integrable.

So of course, we can understand this limit in terms of nets, but we shall not spell out
the details. It pays off that we are dealing with non-negative sequences, since then
only two things can occur: either the supremum in (2.2.2) is∞ or it is finite. To prove
that we can really use the picture of level sets being added up, and approximating f
by simple functions point-wise.
Moreover, all parts of Lemma 2.2.17 whose proofs do not make use of infinite sums

under the hood, i. e. everything except for items (2) and (4), extend immediately to
non-negative, measurable functions.

Corollary 2.2.19 Lemma 2.2.17 (1), (3) and (5)–(6) extend to non-negative, measur-
able functions.

To be sure, (2) and (4) are still correct, but we need the Monotone Convergence The-
orem 2.2.20 in the proofs.

Theorem 2.2.20 (Monotone convergence/Beppo Levi) Let fn be a monotone non-
decreasing sequence of non-negative measurable functions and fn ↗ f . Then f is mea-
surable and we can exchange limit and integration,

lim
n→∞

∫
A

dµ fn =

∫
A

dµ lim
n→∞

fn.

24



2.2 The Lebesgue integral

Proof The measurability of the limit function f = limn→∞ fn = supn∈N fn follows
from the fact that lim inf, lim sup, inf and sup of sequences of measurable functions
give measurable functions [Tes19, Lemma 8.19]. The idea is that

f−1
(
(a,∞]

)
=
(
sup
n∈N

fn

)−1(
(a,∞]

)
=
⋃
n∈N

f−1
n

(
(a,∞]

)︸ ︷︷ ︸
∈Σ

∈ Σ

is again measurable as a countable union of measurable sets. Given that we can recover
all other Borel sets as countable unions or intersections of such half-open intervals, this
extends to all Borel sets.
The proof uses a combination of Lemma 2.2.2 and a sequential squeeze of the form

τ

∫
A

dµ lim
n→∞

fn ≤ lim
n→∞

∫
A

dµ fn ≤
∫
A

dµ lim
n→∞

fn

where τ ∈ (0, 1) can be chosen arbitrarily close to 1.
Lemma 2.2.2 (6) extends to non-negative, measurable functions, because s ≤ fn ≤ f

implies s ≤ f as well. Consequently, In :=
∫
A
dµ fn is a monotone, non-decreasing

sequence,

In ≤ In+1 ≤
∫
A

dµ lim
n→∞

fn =

∫
A

dµ f,

which therefore converges to some number. When In → ∞ diverges, then the integral
over f must also be∞, and equality holds in this case.
Hence, we may assume In → I∞ <∞ converges to some finite, non-negative value,

and we only need to show the second estimate in our sequential squeeze argument. So
pick a simple function s ≤ f and a constant τ ∈ (0, 1). We define the sets

An :=
{
x ∈ A | τ s ≤ fn(x)

}
.

Since the limiting function fn(x) → f(x) is defined pointwise, these sets for a non-
decreasing sequence An ↗ A that exhausts A from the inside. By definition of the set
An and Lemma 2.2.2 (3) and (6), we obtain the estimates

τ

∫
An

dµ s ≤
∫
An

dµ fn ≤
∫
A

dµ fn.

Seeing as the left-hand side only involves limits of simple functions, Lemma 2.2.2 (2)
applies directly, which allows us to take limn→∞ on both sides.

τ

∫
A

dµ s ≤ lim
n→∞

∫
A

dµ fn
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2 Classical integration theory

and after taking the supremum over simple functions with s ≤ f gives us the second
equality in our sequential squeeze. □

Corollary 2.2.21 All of Lemma 2.2.17extends to non-negative, measurable functions.

Example We can now construct a monotone sequence of simple functions (sn)n∈N,
which converges pointwise to f . The convergence is even uniform if f is bounded. For
any n ∈ N we set

sn(x) :=

n 2n∑
k=0

k

2n
1f−1(Ak)(x),

where up until y = n we split the y-axis into 2n equally sized intervals,

Ak :=
[
k
2n ,

k+1
2n

]
,

and subsume anything larger than that into the preimage of

An 2n := [n,∞).

Example Extending Lemma 2.2.2 (2) and (6) to non-negative, measurable functions
Since these involve infinite sums, we need monotone convergence. We leave these as
exercises to the readers.

Now we are in a position to extend Lebesgue integration to complex-valued functions

Definition 2.2.22 (Integrable functions and L1(X, dµ)) Suppose f =
(
fRe ,+−fRe ,−

)
+

i
(
fIm ,+−fIm ,−

)
is the decomposition of a complex-valued function into four non-negative

functions, and that fRe ,± and fIm ,± have finite Lebesgue integral. Then we define the
Lebesgue integral of f to be∫

X

dµ f :=

∫
X

dµ fRe ,+ −
∫
X

dµ fRe ,− + i
∫
X

dµ fIm ,+ − i
∫
X

dµ fIm ,−.

The set of all complex-valued integrable functions is denoted with

L1(X,dµ) :=
{
f : X −→ C measurable

∣∣ ∫
X

dµ(x) |f(x)| <∞
}
.

When the implied measure is clear, we may also write L1(X) instead. Further, we write
introduce the seminorm3

‖f‖1 := ‖f‖L1(X,dµ) :=

∫
X

dµ(x) |f(x)|.
3We have yet to define what a seminorm is and to prove that this is one. We will postpone this.
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2.2 The Lebesgue integral

In a similar fashion, we can introduce the notion of p-integrable functions.

Definition 2.2.23 (p-integrable functions and Lp(X, dµ)) Let 1 ≤ p < ∞. Then
Lp(X) ≡ Lp(X,dµ) is the set of p-integrable functions, i. e.

Lp(X,dµ) :=
{
f : X −→ C measurable

∣∣ ∫
X

dµ(x) |f(x)|p <∞
}
.

The corresponding seminorm is

‖f‖1 := ‖f‖L1(X,dµ) :=

(∫
X

dµ(x) |f(x)|p
)1/p

Let us collect a few important facts about the integral.

Lemma 2.2.24 (1) The Lebesgue integral on L1(X,dµ) is linear.

(2)
∣∣∣∣∫
X

dµ(x) f(x)
∣∣∣∣ ≤ ∫

X

dµ(x) |f(x)|

(3) ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1 (triangle inequality)

(4) ‖f‖1 = 0 implies f(x) = 0 µ-almost everywhere.

(5) Suppose f, g ∈ L1(X,dµ) differ only on a set of measure 0. Then their integrals
coincide,

∫
X
dµ f =

∫
X
dµ g.

Proof We will leave some of the proofs as an exercise for the readers. □

2.2.3 Fundamental facts on Lebesgue integrals

To study properties of Lp(X,dµ) spaces and the Lp(X,dµ) spaces we will introduce
below, one fundamental question is under what circumstances limits and integration
commute. We have already gotten to know one of these theorems that played a crucial
role when extending the definition of the integral to arbitrary, non-negative, measur-
able functions, namely the Monotone Convergence Theorem 2.2.20. Another one is

Theorem 2.2.25 (Fatou’s Lemma) If A ∈ Σ is a measurable set and fn is any sequence
of non-negative, measurable functions, then for the lim inf we have the estimate∫

A

dµ lim inf
n→∞

fn ≤ lim inf
n→∞

∫
A

dµ fn.

Proof We define the sequence gn := infk≥n fk; by definition of lim inf, the sequence
(gn)n∈N converges to

lim
n→∞

gn = lim
n→∞

inf
k≥n

fk = lim inf
n→∞

fn
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2 Classical integration theory

and is monotone non-decreasing.
Clearly, gn ≤ fn is dominated by fn, which implies∫

A

dµ gn ≤
∫
A

dµ fn, (2.2.3)

and that the integral on the left is non-degreasing as well.
Taking lim infn→∞ on the left yields with the help of the Monotone Convergence

Theorem 2.2.20

lim inf
n→∞

∫
A

dµ gn = lim
n→∞

∫
A

dµ gn

=

∫
A

dµ lim
n→∞

gn

=

∫
A

dµ lim inf
n→∞

fn. □

So taking lim infn→∞ on both sides of (2.2.3) yields the claim.2020.10.28

Fatou’s Lemma has a generalization that will be useful when proving one of the staples
of classical analysis, the Dominated Convergence Theorem 2.2.27.

Corollary 2.2.26 (Generalized Fatou’s Lemma) Suppose A ∈ Σ is a measurable set
and (fn)n∈N is a sequence of R-valued measurable functions and g ∈ L1(X,dµ). Then
the following holds true:

(1) If fn ≥ g is a uniform lower bound, then we have∫
A

dµ lim inf
n→∞

fn ≤ lim inf
n→∞

∫
A

dµ fn.

(2) If fn ≤ g is a uniform upper bound, then we have∫
A

dµ lim sup
n→∞

fn ≥ lim sup
n→∞

∫
A

dµ fn.

(3) If |fn| ≤ g is a uniform lower bound, then we have∫
A

dµ lim inf
n→∞

fn ≤ lim inf
n→∞

∫
A

dµ fn ≤ lim sup
n→∞

∫
A

dµ fn ≤
∫
A

dµ lim sup
n→∞

fn.

(2.2.4)

Proof We leave the proof to the readers as an exercise. □
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2.3 Lp spaces

Item (3) allows for a very compact proof of

Theorem 2.2.27 (Dominated Convergence) Let (fn)n∈N be a convergent sequence in
L1(X) of measurable functions with limit f := limn→∞. Suppose there exists a measur-
able function so that |fn(x)| ≤ g(x) holds everywhere but possibly on a set of measure
zero. Then f ∈ L1(X) is integrable and we can exchange limit and integration,

lim
n→∞

∫
A

dµ fn =

∫
A

dµ lim
n→∞

fn. (2.2.5)

Proof First of all, the assumptions of Corollary 2.2.26 (3) are satisfied. Moreover, since
we assume that fn → f converges pointwise, lim inf and lim sup coincide. Therefore,
equation (2.2.4) is a sequential squeeze that directly implies (2.2.5). □

A classical example that shows the power of the Dominated Convergence Theorem is
in the proof of the Riemann-Lebesgue Lemma, which states that the Fourier transform

(Ff)(ξ) := 1

(2π)d/2

∫
Rd

dx e−ix·ξ f(x)

maps L1(Rd) into C∞(Rd), the continuous functions on Rd that vanish at∞.
This is just one case of showing the continuity of parameter-dependent integrals in

said parameter. Similarly, it is used to establish Cn-regularity of parameter-dependent
integrals since derivatives are also defined as limits.

2.3 Lp spaces

There is one deficiency in the integral, namely that a lot of properties are determined
only up to a set of measure 0. For example, if we use the integral to define the “distance”

d(f, g) := ‖f − g‖1 =

∫
X

dµ(x) |f(x)− g(x)|

between two functions. Moreover, this notion of distance is compatible with the linear
structure of Lp(X,dµ), and these are examples of a

Definition 2.3.1 (Normed space) Let X be a vector space. A mapping ‖·‖ : X −→
[0,+∞) with properties

(a) ‖x‖ = 0 if and only if x = 0,

(b) ‖αx‖ = |α| ‖x‖, and

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality),
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2 Classical integration theory

for all vectors x, y ∈ X and scalars α ∈ C, is called norm. The pair (X , ‖·‖) is then
referred to as normed space.

Strictly speaking, we have only shown the triangle inequality for p = 1; for all other
1 < p <∞ this is known as Minkowski’s inequality (cf. e. g. [Tes19, Corollary 10.8]).
However, in view of Lemma 2.2.24 (5) we can only ensure that

f(x) = g(x) µ-almost everywhere

can have exceptions of a set of measure 0. It turns out, this is an incurable inaccuracy
inherent in the integral norm. What we do now is simply forget about that difference
“by force”: we first define the set of functions

N (X,dµ) :=
{
f : X −→ C measurable

∣∣ ∫
X

dµ(x) |f(x)| = 0
}

=
{
f ∈ L1(X,dµ) | ‖f‖1 = 0

}
=
{
f : X −→ C measurable

∣∣ ∫
X

dµ(x) |f(x)|p = 0
}

=
{
f ∈ Lp(X,dµ) | ‖f‖p = 0

}
that have integral 0. Clearly, f and g agree almost everywhere exactly when the dif-
ference f − g ∈ N has integral 0. Importantly, we have shown in the homework
assignments that this condition defines an equivalence relation, and the well-known

Lp(X,dµ) := Lp(X,dµ)/N (X,dµ)

are obtained as the quotient of the Lp(X,dµ) spaces. Its elements are equivalence
classes of functions that agree almost everywhere. Strictly speaking, it makes no sense
towrite e−x

2 ∈ L1(Rd) since x 7→ e−x
2

is a function or to claim that a particular element
f ∈ L1(Rd) is continuous. However, in practice the distinction between functions
and equivalence classes of functions is almost never made. For example, the claim
“f ∈ L1(Rd) is continuous” is automatically translated to “f ∈ L1(Rd) has a continuous
representative”.
The Lp(X,dµ) spaces can be shown to be complete, the Riesz-Fischer Theorem (see

e. g. [Tes19, Theorem 10.12]), and therefore are one of the prototypical Banach spaces.

Definition 2.3.2 (Banach space) A complete normed space is a Banach space.

Example The space X = C
(
[a, b] ,C

)
of complex-valued, continuous functions on the

interval [a, b] has a norm, the sup norm

‖f‖∞ = sup
x∈[a,b]

|f(x)| .

Since C
(
[a, b] ,C

)
is complete, it is a Banach space.
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2.3 Lp spaces

For the special case p = 2 we can introduce a notion of geometry through a scalar
product

〈f, g〉 :=
∫
X

dµ(x) f(x) g(x),

which is well-defined for f, g ∈ L2(X,dµ) and f, g ∈ L2(X,dµ) (with the aforemen-
tioned abuse of notation). These are then examples of a

Definition 2.3.3 (Pre-Hilbert space and Hilbert space) A pre-Hilbert space is a com-
plex vector space H with scalar product

〈 · , · 〉 : H×H −→ C,

i. e. a mapping that satisfies

(a) 〈ϕ,ϕ〉 ≥ 0 and 〈ϕ,ϕ〉 = 0 implies ϕ = 0 (positive definiteness),

(b) 〈ϕ, αψ + χ〉 = α 〈ϕ,ψ〉+ 〈ϕ, χ〉 (linearity in the second argument), and

(c) 〈ϕ,ψ〉 = 〈ψ,ϕ〉 (antilinearity in the first argument)

for all ϕ,ψ, χ ∈ H and α ∈ C. This induces a norm ‖ϕ‖ :=
√

〈ϕ,ϕ〉 andmetric d(ϕ,ψ) :=
‖ϕ− ψ‖ that measures the distance between ϕ,ψ ∈ H. If H is complete with respect to
the induced metric, it is a Hilbert space.

Example (1) Cd with the Euclidean scalar product

〈z, w〉 :=
d∑

n=1

zn wn

is a d-dimensional complex Hilbert space. In fact, every d-dimensional complex
Hilbert space is isomorphic to it.

(2) C
(
[−1,+1] ,C

)
with scalar product

〈f, g〉 :=
∫ +1

−1

dx f(x) g(x)

is just a pre-Hilbert space, since it is not complete.

Consider for example the sequence of continuous functions

fn(x) :=


0 x ∈ [−1, 0]

nx x ∈ (0, 1/n)

1 x ∈ [1/n, 1]

,
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Figure 2.3.1: A sequence of continuous functions that converge pointwise to the step
function.

whose graph looks like a ramp of ever increasing steepness (cf. Figure 2.3.1),
connecting y = 0 with y = 1. We can check by hand that indeed (fn)n∈N forms
a Cauchy sequence in C

(
[−1,+1] ,C

)
. Moreover, away from x = 0 the pointwise

limit exists,

f(x) := lim
n→∞

fn(x) =

{
0 x < 0

1 x > 0
.

But no matter how we define f at 0, though, it can never be continuous — and
therefore, the limit of this particular sequence lies outside of the pre-Hilbert space
C
(
[−1,+1] ,C

)
.

We will give a few fundamental inequalities without proof:

Theorem 2.3.4 (1) Let p, q, r ∈ [1,∞) such that 1/p + 1/q = 1/p. Then there exists a
constant Cp,q,r depending only on these three real numbers such that for all f ∈
Lp(X,dµ) and g ∈ Lq(X,dµ) Hölder’s Inequality holds true,

‖f g‖r ≤ Cp,q,r ‖f‖p ‖g‖q.

(2) On the Hilbert space L2(X,dµ) the Cauchy-Schwartz inequality holds,

|〈ϕ,ψ〉| ≤ ‖ϕ‖2 ‖ψ‖2.
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2.3 Lp spaces

There are plenty of other inequalities (see e. g. [LL01]), which are relevant in analysis.
To name but one, Young’s Inequality is roughly analogous to Hölder’s Inequality, but
involves the convolution.
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3Chapter 3

Bounded Linear Operators and
Linear Functionals

Operators are generalizations of the concept of matrices to infinite-dimensional spaces,
and it is therefore natural to try and extend ideas from linear algebra to functional
analysis. A lot of physical theories, e. g. quantum mechanics and many classical wave
equations, are formulated in terms of operators. Well-known examples are the quan-
tum mechanical Schrödinger equation

i ∂tψ(t) =
(
−∆+ V

)
ψ(t) , ψ(0) = ψ0 ∈ L2(Rd) , (3.0.1)

and the heat equation

∂tψ(t) = −
(
−∆+ V

)
ψ(t) , ψ(0) = ψ0 ∈ L1(Rd) , (3.0.2)

which are both defined in terms of the Laplace operator −∆ := −
∑d
j=1 ∂

2
xj
and a

potential V : Rd −→ R.
Mathematically speaking, operators T : X −→ Y are continuous functions between

normed vector spaces that are compatible with the linear structure. Compatible with
the linear structure means that for any x1, x2 ∈ X and α ∈ C we have

T (x1 + αx2) = Tx1 + αTx2. (3.0.3)

3.1 Bounded operators

The simplest class of operators are bounded.
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3 Bounded Linear Operators and Linear Functionals

Definition 3.1.1 (Bounded operator) LetX andY be normed spaces. A linear operator
T : X −→ Y is called bounded if there existsM ≥ 0 so that

‖Tx‖Y ≤M ‖x‖X .

The set of bounded linear operators is denoted with B(X ,Y). When initial and target
space are the same, X = Y, we abbreviate B(X ,X ) = B(X ).

A special case of bounded operators are linear functionals where

Definition 3.1.2 (Bounded linear functional) A bounded linear functional L : X −→
C is a linear operator where the target space is C. The set of bounded linear functional is
denoted with X ′ := B(X ,C).

For normed spaces, continuous and bounded are synonymous.

Theorem 3.1.3 Let T : X −→ Y be a linear operator between two normed spaces X and
Y. Then the following statements are equivalent:

(1) T is continuous at x0 ∈ X .

(2) T is continuous.

(3) T is bounded.

Proof (1)⇔ (2): This follows immediately from the linearity.

(2) ⇒ (3): Assume T to be continuous. Then it is continuous at 0 and for ε = 1, we
can pick δ > 0 such that

‖Tx‖Y < ε = 1

for all x ∈ X with ‖x‖X < δ. By linearity, this implies for any x′ ∈ X \ {0} that∥∥T ( δ
2∥x′∥X

x′
)∥∥

Y = δ
2∥x′∥X

∥∥Tx′∥∥Y < 1.

Hence, T is bounded with bound 1/δ,∥∥Tx′∥∥Y < 2
δ ‖x

′‖X .

(3)⇒ (2): Conversely, if T is bounded byM > 0,∥∥Tx1 − Tx2
∥∥
Y ≤M ‖x1 − x2‖X ∀x1, x2 ∈ X .

This means, T is continuous: for ε > 0 we pick δ = ε/2M and verify that∥∥Tx1 − Tx2
∥∥
Y ≤M ‖x1 − x2‖X ≤M ε

2M < ε □

holds for all x1, x2 ∈ X that satisfy ‖x1 − x2‖X < ε/2M.2020.11.04
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3.1 Bounded operators

Next, we introduce the operator norm, which leads to a notion of convergence for
sequences of operators:

Definition 3.1.4 (Operator norm) Let T : X −→ Y be a bounded linear operator be-
tween normed spaces. We define the operator norm of T as

‖T‖ := ‖T‖B(X ,Y) := sup
x∈X
∥x∥=1

‖Tx‖Y . (3.1.1)

The space of all bounded linear operators between X and Y is denoted by B(X ,Y). When
the initial and target spaces X = Y coincide, we will use the abbreviation B(X ) :=

B(X ,X ).

One can show that the operator norm ‖T‖ coincides with

inf
{
M ≥ 0 | ‖Tx‖Y ≤M ‖x‖X ∀x ∈ X

}
= ‖T‖ .

The product of two bounded operators T ∈ B(Y,Z) and S ∈ B(X ,Y) is again a
bounded operator whose norm can be estimated from above by

‖TS‖ ≤ ‖T‖ ‖S‖ .

When Y = X = Z, this implies that the product is jointly continuous with respect to
the norm topology on X .
Let T, S be bounded linear operators between the normed spaces X and Y. Once we

define addition,

(T + S)x := Tx+ Sx,

and scalar multiplication,

(λT )x := λTx,

the set of bounded linear operators forms a vector space. Once endowed with the
norm (3.1.1), we obtain a normed vector space.

Proposition 3.1.5 The vector spaceB(X ,Y) of bounded linear operators between normed
spaces X and Y with operator norm (3.1.1) forms a normed space. If Y is complete,
B(X ,Y) is a Banach space.

Proof Let (Tn)n∈N be a Cauchy sequence in B(X ,Y), i. e. a sequence for which

‖Tn − Tk‖B(X ,Y)

n,k→∞−−−−−→ 0.
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3 Bounded Linear Operators and Linear Functionals

We have to show that (Tn)n∈N converges to some T ∈ B(X ,Y). For any ε > 0, there
exists N(ε) ∈ N such that we have

‖Tn − Tk‖B(X ,Y) < ε

for all n, k ≥ N(ε). This also implies that for any x ∈ X , the sequence
(
Tn(x)

)
n∈N

converges as well,∥∥Tnx− Tkx
∥∥
Y ≤ ‖Tn − Tk‖B(X ,Y) ‖x‖X < ε ‖x‖ .

The field of complex numbers is complete and
(
Tn(x)

)
n∈N converges to some Tx ∈ Y.

We now define

Tx := lim
n→∞

Tnx ∈ Y

for any x ∈ X . Clearly, T inherits the linearity of the (Tn)n∈N. The map T is also
bounded: for any ε > 0, there exists N(ε) ∈ N such that ‖Tk − Tn‖B(X ,Y) < ε is small
when k, n ≥ N(ε). Then for n ≥ N(ε) the estimate∥∥(T − Tn)x

∥∥
B(X ,Y)

= lim
k→∞

∥∥(Tk − Tn)x
∥∥
Y ≤ lim

k→∞
‖Tk − Tn‖B(X ,Y) ‖x‖X

< ε ‖x‖

holds true. Since we can write T as T = Tn + (T − Tn), we can estimate the norm of
the linear map T by ‖T‖B(X ,Y) ≤ ‖Tn‖B(X ,Y) + ε < ∞. This means T is a bounded
linear operator mapping X to Y. □

Note that many linear operators are not bounded, i. e. they need not necessarily be
defined on the entire normed space X , but only on a dense subspace D ⊆ X ,

T : D(T ) ⊆ X −→ Y.

Borrowing terminology from the analysis of functions, D is referred to as domain. An
example of an unbounded operator is the Laplacian−∆ from above. Without specifying
a domain, the definition of an unbounded operator is incomplete. Unless specifically
mentioned otherwise, we shall always assume that T is densely defined.
There are also cases where it is initially easier to define an operator on a dense

subspace, even though the operator is bounded. An example is the Fourier transform

(Ff)(ξ) := 1

(2π)d/2

∫
Rd

dx e−ix·ξ f(x), (3.1.2)

on L2(Rd). A priori this integral only makes sense for integrable functions, i. e. on
L1(Rd). However, there are integrable functions, which are not square integrable and
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3.1 Bounded operators

vice versa; that is, we neither have the inclusion L1(Rd) 6⊆ L2(Rd) nor the opposite
L2(Rd) 6⊆ L1(Rd). Fortunately, the intersection L1(Rd) ∩ L2(Rd) is dense in L2(Rd)
and F is bounded on that dense subset. Consequently, the following theorem tells
us the Fourier transform F : L2(Rd) −→ L2(Rd) defines a bounded operator, which
extends (3.1.2) to all of L2(Rd).

Theorem 3.1.6 Suppose we are given a densely defined, bounded linear operator T :

D(T ) ⊆ X −→ Y between a normed space X and a Banach space Y. Then there exists a
unique bounded linear extension T̃ : X −→ Y and

‖T̃‖ = ‖T‖D := sup
x∈D\{0}

‖Tx‖Y
‖x‖X

(3.1.3)

Proof We construct T̃ explicitly: let x ∈ X be arbitrary. Since D is dense in X , there
exists a sequence (xn)n∈N in D which converges to x. Then we set

T̃ x := lim
n→∞

Txn.

First of all, we note T̃ inherits the linearity from T . It is also well-defined: (Txn)n∈N
is a Cauchy sequence in the target space Y,∥∥Txn − Txk

∥∥
Y ≤ ‖T‖D ‖xn − xk‖X

n,k→∞−−−−−→ 0,

where the norm of T is defined by the right-hand side of equation (3.1.3). This Cauchy
sequence in Y converges to some unique y ∈ Y as the target space is complete. Let
(x′n)n∈N be a second sequence in D that converges to x and assume the sequence
(Tx′n)n∈N converges to some y′ ∈ Y. We define a third sequence (zn)n∈N which alter-
nates between elements of the first sequence (xn)n∈N and the second sequence (x′n)n∈N,
i. e.

z2n−1 := xn

z2n := x′n

for all n ∈ N. Then (zn)n∈N also converges to x and
(
Tzn

)
n∈N forms a Cauchy se-

quence that converges to, say, ζ ∈ Y. Subsequences of convergent sequences are also
convergent, and they must converge to the same limit point. Since the limits of the
sequence and its even and odd subsequences converge to the same limit, we conclude
that

ζ = lim
n→∞

Tzn = lim
n→∞

Tz2n = lim
n→∞

Txn = y

= lim
n→∞

Tz2n−1 = lim
n→∞

Tx′n = y′
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3 Bounded Linear Operators and Linear Functionals

all agree. Consequently, T̃ x does not depend on the particular choice of sequence
which approximates x in D. It remains to show the equality of the norms ‖T̃‖ = ‖T‖D:
we can calculate the norm of T̃ on the dense subset D and use that T̃ |D = T to obtain

‖T̃‖ = sup
x∈X
∥x∥=1

‖T̃ x‖ = sup
x∈X\{0}

‖T̃ x‖
‖x‖

= sup
x∈D\{0}

‖T̃ x‖
‖x‖

= sup
x∈D\{0}

‖Tx‖
‖x‖

= ‖T‖D .

This means the norm of the extension T̃ is equal to the norm of the original operator
T . This completes the proof. □

3.2 The spectrum of an operator

One of the fundamental characteristics anN×N matrixA possesses are its eigenvalues.
These are obtained as the zeros of the characteristic polynomial

χ(λ) := det
(
λ−A

)
=

n∏
j=1

(λ− µj)
nj ,

and their collection σ(A) := {µ1, . . . , µn} is the spectrum of the matrix A. At these
zeros, the eigenvalue equation

Av = µjv

must have a non-trivial solution, and we may instead view σ(A) as the set of eigenval-
ues of A. Note that due to the potential presence of Jordan blocks, the dimensionality
of the eigenspace to each of the zeros µj of the characteristic polynomial χ(λ) may be
smaller than the algebraic multiplicity nj .
The generalization to infinite dimensions is more delicate, and here not all elements

of the spectrum need to be due to eigenvalues.

Definition 3.2.1 (Spectrum) Let T ∈ B(X ) be a bounded linear operator on a Banach
space X . We define:

(1) The resolvent set of T is the set ρ(T ) :=
{
z ∈ C | T − z is bijective

}
.

(2) The spectrum σ(T ) := C \ ρ(T ) is the complement of ρ(T ) in C.

(3) The set of all eigenvalues is called point spectrum

σp(T ) :=
{
z ∈ C | T − z is not injective

}
.
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3.3 The adjoint operator

(4) The continuous spectrum is defined as

σcont(T ) :=
{
z ∈ C | T − z is injective, im (T − z) ⊆ X dense

}
.

(5) The remainder of the spectrum is called residual spectrum,

σres(T ) :=
{
z ∈ C | T − z is injective, im (T − z) ⊆ X not dense

}
The spectrum motivates the introduction of the resolvent operator

(T − z)−1 ∈ B(X ), z ∈ ρ(T ),

that plays a central role in many results of functional analysis.
As the inverse of a continuous bijection, the operator (T − z)−1 is necessarily con-

tinuous, thus, bounded by the Inverse Mapping Theorem [RS72, Theorem III.10]; the
latter is a consequence of the Open Mapping Theorem [RS72, Theorem III.11].
The resolvent z 7→ (T − z)−1 is analytic on the resolvent set: for any z0 ∈ ρ(T ) the

power series

(T − z)−1 = (T − z0)
−1

∞∑
n=0

(z − z0)
n
(
(T − z0)

−1
)n

of the resolvent at z converges on a small disc{
z ∈ C

∣∣ |z − z0| <
∥∥(T − z0)

−1
∥∥} ⊆ ρ(T ),

centered around z0. Note that as usual we have set
(
(T − z)−1

)0
:= id in the above

power series. That extends the invertibility of T − z0 from the point z0 to a small
disc of positive radius; consequently, the resolvent set is open and its complement, the
spectrum σ(T ) ⊂ C, is closed. In fact,

σ(T ) ⊆
{
z ∈ C | |z| ≤ ‖T‖

}
,

is contained in a closed disc by [RS72, Theorem VI.6], and as a bounded, closed subset
of C it is compact. 2020.11.11

3.3 The adjoint operator

For a normed space X we have previously introduced X ′, the space of bounded linear
functionals on X . Then an operator T : X −→ Y between two normed spaces naturally
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defines an operator between their duals, the adjoint operator T ′ : Y ′ −→ X ′, via the
prescription

(T ′L)(x) := L(Tx), ∀x ∈ X , L ∈ Y ′. (3.3.1)

In case of Hilbert spaces, one can associate the Hilbert space adjoint. We will almost
exclusively work with the latter and thus drop “Hilbert space” most of the time and just
speak of the adjoint.

Definition 3.3.1 (The Hilbert space adjoint) Let H be a Hilbert space and A ∈ B(H)

be a bounded linear operator on the Hilbert space H. Then for any ϕ ∈ H, the equation

〈Aψ,ϕ〉 = 〈ψ, φ〉 ∀ψ ∈ D(A)

defines a vector φ. For each ϕ ∈ H, we set A∗ϕ := φ and A∗ is called the (Hilbert space)
adjoint of the operator A.

The Banach space adjoint A′ is related to the Hilbert space adjoint

A∗ = C−1A′C

via conjugation with the antilinear map

Cψ := 〈ψ, · 〉 = Lψ.

In the physics literature the adjoint of the operator A is usually denoted with A† rather
than A∗, because z∗ is reserved for complex conjugation on C. The map C : |ψ〉 7→ 〈ψ|
implements the duality between kets and bras, which is how physicists refer to vectors
of and functionals on a Hilbert space.

Example (The adjoint of a rank-1 operator) Suppose we pick two arbitrary vectors
ϕ0, ψ0 ∈ H and define the rank-1 operator

Tψ := |ψ0〉〈ϕ0|ψ := 〈ϕ0, ψ〉ψ0.

The Cauchy-Schwartz inequality ensures the boundedness of T ,

‖T‖ = sup
ψ∈H
∥ψ∥=1

∥∥Tψ∥∥
≤ sup

ψ∈H
∥ψ∥=1

(
‖ϕ0‖ ‖ψ0‖ ‖ψ‖

)
= ‖ϕ0‖ ‖ψ0‖.
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3.3 The adjoint operator

Rank-1 operators are often expressed in the eminently useful bra-ket notation, which
makes computing the adjoint particularly simple. Indeed, we can verify

T ∗ =
(
|ψ0〉〈ϕ0|

)∗
= |ϕ0〉〈ψ0|

from a straightforward computation that starts from first principles,〈
Tϕ, ψ

〉
=
〈
〈ϕ0, ϕ〉ψ0, ψ

〉
= 〈ϕ,ϕ0〉 〈ψ0, ψ〉

=
〈
ϕ, 〈ψ0, ψ〉ϕ0

〉
=
〈
ϕ, T ∗ψ

〉
.

Let us collect some facts about adjoints of bounded operators.

Proposition 3.3.2 Let A,B ∈ B(H) be two bounded linear operators on a Hilbert space
H and α ∈ C. Then the following holds true:

(1) (A+B)∗ = A∗ +B∗

(2) (αA)∗ = α A∗

(3) (AB)∗ = B∗A∗

(4) ‖A∗‖ = ‖A‖

(5) A∗∗ = A

(6) ‖A∗A‖ = ‖AA∗‖ = ‖A‖2

(7) ker A = (im A∗)⊥, ker A∗ = (im A)⊥

Proof Properties (1)–(3) follow directly from the definition of the adjoint.
To show (4), we note that ‖A‖ ≤ ‖A∗‖ follows from

‖Aϕ‖ =
∣∣∣〈 Aφ

∥Aφ∥ , Aϕ
〉∣∣∣ ⋆= sup

∥L∥∗=1

|L(Aϕ)|

= sup
∥ψL∥=1

|〈A∗ψL, ϕ〉| ≤ ‖A∗‖ ‖ϕ‖

where in the step marked with ?, we have used that we can calculate the norm from
picking the functional associated to Aφ

∥Aφ∥ : for a functional with norm 1, ‖L‖∗ = 1, the
norm of L(Aϕ) cannot exceed that of Aϕ∣∣L(Aϕ)∣∣ = ∣∣〈ψL, Aϕ〉∣∣ ≤ ‖ψL‖‖Aϕ‖ = ‖Aϕ‖.

Here, ψL is the vector such that L = 〈ψL, · 〉 which exists and is unique by virtue of
Theorem ??. This theorem also ensures ‖L‖∗ = ‖ψL‖.
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3 Bounded Linear Operators and Linear Functionals

On the other hand, from∥∥A∗ψL
∥∥ =

∥∥LA∗ψL

∥∥
∗ = sup

∥φ∥=1

∣∣〈A∗ψL, ϕ
〉∣∣

≤ sup
∥φ∥=1

‖ψL‖ ‖Aϕ‖ = ‖A‖ ‖L‖∗ = ‖A‖ ‖ψL‖

we conclude ‖A∗‖ ≤ ‖A‖. Hence, the norms coincide, ‖A∗‖ = ‖A‖.
(5) is clear. For (6), we rewrite the square of the operator norm in terms of the scalar

product and estimate from above,

‖A‖2 = sup
∥φ∥=1

‖Aϕ‖2 = sup
∥φ∥=1

〈
ϕ,A∗Aϕ

〉
≤ sup

∥φ∥=1

‖A∗Aϕ‖ = ‖A∗A‖ .

But the right-hand side can be estimated from above by the lower bound ‖A‖2,

‖A‖2 ≤ ‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2 ,

i. e. ‖A‖2 = ‖A∗A‖ necessarily agree. Combined with (4), we obtain the same type of
squeezing estimate

‖A‖2 = ‖A∗‖2 ≤ ‖AA∗‖ ≤ ‖A‖ ‖A∗‖ = ‖A‖2 ,

that yields ‖AA∗‖ = ‖A‖2 = ‖A∗A‖.
(7) is left as an exercise. □

We next give a simple zoology of bounded operators:

Definition 3.3.3 Let H be a Hilbert space and A ∈ B(H). Then A is called

(1) normal if A∗A = A A∗,

(2) selfadjoint (or hermitian) if A∗ = A,

(3) unitary if A∗ = A−1,

(4) an orthogonal projection if A2 = A and A∗ = A, and

(5) positive semidefinite (or non-negative) if and only if 〈ϕ,Aϕ〉 ≥ 0 for all ϕ ∈ H and
positive (definite) if the inequality is strict.

The notions of selfadjoint and non-negative operators generalize to unbounded oper-
ators; we will detail some of the technical minutiæ later in this chapter.
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3.4 Continuous operators between Fréchet spaces

3.4 Continuous operators between Fréchet spaces

A norm is one way to define a notion of distance between vectors; and this notion of
distance d(x1, x2) = ‖x1 − x2‖ defines a topology that is generated by open balls

Br(x0) :=
{
x ∈ X | d(x, x0) < r

}
.

And once we have a topology in hand, we can define a notion of continuity (cf. Defi-
nition 2.2.10). But there are other ways to define a topology, and hence, continuity.
A topological vector space is a vector space with a topology such that the vector space
operations are compatible with the given topology.

Definition 3.4.1 (Topological vector space) A topological vector space is a linear space
X equipped with a topology T (cf. Definition 2.2.5) so that

(a) vector addition (x1, x2) 7→ x1 + x2 and

(b) scalar multiplication (α, x) 7→ αx

are continuous (cf. Definition 2.2.10).

A common way to define a topology is with the help of a family of seminorms.

Definition 3.4.2 (Seminorm) Let X be a linear space. A seminorm p : X −→ [0,∞) is
a function that satisfies

(a) p(αx) = |α| p(x) and

(b) p(x1 + x2) ≤ p(x1) + p(x2) (triangle inequality)

for all α ∈ C and x, x1, x2 ∈ X .

In case p : X −→ [0,∞) is only a seminorm, but not a norm, then “Cauchy sequences”
with respect to this seminorm need not converge. That is because p(x) = 0 does not
imply x = 0.
A locally convex space is a topological vector space equipped with a family of semi-

norms, which in aggregate ensure convergence.

Definition 3.4.3 (Locally convex space) LetX be a topological vector space whose topol-
ogy is defined by a family of seminorms p ∈ P. Then X is called a locally convex space if
and only if the intersection ⋂

p∈P

{
x ∈ X | p(x) = 0

}
= {0}

is trivial.
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3 Bounded Linear Operators and Linear Functionals

The condition says that while individual seminorms are not positive definite (in the
sense of Definition 2.3.1 (a)), their collection is. This condition implies locally convex
spaces areHausdorff, i. e. we can separate points by neighborhoods: for any two distinct
points x1, x2 ∈ X , there are open neighborhoods U1, U2 ∈ T of these points with
U1 ∩ U2 = ∅. Equivalently, there exists a seminorm p with p(x1 − x2) = ε > 0, and we
may pick

Uj :=
{
x ∈ X | p(x− xj) < ε/2

}
(3.4.1)

as our open neighborhoods. You may picture them as “pancakes” in the vector space
that are semi-infinite in the indeterminate directions (“where p(x) = 0”) and ε-thin in
the other.
There are now three cases to consider:

(1) The collection of seminorms is uncountable.

(2) When the collection of seminorms is finite, the locally convex space can be made
into a normed space by summing up all (finitely many) seminorms,

‖x‖ :=
∑
p∈P

p(x).

Consequently, we are dealing with just another normed vector space, which is
covered by the previous sections in this chapter.

(3) The third case is when the family of seminorms is countably infinite. While there
exists no norm, the space is still metrizable:

d(x1, x2) :=

∞∑
n=0

1

2n
p(x1 − x2)

1 + p(x1 − x2)
. (3.4.2)

Clearly, d(x1, x2) = 0 holds if and only if the two points x1 = x2 agree. Per-
haps somewhat unusually, no two points are further than distance 2 apart, since
d(x1, x2) ≤

∑∞
n=0 2

−n = 2.

Metrizable spaces have many very nice characteristics, which is why one defines the
notion of

Definition 3.4.4 (Fréchet space) A topological vector space X with a family of semi-
norms P is a Fréchet space if and only if the following three conditions are satisfied:

(a) X is a locally convex space.

(b) Its topology can be induced by a countable family of seminorms.

(c) X is complete with respect to the family of seminorms.
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3.4 Continuous operators between Fréchet spaces

Note that one can also define a countable family of seminorms once a basis for the
topology is given.
A common example are the Schwartz functions and tempered distributions, which

will be treated in Chapter ??. Another standard example are the smooth functions.

Example (C∞
b (Rd,C)) The space C∞(Rd,C) of smooth, bounded, complex-valued

functions with bounded derivatives to any order is a Fréchet space. The family of
seminorms is just the sup norm,

‖f‖a := sup
x∈Rd

∣∣∂axf(x)∣∣
where a = (a1, . . . , ad) ∈ Nd0 is a multiindex and ∂ax := ∂a1x1

· · · ∂adxd
a partial derivative

of order |a| := a1 + . . .+ ad.
Equivalently, we can define the family of seminorms via

‖f‖n := max
|a|=n

‖f‖a

or

pn(f) := max
k=0,...,n

‖f‖k.

Convergence with respect to ‖f‖n ensures the continuity and boundedness of all the
nth order derivatives of the function f . Convergence in pn controls continuity of the
function and all of its derivatives up to nth order. 2020.11.18

A continuous operator between topological vector spaces is just a continuous function
in the sense of Definition 2.2.10 that is also linear. Given that topologies are closed
under finite intersections, continuitymeanswe need to control finitelymany seminorms
at a time. In the context of C∞

b (Rd,C) this means that we do not need to have uniform
control of all derivatives simultaneously, just finitely many at a time. Consequently, a
continuous linear operator T : X −→ Y between Fréchet spaces is a linear operator
for which we can estimate the nth seminorm in Y via

‖Tx‖Y,n ≤ Cn
∑
j∈I

‖x‖X ,j ,

where Cn > 0 is a constant that only depends on n and I is a finite collection of indices.
Of course, we have assumed without loss of generality that the index set is either N or
a subset thereof.
When the target space is a normed space, then we only need to find one such esti-

mate. A special case is when Y = C is just the complex numbers and the only seminorm
is the absolute value, i. e. the case of linear continuous functionals.
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4Chapter 4

Schwartz Functions &
Tempered Distributions

Schwartz functions S(Rd) are a space of test functions, i. e. a space of “very nicely
behaved functions”, on which many operations such as Fourier transform and differ-
entiation are well-defined and very well-behaved. Tempered distributions S ′(Rd) make
up the dual to this space of test functions (analogous to Definition 3.1.2). The concept
of adjoint operator (cf. Chapter 3.3) then allows us to extend Fourier transform and
derivatives to objects which may not even be functions.
Test functions and distributions are covered in every good text book on Fourier anal-

ysis, e. g. in [SS03, Chapter 5] or [Fol09, Chapter 9] to name just two.

4.1 Schwartz functions

Our class of test functions S(Rd) has three defining properties:

(1) S(Rd) ⊆ C∞(Rd) forms a vector space.

(2) Stability under derivation, ∂αxS(Rd) ⊂ S(Rd): for all multiindices α ∈ Nd0 and
f ∈ S(Rd), we have ∂αx f ∈ S(Rd).

(3) Stability under Fourier transform, FS(Rd) ⊆ S(Rd): for all f ∈ S(Rd), the Fourier
transform

F±1f : ξ 7→ 1

(2π)d/2

∫
Rd

dx e∓ix·ξ f(x) ∈ S(Rd) (4.1.1)

is also a test function.
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4 Schwartz Functions & Tempered Distributions

These relatively simple requirements have surprisingly rich implications:

(1) S(Rd) ⊆ L1(Rd) forms a subset of L1(Rd) since the Fourier transform of Schwartz
functions is assumed to exist.

(2) Stability under derivation, ∂αxS(Rd) ⊆ S(Rd) implies not just f ∈ S(Rd), but that
all of its derivatives are integrable functions as well.

(3) F : S(Rd) −→ S(Rd) acts bijectively.

(4) For all α ∈ Nd0, we have F
(
(i∂x)αf

)
= xα Ff ∈ S(Rd).

(5) Hence, for all a, α ∈ Nd0, we have xa∂αx f ∈ S(Rd).

(6) Translations of Schwartz functions are again Schwartz functions; this follows from
Ff( · − x0) = e−iξ·x0 Ff ∈ S(Rd) for all x0 ∈ Rd.

The only thing we are missing to a proper mathematical definition is to endow S(Rd)
with a suitable topology:

Definition 4.1.1 (Schwartz functions) The space of Schwartz functions

S(Rd) :=
{
f ∈ C∞(Rd)

∣∣ ∀a, α ∈ Nd0 : ‖f‖aα <∞
}

is defined in terms of the family of seminorms1
{
‖·‖aα

}
a,α∈Nd

0
indexed by a, α ∈ Nd0,

‖f‖aα := sup
x∈Rd

∣∣xa∂αx f(x)∣∣. (4.1.2)

The family of seminorms defines a so-called Fréchet topology: put in simple terms,
to make sure that sequences in S(Rd) converge to smooth functions that decay faster
than polynomially (often referred to as rapid decay), we need to control infinitely many
derivatives as well as their decay. This is also the reason why there is no norm on S(Rd)
which generates the same topology as the family of seminorms. However, ‖f‖aα = 0

for all a, α ∈ Nd0 ensures f = 0, all seminorms put together can distinguish functions in
S(Rd). Crucially, the notion of topology gives rise to a notion of continuity: to ensure
continuity of linear functionals on S(Rd) we need to control finitely many seminorms
(cf. Proposition 4.2.2) rather than just one for normed spaces (cf. Chapter ??).

Example Two simple examples of Schwartz functions in d = 1 are

f(x) = e−ax
2

, a > 0,

1A seminorm has all properties of a norm except that ∥f∥ = 0 does not necessarily imply f = 0.
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4.1 Schwartz functions

and

g(x) =

{
e−

1
1−x2 +1 |x| < 1

0 |x| ≥ 1
.

The second one even has compact support.

The first major fact we will establish is completeness.

Theorem 4.1.2 The space of Schwartz functions S(Rd) endowed with the seminorms (4.1.2)
and the metric

d(f, g) :=
∞∑
n=0

2−n max
|a|+|α|=n

‖f − g‖aα
1 + ‖f − g‖aα

is complete, i. e. it is a Fréchet space.

Proof Evidently, d is positive and symmetric. It also satisfies the triangle inequality as
x 7→ x

1+x is concave on [0,∞) and all of the seminorms satisfy the triangle inequality.
Hence,

(
S(Rd) ,d

)
is a metric space.

To show completeness, take a Cauchy sequence (fn)n∈N with respect to d. By defi-
nition and positivity, this means (fn)n∈N is also a Cauchy sequence with respect to all
of the seminorms ‖·‖aα. Each of the

(
xa∂αx fn

)
n∈N converge to some gaα as the space

of bounded continuous functions Cb(Rd) endowed with the sup norm is complete.
It remains to show that the limits of the derivatives are the derivatives of the limits,

i. e. gaα = xa∂αx g00. Clearly, only taking derivatives is problematic. We will initially
prove this for |α| = 1, i. e. the case of a single derivative and proceed by induction.
Assume we are interested in the sequence

(
∂xk

fn
)
n∈N of derivatives where k ∈

{1, . . . , d}. We denote the associated multi index αk := (0, . . . , 0, 1, 0, . . .) ∈ Nd0 and
introduce the kth canonical basis vector ek := (0, . . . , 0, 1, 0, . . .) ∈ Rd. The Fundamen-
tal Theorem of Calculus connects fn to its derivative,

fn(x) = fn(x− xk ek) +

∫ xk

0

ds ∂xk
fn
(
x+ (s− xk) ek

)
.

Taking the limit n → ∞ on both sides and exchanging limit and integral via a Domi-
nated Convergence argument yields

g00(x) = g00(x− xk ek) +

∫ xk

0

ds g0αk

(
x+ (s− xk) ek

)
,

since fn → g00 and ∂xk
fn → g0αk

converge uniformly in x. Comparing these two
and reading the Fundamental Theorem of Calculus in reverse allows us to conclude
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g00 ∈ C1(Rd), and that the derivative ∂xk
g00 = g0αk

∈ L∞(Rd) indeed coincides with
g0αk

.
We then proceed by induction to show g00 ∈ C∞

b (Rd). This means d(fn, g00) → 0 as
n→ ∞ and S(Rd) is complete. □

What makes Schwartz functions so versatile is that they automatically lie in a whole
host of other spaces, most notably all the Lp(Rd) spaces. And importantly, the embed-
dings are continuous since theLp(Rd) norm of each element in S(Rd) can be dominated
by a finite number of Fréchet seminorms.

Lemma 4.1.3 Let f ∈ S(Rd). Then for each 1 ≤ p < ∞, the Lp norm of f can be
estimated by a finite number of seminorms,

‖f‖Lp(Rd) ≤ C1(d) ‖f‖00 + C2(d) max
|a|=2n(d)

‖f‖a0 , (4.1.3)

where the constants C1(d), C2(d) ∈ R+ and n(d) ∈ N0 only depend on the dimension of
Rd. Consequently, the Schwartz functions S(Rd) ↪→ Lp(Rd) continuously embed into all
the Lp(Rd) spaces.

Proof We split the integral on Rd into an integral over the unit ball centered at the
origin and its complement, and then estimate both separately:

‖f‖Lp(Rd) ≤
(∫

|x|≤1

dx |f(x)|p
)1/p

+

(∫
|x|>1

dx |f(x)|p
)1/p

≤ ‖f‖00

(∫
|x|≤1

dx 1
)1/p

+

(∫
|x|>1

dx
∣∣∣|x|2n f(x)∣∣∣p 1

|x|2np

)1/p

≤ Vol
(
B1(0)

)1/p ‖f‖00 + max
|a|=2n

‖f‖a0

(∫
|x|>1

dx
1

|x|2np

)1/p

□

If we choose n ≡ n(d) large enough, |x|−2np is integrable away from the singularity
at x = 0 and its integral can be computed explicitly. Therefore, we get the desired
estimate (4.1.3). As indicated the minimal power n(d) and the constants C1(d) and
C2(d) only depend on the dimension d.2020.11.25

Lemma 4.1.4 The smooth functions with compact support C∞
c (Rd) are dense in the space

of Schwartz functions S(Rd).

Proof Take any f ∈ S(Rd) and choose

g(x) =

{
e−

1
1−x2 +1 |x| ≤ 1

0 |x| > 1
.
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Then fn := g( ·/n) f converges to f in S(Rd), i. e.

lim
n→∞

∥∥fn − f
∥∥
aα

= 0

holds for all multi indices a, α ∈ Nd0. □

TheLp-norm estimate from Lemma 4.1.3 and the density of C∞
c (Rd) inLp(Rd), Lemma ??,

combine with the previous lemma to give us

Corollary 4.1.5 S(Rd) continuously embeds into Lp(Rd).

Next, we will show that F : S(Rd) −→ S(Rd) is a continuous and bijective map from
S(Rd) onto itself.

Theorem 4.1.6 The Fourier transformF as defined by equation (4.1.1)maps S(Rd) con-
tinuously and bijectively onto itself. The inverse F−1 is continuous as well. Furthermore,
for all f ∈ S(Rd) and a, α ∈ Nd0, we have

F
(
xa(−i∂x)αf

)
= (+i∂ξ)aξαFf. (4.1.4)

Proof We need to prove F
(
xa(−i∂x)αf

)
= (+i∂ξ)aξαFf first: since xα∂axf is inte-

grable, its Fourier transform exists and is continuous by Dominated Convergence. For
any a, α ∈ Nd0, we have(

F
(
xa(−i∂x)αf

))
(ξ) =

1

(2π)d/2

∫
Rd

dx e−ix·ξ xa (−i∂x)αf(x)

=
1

(2π)d/2

∫
Rd

dx (+i∂ξ)ae−ix·ξ (−i∂x)αf(x)

⋆
=

1

(2π)d/2
(+i∂ξ)a

∫
Rd

dx e−ix·ξ (−i∂x)αf(x).

In the step marked with ?, we have used Dominated Convergence to interchange in-
tegration and differentiation. Now we integrate partially |α| times and use that the
boundary terms vanish,(

F
(
xa(−i∂x)αf

))
(ξ) =

1

(2π)d/2
(+i∂ξ)a

∫
Rd

dx (+i∂x)αe−ix·ξ f(x)

=
1

(2π)d/2
(+i∂ξ)a

∫
Rd

dx ξαe−ix·ξ f(x)

=
(
(+i∂ξ)aξαFf

)
(ξ).
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To show F is continuous, we need to estimate the seminorms of Ff by those of f : for
any a, α ∈ Nd0, it holds∥∥Ff∥∥

aα
= sup
ξ∈Rd

∣∣(ξa∂αξ Ff)(ξ)∣∣ = sup
ξ∈Rd

∣∣∣(F(∂axxαf))(x)∣∣∣
≤ 1

(2π)d/2

∥∥∂axxαf∥∥L1(Rd)
.

In particular, this impliesFf ∈ S(Rd). Since ∂axxαf ∈ S(Rd), we can apply Lemma 4.1.3
and estimate the right-hand side by a finite number of seminorms of f . Hence, F is
continuous: if fn is a Cauchy sequence in S(Rd) that converges to f , then Ffn has to
converge to Ff ∈ S(Rd).
To show thatF is a bijection with continuous inverse, we note that it suffices to prove

F−1Ff = f for functions f in a dense subset, for example C∞
c (Rd): pick f so that the

support of is contained in a cube [−n,+n]d with sides of length 2n. We can write f on
[−n,+n]d as a uniformly convergent Fourier series,

fn(x) =
∑

ξ∈(π
nZ)d

f̂n(ξ) eix·ξ,

which is computed from the Fourier components

f̂n(ξ) =
1

Vol
(
[−n,+n]d

) ∫
[−n,+n]d

dx e−ix·ξ f(x)

=
(2π)d/2

(2n)d
1

(2π)d/2

∫
Rd

dx e−ix·ξ f(x).

The second equality holds if n is large enough so that supp f fits into the cube [−n,+n]d.
Hence, fn can be expressed as

fn(x) =
∑

ξ∈(π
nZ)d

1

(2π)d/2
πd

nd
(Ff)(ξ) eix·ξ,

which is a Riemann sum that converges to

f(x) =
1

(2π)d/2

∫
Rd

dx eix·ξ (Ff)(ξ) =
(
F−1Ff

)
(x)

as Ff ∈ S. This concludes the proof. □

The stability of S(Rd) under the Fourier transform was one of the defining properties
that we posited Schwartz functions to have in the beginning of this chapter. The other
defining property is item (1) of the next
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Proposition 4.1.7 The Schwartz functions have the following properties:

(1) For all a, α, the map f 7→ xa∂αξ f is continuous on S(Rd).

(2) With pointwise multiplication of functions · : S(Rd) × S(Rd) −→ S(Rd) and com-
plex conjugation, S(Rd) forms a Fréchet ∗-algebra, i. e. multiplication and complex
conjugation are continuous.

(3) For any x0 ∈ Rd, the map τx0
: f 7→ f(· − x0) continuous on S(Rd).

(4) For any f ∈ S(Rd), 1
s

(
τsekf − f) converges to ∂xk

f as s → 0 where ek is the kth
canonical base vector of Rd.

The proofs are left as an exercise to the readers.

Theorem 4.1.8 S(Rd) is dense in Lp(Rd), 1 ≤ p <∞.

The fact that we can approximate any Lp(Rd) function arbitrarily well by test func-
tions comes in handy when dealing with operators. For example, some of them have
a “nice” definition on a dense subset such as C∞

c (Rd) or S(Rd) and then we can ex-
tend their definition by density to larger sets of functions. One such example was the
Fourier transform on L2(Rd): while we could settle this question using a combination
of Monotone and Dominated Convergence (cf. [LL01, Chapter 5]), the path was quite
thorny and involved subtle arguments involving Dominated and Monotone Conver-
gence. Schwartz functions allow for a much simpler and non-technical approach.

Theorem 4.1.9 For all f, g ∈ S(Rd), we have∫
Rd

dx (Ff)(x) g(x) =
∫
Rd

dx f(x) (Fg)(x).

This implies 〈Ff, g〉 = 〈f,F−1g〉 and 〈Ff,Fg〉 = 〈f, g〉 where 〈 · , · 〉 is the usual scalar
product on L2(Rd).

Proof We start by writing out the Fourier transform on the left-hand side. Thanks to
Fubini’s Theorem we are free to reverse the order of integration,∫

Rd

dx (Ff)(x) g(x) =
∫
Rd

dx
1

(2π)d/2

∫
Rd

dξ e−ix·ξ f(ξ) g(x)

=

∫
Rd

dξ f(ξ)
1

(2π)d/2

∫
Rd

dx e−ix·ξg(x)

=

∫
Rd

dξ f(ξ) (Fg)(ξ).
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4 Schwartz Functions & Tempered Distributions

To prove the second part, we remark that compared to the scalar product on L2(Rd),
we are missing a complex conjugation of the first function. Furthermore, Ff = F−1f̄

holds. From this, it follows that 〈Ff, g〉 = 〈f,F−1g〉, and upon replacing g with Fg,
that 〈Ff,Fg〉 = 〈f,F−1Fg〉 = 〈f, g〉. □

The previous statement gives another avenue to define the Fourier transform onL2(Rd).
Given that Schwartz functions are dense in L2(Rd) (Theorem 4.1.8), we immediately
deduce

Corollary 4.1.10 The Fourier transform on L2(Rd) is the unique continuous extension
of F : S(Rd) −→ S(Rd).

Since we know that the Fourier transform intertwines the convolution and the point-
wise product of functions, Theorem 4.1.9 also implies that the convolution defines a
commutative multiplication on the Schwartz functions:

Corollary 4.1.11 The convolution ∗ : S(Rd)× S(Rd) −→ S(Rd) defines a commutative
product that is continuous in both arguments.

Proof Let f, g ∈ S(Rd). Because Schwartz functions are also integrable, f ∗ g exists in
L1(Rd) and satisfies F(f ∗ g) = (2π)d/2Ff Fg. This means we can rewrite

f ∗ g = (2π)
d/2F−1

(
Ff Fg

)
(4.1.5)

as the Fourier transform of a product of Schwartz functions, and thus, f ∗ g ∈ S(Rd).
Equation (4.1.5) also makes the commutativity f ∗ g = g ∗ f evident.
The continuity follows from the continuity of the Fourier transform (Theorem 4.1.7)

and the continuity of the pointwise product of Schwartz functions in the Fréchet topol-
ogy (Proposition 4.1.7 (2)). □

4.2 Tempered distributions

After a thorough discussion of our space of test functions, we can now proceed to
distributions, namely linear continuous functionals on S(Rd).

Definition 4.2.1 (Tempered distributions) The space of tempered distributions S ′(Rd)
is comprised of continuous linear functionals on S(Rd). When working with tempered
distrubtions, we will often use duality bracket

(L, f) := L(f) ∀L ∈ S ′(Rd), f ∈ S(Rd).
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4.2 Tempered distributions

Example (1) The δ distribution defined via

δ(f) := f(0)

is a linear continuous functional on S(Rd).
(2) Let g ∈ Lp(Rd), 1 ≤ p <∞, then for f ∈ S(Rd), we define

Lg(f) =

∫
Rd

dx g(x) f(x) =: (g, f). (4.2.1)

As f ∈ S(Rd) ⊂ Lq(Rd) and 1/p+ 1/q = 1, by Hölder’s inequality, we have

|(g, f)| ≤ ‖g‖Lp(Rd) ‖f‖Lq(Rd) .

Since ‖f‖q can be bounded by a finite linear combination of Fréchet seminorms of
f , the linear map Lg is continuous, and the inclusion map ı : Lp(Rd) ↪→ S ′(Rd) is
continuous.

(3) Equation (4.2.1) is the canonical way to interpret many “less nice” functions as dis-
tributions: we identify a suitable function g : Rd −→ C with the distribution Lg.
For instance, polynomially bounded smooth functions (think of g(x) = x2) define
continuous linear functionals in this manner since for any g ∈ C∞

pol(R
d), there exists

n ∈ N0 such that
√
1 + x2

−n
g(x) is bounded. Hence, for any f ∈ S(Rd), Hölder’s

inequality yields

|(g, f)| =
∣∣∣∣∫

Rd

dx g(x) f(x)
∣∣∣∣

=

∣∣∣∣∫
Rd

dx
(√

1 + x2
−n

g(x)
) (√

1 + x2
n
f(x)

)∣∣∣∣
≤
∥∥√1 + x2

−n
g(x)

∥∥
L∞(Rd)

∥∥√1 + x2
n
f(x)

∥∥
L1(Rd)

.

Later on, we will see that this point of view, interpreting “not so nice” functions
as distributions, helps us extend operations from test functions to much broader
classes of functions. 2020.12.02

Similar to the case of normed spaces, we see that continuity in Fréchet spaces implies
boundedness in the following precise sense:

Proposition 4.2.2 A linear functional L : S(Rd) −→ C is a tempered distribution
(i. e. continuous) if and only if

∣∣L(f)∣∣ can be estimated by finitely many seminorms. More
precisely, there exist constants C > 0 and N ∈ N0 such that∣∣L(f)∣∣ ≤ C

∑
|a|,|α|≤N

‖f‖aα

holds true for all f ∈ S(Rd).
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4 Schwartz Functions & Tempered Distributions

Even though we will not reproduce a proof here, let us at least sketch its idea: because
one has no control over the growth or decay of the seminorms ‖f‖aα, maxima or sums
of seminorms are finite if and only if only finitely many of them enter the bound.

As mentioned before, we can interpret suitable functions g as tempered distributions.
In particular, every Schwartz function g ∈ S(Rd) defines a tempered distribution so
that (

∂xk
g , f

)
=

∫
Rd

dx ∂xk
g(x) f(x) = −

∫
Rd

dx g(x) ∂xk
f(x)

=
(
g , −∂xk

f
)

holds for any f ∈ S(Rd). In fact, the right-hand side extends the definition of the
derivative to tempered distributions.

Definition 4.2.3 (Weak derivative) For α ∈ Nd0 and L ∈ S ′(Rd), we define the weak
or distributional derivative of L as(

∂αxL , f
)
:=
(
L , (−1)|α|∂αx f

)
∀f ∈ S(Rd).

Example (1) The weak derivative of δ is(
∂xk

δ , f
)
=
(
δ , −∂xk

f
)
= −∂xk

f(0).

(2) Let g ∈ C∞
pol(R

d). Then the weak derivative coincides with the usual derivative: by
partial integration, we can push ∂xk

to the right,(
∂xk

g , f
)
= −

(
g , ∂xk

f
)
= −

∫
Rd

dx g(x) ∂xk
f(x)

= +

∫
Rd

dx ∂xk
g(x) f(x).

Similarly, the Fourier transform can be extended to a bijection S ′(Rd) −→ S ′(Rd).
Theorem 4.1.9 tells us that for g, f ∈ S(Rd) the Fourier transform in the duality bracket
can be pushed to the other side, (

Fg , f
)
=
(
g , Ff

)
.

If we replace g with an arbitrary tempered distribution, the right-hand side again serves
as definition of the left-hand side:

Definition 4.2.4 (Fourier transform on S′(Rd)) For any tempered distribution L ∈
S ′(Rd), we define its Fourier transform to be(

FL , f
)
:=
(
L , Ff

)
∀f ∈ S(Rd).
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4.2 Tempered distributions

Example (1) The Fourier transform of the Dirac distribution δ is the constant function
Fδ = (2π)−d/2,

(
Fδ , f

)
=
(
δ , Ff

)
= Ff(0) = 1

(2π)d/2

∫
Rd

dx f(x)

=
(
(2π)−

d/2 , f
)
.

(2) The Fourier transform of x2 makes sense as a tempered distribution on R: x2 is a
polynomially bounded function and therefore defines a tempered distribution via
equation (4.2.1):

(
Fx2, f

)
=
(
x2,Ff

)
=

∫
R
dxx2

1√
2π

∫
R
dξ e−ix·ξ f(ξ)

=
1√
2π

∫
R
dξ
∫
R
dx (+i)2∂2ξe

−ix·ξ f(ξ)

= (−1)2 · (−1)

∫
R
dξ
(

1√
2π

∫
R
dx e−ix·ξ

)
∂2ξf(ξ)

= −
∫
R
dξ

√
2π δ(ξ) ∂2ξf(ξ)

= −
√
2π ∂2ξf(0) =

(√
2πδ , −∂2ξf

)
=
(
−
√
2πδ′′ , f

)
This is consistent with what we have shown earlier in Theorem 4.1.6,

F
(
x2f

)
= (+i∂ξ)2Ff = −∂2ξFf.

We have just computed Fourier transforms of functions that do not have Fourier trans-
forms in the usual sense and to tempered distributions that are not functions at all.
Extending other operations to tempered distributions works in the same way: we first
start with a continuous linear operator on S(Rd) and then use the adjoint to extend
it to tempered distributions. Before we can make that precise, though, we need to
introduce the appropriate notion of continuity on the tempered distributions S ′(Rd).

Definition 4.2.5 (Weak-∗ convergence) Let S be a metric space with dual S ′. A se-
quence (Ln) in S ′ is said to converge to L ∈ S ′ in the weak-∗ sense if

Ln(f)
n→∞−−−−→ L(f)

holds for all f ∈ S. We will write w-limn→∞ Ln = L.

This notion of convergence implies a notion of continuity and clarifies how to think of
continuity for the adjoint operator.
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4 Schwartz Functions & Tempered Distributions

Theorem 4.2.6 Let A : S(Rd) −→ S(Rd) be a linear continuous map. Then for all
L ∈ S ′(Rd), the map A′ : S ′(Rd) −→ S ′(Rd)(

A′L , f
)
:=
(
L , Af

)
, f ∈ S(Rd), (4.2.2)

defines a weak-∗ continuous linear map.

Put in the terms of Chapter 3.3, A′ is the adjoint of A.

Proof First of all, A′ is linear and well-defined, A′L maps f ∈ S(Rd) onto C. To show
continuity, let (Ln)n∈N be a sequence of tempered distributions which converges in the
weak-∗ sense to L ∈ S ′(Rd). Then(

A′Ln , f
)
=
(
Ln , Af

) n→∞−−−−→
(
L , Af

)
=
(
A′L , f

)
holds for all f ∈ S(Rd) and A′ is weak-∗ continuous. □

As a last consequence, we can extend the convolution from ∗ : S(Rd)×S(Rd) −→ S(Rd)
to the case where one of the factors is a distribution,

∗ : S ′(Rd)× S(Rd) −→ S ′(Rd),

∗ : S(Rd)× S ′(Rd) −→ S ′(Rd).

For any f, g, h ∈ S(Rd), we can push the convolution from one argument of the duality
bracket to the other,

(
f ∗ g , h

)
=
(
g ∗ f , h

)
=

∫
Rd

dy (f ∗ g)(y)h(y)

=

∫
Rd

dy
∫
Rd

dx f(x) g(y − x)h(y)

=

∫
Rd

dx f(x)
(
g(− ·) ∗ h

)
(x) =

(
f , g(− ·) ∗ h

)
.

That computation now tells us how to define the convolution of a tempered distribu-
tion and a Schwartz function. To remain consistent with how we have defined the
convolution of two functions, we need to apply spatial inversion x 7→ −x to one of the
factors, though.

Definition 4.2.7 (Convolution on S′(Rd)) Let L ∈ S ′(Rd) and f ∈ S(Rd). Then the
convolution of L and f is defined as(

L ∗ f , g
)
:=
(
L , f(− ·) ∗ g

)
∀g ∈ S(Rd). (4.2.3)
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4.2 Tempered distributions

By Theorem 4.2.6, this extension of the convolution is weak-∗ continuous. Moreover,
the convolution has a neutral element in S ′(Rd), the delta distribution δ = δ0: starting
from the above definition and two Schwartz functions f, g ∈ S(Rd), we move the
convolution to the second argument of the duality bracket, apply the definition of the
Dirac distribution and write the resulting integral as a duality bracket again,(

δ ∗ f , g
)
=
(
δ , f(− ·) ∗ g

)
=
(
f(− ·) ∗ g

)
(0)

=

∫
Rd

dy f
(
−(0− y)

)
g(y) = (f, g).

Put succinctly, we have just verified

δ ∗ f = f. (4.2.4)

In view of this, we can better understand why approximate identities are also re-
ferred to as Dirac sequences: equation (4.2.1) allows us to view any Dirac sequence
(in L1(Rd)) as a sequence of tempered distributions. And because δε ∗ f converges to
f ∈ S(Rd) ⊂ Lp(Rd) in Lp norm, the continuity the inclusion map ı : Lp(Rd) ↪→ S ′(Rd)
(Example 14 (2)) tells us that ı

(
δε ∗ f

)
converges also in S ′(Rd) to f . Therefore, δε

converges to the Dirac distribution δ in the distributional sense (but not in L1(Rd) as
δ 6∈ L1(Rd)). 2020.12.09
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5Chapter 5

Oscillatory Integrals

The example (1.3.1) that we started this lecture out with is the matrix element

〈
ϕ,Op(f)ψ

〉
:=

1

(2π)d

∫
Rd

dx
∫
Rd

dy
∫
Rd

dη e−iη·(y−x) ϕ(x) f
(
1
2 (x+ y), η

)
ψ(y)

of the pseudodifferential operator Op(f). We know that if we can make sense of the
integral on the right and give suitable L2 estimates, this defines a bounded operator
on L2(Rd). We will postpone the second part until later and focus on making sense of
this integral first.

Clearly, when f is nice enough, e. g. f ∈ S(R2d), this double integral makes sense as
an absolutely convergent integral:

(1) The invertible linear transformation (x, y) 7→
(
1
2 (x + y), y − x

)
maps Schwartz

functions to Schwartz functions in a continuous fashion.

(2) The partial Fourier transform continuouslymaps Schwartz functions onto Schwartz
functions, and the latter are absolutely integrable.

But of course, we would like to extend this integral to cases where f is not absolutely
integrable.

Let us have a look at another instructive example that encapsulates the adjective
“oscillatory” in its purest form, the Fourier transform. Formally, we can verify that the
inverse Fourier transform F−1 is obtained by flipping the sign of ξ or x in the Fourier
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5 Oscillatory Integrals

transform,

(
F−1Ff

)
(x) =

1

(2π)d

∫
Rd

dξe+iξ·x
∫
Rd

dy e−iξ·y f(y)

=
1

(2π)d

∫
Rd

dy
(∫

Rd

dξe−iξ·(y−x)
)
f(y)

=
1

(2π)d

∫
Rd

dy (2π)d δ(x− y) f(y) = f(x).

Only the term at y = x contributes, because, heuristically speaking, at this point the
phase is constant and equal to 1 independently of our choice of ξ. The integral does
not oscillate whatsoever. Whenever y 6= x, though, the phase factor oscillates quickly
for large |ξ| and intuitively it makes sense that these then average out to 0.
This equation points to a path to make this formal manipulation rigorous for func-

tions which need not be absolutely integrable — we apply the theory of distributions.
Many functions F : Rd −→ C define a tempered distribution via

(f, g) :=

∫
Rd

dx f(x) g(x), g ∈ S(Rd).

Two examples that come to mind are functions in f ∈ L2(Rd) ⊆ S ′(Rd) or in f ∈
C∞
u,pol(R

d) ⊆ S ′(Rd), which indeed can be thought of as tempered distributions. For
instance, the Fourier transform of the constant function f(x) = 1 is (2π)d/2 δ(x), the
delta distribution centered at x = 0.
Before we proceed, let us extract the essential features of these two oscillatory inte-

grals: simply put, we are dealing with a double integral

Iϑ(f, ψ) =

∫
Rn

dξ
∫
Rd

dx e+iϑ(x,ξ) f(x, ξ)ψ(x) (5.0.1)

that contains a phase factor ϕ : Rd×Rn −→ R, a function f ∈ C∞(Rd×Rn) and a test
function ψ ∈ S(Rd).

5.1 Definition of oscillatory integrals

One simple solution to define oscillatory integrals is by means of a limit. For example,
if χ ∈ S(Rn) is a test function with χ(0) = 1, then

fε(x, ξ) := χ(εξ) f(x, ξ)
ε→0−−−→ f(x, ξ)
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5.1 Definition of oscillatory integrals

converges pointwise to f(x, ξ) for all (x, ξ) ∈ Rd×Rn. For a wide range of functions the
prefactor χ(εξ)makes fε absolutely integrable in ξ. Likewise, the absolute integrability
of ψ then makes the product

(x, ξ) 7→ fε(x, ξ)ψ(x)

absolutely integrable in ξ and x. This function is often called a cutoff function; you can
picture it as a function χ ∈ C∞(Rn, [0, 1]) that takes values in [0, 1] for simplicity and
equals 1 in a neighborhood of the origin. The latter conditions are not necessary, of
course, we will only rely on χ(0) = 1.
That suggests to define the oscillatory integral as the limit of the regularized integrals

Iϑ(fε, ψ).

Definition 5.1.1 (Oscillatory integral) An oscillatory integral is defined through the
limit

Iϑ(f, ψ) := lim
ε→0

Iϑ(fε, ψ) = lim
ε→0

∫
Rn

dξ
∫
Rd

dx e+iϑ(x,ξ) χ(εξ) f(x, ξ)ψ(x), (5.1.1)

where χ ∈ S(Rn) is any Schwartz function with χ(0) = 1 and provided that the limit
exists for all ψ ∈ S(Rd) is independent of the choice of cutoff function χ.

Basically we are exploiting that taking limits and integration in general do not com-
mute. For if they did, then the right-hand side would frequently be∞: the integrand of
the regularized integral converges pointwise to e+iϑ(x,ξ) f(x, ξ)ψ(x), which is usually
not absolutely integrable.
A few words on the structure: the reason we only regularize in ξ is that the presence

of the Schwartz function ψ helps control the integral in x. So f and its derivatives need
to be polynomially bounded in x. Key for the integrability in ξ is the phase factor e+iϑ

and the regularization via the cutoff function χ.
On the basis of these considerations, we extract three necessary conditions on f :

(a) f must be such that for any χ ∈ S(Rn) with χ(0) = 1 the function (x, ξ) 7→
fε(x, ξ)ψ(x) ∈ L1(Rd × Rn) is integrable for all ψ ∈ S(Rd).

(b) f must be such that the limit (5.1.1) exists, which also places conditions on the
phase factor ϑ.

(c) This limit must be independent of our choice of function χ.
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5 Oscillatory Integrals

5.1.1 Instructional example: the double Fourier transform

Before we develop the general theory, let us check whether we can verify F−1 Ff = f

on the basis of definition (5.1.1). More precisely, we will be looking at

Iξ·(x−y)(f, ψ) :=
1

(2π)d

∫
Rd

dξ
∫
Rd

dx
∫
Rd

dy e−iξ·(y−x) f(y)ψ(x).

The space of functions we shall be interested in for the sake of argument are the smooth,
uniformly polynomially bounded functions C∞

u,pol(R
q). They consist of smooth functions

f ∈ C∞(Rq) that satisfy the estimate

∣∣∂aXf(X)
∣∣ ≤ Caα 〈X〉m := Caα

√
1 +X2

m

for some m ≥ 0 and all multiindices a ∈ Nq0 and X ∈ Rq. The point here is that
the power of growth of f and all its derivatives is at most of mth degree. Compared
with |X|m the prefactor 〈X〉 has the added advantage that we do not have to make
separate estimates for |X| ≤ R (near the origin where |X|m vanishes) and |X| → ∞.
By considering

C∞
u,pol(R

q) :=
⋃
m∈R

C∞
m,pol(R

q)

as the union of smooth functions bounded by polynomials ofmth degree, we can endow
this space with the so-called inductive limit topology [cite].
Furthermore, we can show that C∞

u,pol(R
q) ⊆ S ′(Rq) defines a tempered distribution

via the integral (4.2.1).
The polynomial growth also tells us that fε is a Schwartz function, hence, integrable

for all ε > 0: choosing a cutoff function χ and m = 2n large enough and even, we
verify that

fε(x, y, ξ)ψ(x) = χ(εξ)χ(εy) f(y)ψ(x)

is a Schwartz function, hence, absolutely integrable in x, y and ξ. Comparing this
with equation (5.1.1), we see that (y, ξ) play the role of ξ and x plays the role of x.
Moreover, we chose a cutoff function that factors into a product.
Now let us verify that Iξ·(x−y)(f, ψ) = (f, ψ) by hand. Our arguments just showed

that fε is a Schwartz function. Therefore, we can actually change the order of integra-
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tion and integrate it up to

Iξ·(x−y)(fε, ψ) =
1

(2π)d

∫
Rd

dξ
∫
Rd

dx
∫
Rd

dy e−iξ·(y−x) χ(εξ)χ(εy) f(y)ψ(x)

=
1

(2π)d/2

∫
Rd

dy χ(εy) f(y)
∫
Rd

dξ e−iξ·y χ(εξ)
(

1

(2π)d/2

∫
Rd

dx e+iξ·xψ(x)
)

=

∫
Rd

dy χ(εy) f(y)
(

1

(2π)d/2

∫
Rd

dξ e−iξ·y χ(εξ) (F−1ψ)(ξ)

)
.

The inner integral just concerns Schwartz functions, and we can show that

ψε(y) :=
1

(2π)d/2

∫
Rd

dξ e−iξ·y χ(εξ) (F−1ψ)(ξ)
ε→0−−−→ ψ(y)

converges to ψ(y) pointwise for all y ∈ Rd. Indeed, as a product of two Schwartz
functions, ξ 7→ χ(εξ) (F−1ψ)(ξ) is again a Schwartz function and we can bound their
product independently of ε by the integrable function∣∣∣χ(εξ) (F−1ψ)(ξ)

∣∣∣ ≤ ‖χ‖00
∣∣(F−1ψ)(ξ)

∣∣.
Therefore, Dominated Convergence applies and we can exchange limit and integration
to invoke Theorems 4.1.6 and 4.1.9,

lim
ε→0

1

(2π)d/2

∫
Rd

dξ e−iξ·y χ(εξ) (F−1ψ)(ξ)

=
1

(2π)d/2

∫
Rd

dξ e−iξ·y
(
lim
ε→0

χ(εξ)
)
(F−1ψ)(ξ)

=
1

(2π)d/2

∫
Rd

dξ e−iξ·y (F−1ψ)(ξ) = ψ(y). (5.1.2)

Note that the convergence of this integral is not just pointwise, but also in S(Rd): the
limit of the integrand

ξ 7→ χ(εξ) (F−1ψ)(ξ)
ε→0−−−→ F−1ψ ∈ S(Rd)

follows from straightforward Fréchet seminorm estimates: derivatives in ξ give factors
of εk ≤ 1, which are harmless. And for the 00-seminorm we exploit that Schwartz
functions decay faster than any polynomial towards∞. So once we pick some δ > 0,
we may replace ψε with ψ,∣∣∣∣∫

Rd

dy χ(εy) f(y)ψε(y)−
∫
Rd

dy χ(εy) f(y)ψ(y)
∣∣∣∣ ≤ ‖f‖00 ‖χ‖00

∥∥ψε − ψ
∥∥
L1(Rd)

.
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5 Oscillatory Integrals

Thanks to Lemma 4.1.3 we can estimate the L1 norm in terms of Fréchet seminorms.
The existence of the limit limε→0 ψε = ψ in the Schwartz functions implies we can
make the right-hand side smaller than δ, provided we choose ε small enough,∣∣∣∣∫

Rd

dy χ(εy) f(y)ψε(y)−
∫
Rd

dy χ(εy) f(y)ψ(y)
∣∣∣∣ ≤ Cψ δ.

The argument for the convergence of the integral of χ(εy) f(y)ψ(y) is even easier:
once again the limit

y 7→ χ(εy) f(y)ψ(y)
ε→0−−−→ f ψ ∈ S(Rd)

exists in S(Rd) we can invoke Lemma 4.1.3 to estimate the right-hand side of∣∣∣∣∫
Rd

dy χ(εy) f(y)ψ(y)−
∫
Rd

dy f(y)ψ(y)
∣∣∣∣ ≤ ∥∥(χ(ε · )− 1

)
f ψ
∥∥
L1(Rd)

by finitely many Fréchet seminorms.
Putting everything together yields the existence of the limit∣∣Iξ·(x−y)(f, ψ)− Iξ·(x−y)(fε, ψ)

∣∣ ≤
≤ ‖f‖00 ‖χ‖00

∥∥ψε − ψ
∥∥
L1(Rd)

+
∥∥(χ(ε · )− 1

)
f ψ
∥∥
L1(Rd)

ε→0−−−→ 0.

The limit is evidently independent of our choice of cutoff function.
That was a lot of work for very simple statement of fact, and it is clear why it is

preferable to develop a general theory rather than having to do these estimates again
and again for each integral we encounter.
Before we do that, let us extract a few lessons from this example:

(1) The definition of the oscillatory integral involved a regularization procedure via a
“cutoff function”.

(2) We used Fubini’s Theorem in several places and Dominated Convergence, which
suggests that we can use Fubini’s Theorem and Dominated Convergence in oscil-
latory integrals.

(3) Very often we are actually not interested in Iϑ(f, ψ), but in the distribution

L : ψ 7→ Iϑ(f, ψ).

And in the cases we are interested in L = Lg is given in terms of a function, namely
2020.12.16

L(ψ) = (g, ψ) =

∫
Rd

dx g(x)ψ(x).
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5.1 Definition of oscillatory integrals

5.1.2 The method of L operators

The above showed how cumbersome it is to deal with the definition of oscillatory in-
tegrals directly. Fortunately, if we restrict ourselves to a smaller class of admissible
functions and make some assumptions on the phase function ϑ more explicit, there
exists another way that is frequently used in applications. The class of functions fre-
quently used are called Hörmander symbols.

Definition 5.1.2 (Hörmander symbols) Let m ∈ R and 0 ≤ δ < ρ ≤ 1 or ρ = 0 = δ;
m is referred to as the degree and (ρ, δ) as the type. Then the space of Hörmander symbols
is

Smρ,δ ≡ Smρ,δ(Rd × Rn) :=
{
f ∈ C∞(Rd × Rn) | ‖f‖m,aα <∞ ∀a ∈ Nd0, α ∈ Nn0

}
,

where the Fréchet seminorms are given by

‖f‖m,aα := sup
(x,ξ)∈Rd×Rn

(
〈ξ〉m−|α|ρ+|a|δ ∂ax∂

α
ξ f(x, ξ)

)
, a ∈ Nd0, α ∈ Nn0 .

When ρ = 1 and δ = 0, we abbreviate Hörmander classes with Sm ≡ Sm(Rd × Rn) :=
Sm1,0(Rd × Rn).

Evidently, Hörmander symbol classes are subclasses of C∞
u,pol(R

d ×Rn) ⊆ S ′(Rd ×Rn),
and therefore can be considered as tempered distributions via the identification (4.2.1).
The reason Hörmander classes are useful is that derivatives in ξ will improve its decay
properties, and they improve faster than derivatives in x will worsen it (δ < ρ by
assumption). Moreover, for fixed ξ they are bounded functions in x.
A simple example of a Hörmander symbol is a polynomial in ξ,

f(x, ξ) =

m∑
k=0

∑
α∈Nn

0

|α|=k

cα ξ
α.

Since this function is independent of x, for fixed ξ this is indeed trivially a bounded
function of x. Each derivative in ξ will reduce the degree of the polynomial by 1, and
therefore, we conclude f ∈ Sm1,0(Rd × Rn).
As indicated in the definition, Hörmander symbols form a Fréchet space; in par-

ticular, it is complete with respect to Cauchy sequences defined with respect to the
metric (3.4.2).
What is more, Hörmander classes are nested in several ways. When m ≤ m′, then

Smρ,δ ⊆ Sm
′

ρ,δ
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5 Oscillatory Integrals

is naturally contained in the Hörmander class for the largerm′. Similarly, when ρ′ ≤ ρ

or δ′ ≥ δ, we have the inclusion

Smρ,δ ⊆ Smρ′,δ′

as e. g. ρ′ ≤ ρ relaxes conditions on the growth of derivatives of symbols. The above
polynomial, for example, is contained in any Smρ,δ where ρ and δ are arbitrary.
Products of Hörmander symbols are Hörmander symbols whose degree is the sum

of the two degrees, i. e. the pointwise product of functions (f, g) 7→ f g defines a
continuous map

Sm1

ρ,δ × Sm2

ρ,δ −→ Sm1+m2

ρ,δ .

The space of bounded smooth functions with bounded derivatives C∞
b (Rd × Rn) =

S0
0,0(Rd × Rn) is another frequently used symbol class. All of these properties explain
why bookkeeping the decay properties is much easier with Hörmander symbols. We
will need one more property of Hörmander symbols:

Lemma 5.1.3 Suppose f ∈ Smρ,δ and χ ∈ S(Rn) is a test function with χ(0) = 1. Then
the functions fε(x, ξ) := χ(εξ) f(x, ξ) form a sequence (fε)ε>0 in S−∞

ρ,δ that converges to
f in the Fréchet topology of degree m′ > m,

fε
ε→0−−−→ f ∈ Sm

′

ρ,δ.

Proof We abbreviate the scaled cutoff function with χ(εξ) =: χε(ξ). Evidently, fε
decays faster than any polynomial in ξ thanks to the prefactor χε and fε ∈ S

−|m|
ρ,δ for

any m < 0 and 0 ≤ δ < ρ ≤ 1 or ρ = 0 = δ. Moreover, fε converges pointwise to f ,
and all we need to show is convergence in Fréchet topology.
The proof rests on the idea that while∥∥1− χε

∥∥
0,00

= sup
(x,ξ)∈Rd×Rn

∣∣1− χ(εξ)
∣∣ = sup

(x,ξ)∈Rd×Rn

∣∣1− χ(ξ)
∣∣

= ‖1− χ‖0,00 6= 0

never goes to 0, once we introduce m > 0 we actually do know that∥∥1− χε
∥∥
m,00

= sup
(x,ξ)∈Rd×Rn

(
〈ξ〉−m

∣∣1− χ(εξ)
∣∣) ε→0−−−→ 0

as ξ 7→ 〈ξ〉−mC∞(Rn) vanishes at infinity. Making ε large enough, we can make ξ 7→
〈ξ〉−m

(
1−χ(εξ)

)
as small as we like since either the first or the second factor becomes

small.
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5.1 Definition of oscillatory integrals

Now on to the other seminorms: when a 6= 0 ∈ Nd0, then ‖1− χε‖m′−m,aα = 0

vanishes identically as the function only depends on ξ.
The remaining seminorms are those where a = 0 and α 6= 0 ∈ Nn0 . In view of(

∂ξjχε
)
(x) = ε ∂ξjχ(εx)

derivatives in ξ product factors of ε, which implies that these seminorms also vanish in
the limit ε→ 0. ∥∥1− χε

∥∥
m,0α

= ‖χε‖m,0α = ε|α| ‖χ‖m,0α
ε→0−−−→ 0.

These arguments establish that χε → 1 ∈ Smρ,δ converges to the constant function in
the Fréchet topology of any Hörmander symbol class of strictly positive order m > 0.
The fact that fε converges to f in Sm

′

ρ,δ, m
′ > m, follows from the continuity of

pointwise multiplication of two Hörmander symbols. Alternatively, we may estimate
Fréchet seminorms directly. The 00-seminorm in Sm

′

ρ,δ, m
′ > m can now be estimated

by

‖f − fε‖m′,00 ≤
∥∥1− χε

∥∥
m′−m,00 ‖f‖m,00

ε→0−−−→ 0,

which converges to 0 by the above.
Introducing derivatives in x is trivial, because χε only depends on ξ. Derivatives in

ξ distribute amongst the two factors, 2020.12.23∥∥f − fε
∥∥
m,aα

≤
∑

β,γ∈Nn
0

β+γ=α

∥∥1− χε
∥∥
m′−m,aβ ‖f‖m,aγ

ε→0−−−→ 0. □

The utility of Hörmander symbols reveals itself in the simple observation that if m −
|α|ρ < −n the Hörmander symbol

∂αξ f ∈ S
m−|α|ρ
ρ,δ

becomes absolutely integrable in ξ. Consequently, the product

(x, ξ) 7→ ∂αξ f(x, ξ)ψ(x) ∈ L1(Rd × Rn)

becomes absolutely integrable. But how do we add derivatives to f in Iϑ(f, ψ)without,
well, simply considering a very different integral?
Let us take some inspiration from a simple phase factor, ϑ = x · ξ. Since the phase is

a simple exponential, the operator

L = − i
ξ
∂x
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5 Oscillatory Integrals

satisfies the eigenvalue equation

Le+ix·ξ = e+ix·ξ.

Of course, there are plenty of other choices of operators. To avoid (ultimately harmless)
singularities around 0, another common choice is

L = 〈ξ〉−1
√

1−∆x.

or its square L2 = 〈ξ〉−2 (1 − ∆x). Such operators are often called “L operators” in
the literature. They are highly non-unique, and choosing “wrong” ones like L = − i

x ∂ξ
(where the roles of x and ξ are reversed) can lead to dead ends.
The idea is now to use partial integration: formally, we can introduce the factor L2k

free of charge in the integral,

Ix·ξ(f, ψ) =

∫
Rd

dx
∫
Rd

dξ
(
L2ke+ix·ξ

)
f(x, ξ)ψ(x)

=

∫
Rd

dx
∫
Rd

dξ e+ix·ξ 〈ξ〉−2k
(
(1−∆x)

kf(x, ξ)
)
ψ(x).

This does two things, andwe start with the bad news: the function (1−∆x)
kf ∈ Sm+2kδ

ρ,δ

actually has worse growth in ξ as |ξ| → ∞. However, this is more than compensated
for by the factor 〈ξ〉−2k: because δ < 1 by assumption, the product

〈ξ〉−2k (1−∆x)
kf ∈ S

m−2k(1−δ)
ρ,δ ⊆ S

m−2k(ρ−δ)
ρ,δ

is a Hörmander symbol of strictly lower degree. So as soon as m − 2k(1 − δ) < −n,
the above becomes absolutely integrable in ξ. Given that the presence of ψ ensures
integrability in x, we can use the right-hand side

Ix·ξ(f, ψ) =

∫
Rd

dx
∫
Rd

dξ e+ix·ξ 〈ξ〉−2k
(
(1−∆x)

kf(x, ξ)
)
ψ(x)

to define the oscillatory integral — provided we can show that the right-hand side
agrees with Definition 5.1.1. Of course, this can be established once we specify the
phase factor.

Theorem 5.1.4 Suppose the phase function ϑ admits an L operator,

Le+iϑ = e+iϑ

with coefficients gj ∈ S0
1,0 and qk, r ∈ S−1

1,0 of the form

L =

d∑
j=1

gj ∂ξj +

n∑
k=1

qk ∂xk
+ r.
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5.1 Definition of oscillatory integrals

Then for all f ∈ Smρ,δ, 0 ≤ δ < ρ ≤ 1, the absolutely convergent integral on the right

Iϑ(f, ψ) =

∫
Rd

dx
∫
Rn

dξ e+iϑ(x,ξ) (Lt)k
(
f(x, ξ)ψ(x)

)
(5.1.3)

agrees with the oscillatory integral (5.1.1), where the transpose of the L operator

Lt =

d∑
j=1

g′j ∂ξj +

n∑
k=1

q′k ∂xk
+ r′

has the coefficients

g′j = −gj ,
q′k = −qk,

r′ = r −
d∑
j=1

∂ξjgj −
n∑
k=1

∂xk
qk.

Proof The prefactors of the adjoint operator Lt can be deduced by formally partially
integrating; the name transpose stems from the connection between the (bilinear) du-
ality bracket and the sesquilinear scalar product — the transpose is the complex con-
jugate of the “Hilbert space” adjoint operator. Another avenue, which justifies calling
Lt =

(
L̄
)∗ the transpose operator at the same time, is to rewrite Iϑ(f, ψ) as a sesquilin-

ear form akin to a scalar product and then define the transpose operator as the complex
conjugate of the adjoint.
The derivatives of Lt (which acts on f ψ) distribute to the two factors, fε and ψ. But

importantly, f is either derived with respect to ξ, which lowers the degree by ρ, or it
is multiplied by a symbol in S−1

0,0 , which lowers the degree by 1. The terms with the
worst behavior are those with qk ∂xk

fε ∈ Sm−(1−δ).
For example, we have

Ltf ∈ Sm−µ
ρ,δ , µ = min(ρ, 1− δ),

is a Hörmander symbol of strictly smaller degree. Choosing k ∈ N0 large enough so that
m− kµ < −n makes the right-hand side of (5.1.3) an absolutely convergent integral.
The other mixed terms are treated analogously.
It remains to show that this indeed coincides with the fundamental definition (5.1.1)

of oscillatory integrals. Let χ ∈ S(Rn) be a cutoff function with χ(0) = 1 and χε(ξ) :=
χ(εξ) its ε-scaled version. Then by Lemma 5.1.3 the renormalized symbol fε = χε f

converges to f in Sm
′

ρ,δ as long as m
′ > m.
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5 Oscillatory Integrals

What is more, fε is integrable in ξ and vanishes at∞. Therefore, the boundary terms
vanish when we integrate

Iϑ(fε, ψ) =

∫
Rn

dξ
∫
Rd

dx e+iϑ(x,ξ) fε(x, ξ)ψ(x)

=

∫
Rn

dξ
∫
Rd

dx
(
Lke+iϑ(x,ξ)

)
fε(x, ξ)ψ(x)

=

∫
Rn

dξ
∫
Rd

dx e+iϑ(x,ξ) (Lt)k
(
fε(x, ξ)ψ(x)

)
by parts after introducing the L operator.
The above arguments on the existence of the integral as an absolutely convergent

integral still apply verbatim after replacing f with fε. And thanks to Lemma 5.1.3 we
can exploit the convergence of fε and its derivatives to f and its derivatives in the
Fréchet topology of Sm

′−kµ
ρ,δ .

What is more, we can bound (Lt)k
(
fε(x, ξ)ψ(x)

)
(with ε) in absolute value inde-

pendently of ε in terms of the absolute values of the terms of (Lt)k
(
f(x, ξ)ψ(x)

)
(same

term without ε).
Choosing k large enough makes all of the terms absolutely integrable, and we can

invoke Dominated Convergence to exchange limit and integration,

Iϑ(f, ψ) = lim
ε→0

Iϑ(fε, ψ)

= lim
ε→0

∫
Rn

dξ
∫
Rd

dx e+iϑ(x,ξ) fε(x, ξ)ψ(x)

= lim
ε→0

∫
Rn

dξ
∫
Rd

dx e+iϑ(x,ξ) (Lt)k
(
fε(x, ξ)ψ(x)

)
=

∫
Rn

dξ
∫
Rd

dx e+iϑ(x,ξ) lim
ε→0

(Lt)k
(
fε(x, ξ)ψ(x)

)
=

∫
Rn

dξ
∫
Rd

dx e+iϑ(x,ξ) (Lt)k
(
f(x, ξ)ψ(x)

)
.

This not only shows that the existence of the oscillatory integral and that the value
is independent of our choice of χ, but also that it equals the right-hand side of equa-
tion (5.1.3). This finishes the proof. □

Example Let us evaluate the oscillatory integral (1.3.1) from the introduction for the
special case f(x, ξ) = ξ2 and d = 1.Since an operator is uniquely defined by its matrix
elements (cf. Sheet 06, Problem 22), the integral 〈ϕ,Op(f)ψ〉 serves as a definition for
the operator Op(f).
To set our expectationwe use formalmanipulations to show that Op(ξ2) = −∂2x is just

the Laplacian. The function ξ 7→ ξ2 ∈ C∞
u,pol(R) is smooth and polynomially bounded.
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5.1 Definition of oscillatory integrals

Therefore, it defines a tempered distribution via the prescription (4.2.1).The Fourier
transform of the tempered distribution ξ2 is perfectly well-defined and computes to

(Fξ2)(x− y) = −
√
2π ∂2xδ(x− y).

The delta distribution eliminates one of the integrals, e. g.
∫
Rd dy, takes the second

derivative of ψ in y and sets y = x,〈
ϕ,Op(ξ2)ψ

〉
=

1

2π

∫
R
dx
∫
R
dy
∫
R
dη e−iη·(y−x) ϕ(x) η2 ψ(y)

=
1√
2π

∫
R
dx
∫
R
dy ϕ(x)

(
Fη2

)
(y − x)ψ(y)

=
1√
2π

∫
R
dx
∫
R
dy ϕ(x)

(
−
√
2π
)
∂2xδ(y − x)ψ(y)

=

∫
Rd

dxϕ(x)
(
−∂2xψ(x)

)
=
〈
ϕ,−∂2xψ

〉
.

Making these considerations mathematically precise is very easy once we introduce the
right L operator, namely

L = 〈η〉−1
√

1−∆y.

Given that we are in d = 1, the decay for large |η| must be faster than 1/|η|, which can
be achieved by applying L four times,〈

ϕ,Op(ξ2)ψ
〉
=

1

2π

∫
R
dx
∫
R
dy
∫
R
dη
(
〈η〉−4 (1−∆y)

2e−iη·(y−x)
)
ϕ(x) η2 ψ(y)

=
1

2π

∫
R
dx
∫
R
dy
∫
R
dη e−iη·(y−x) ϕ(x) η2 〈η〉−4

(
(1−∆y)

2ψ
)
(y).

Hence,
〈
ϕ,Op(ξ2)ψ

〉
exists as an oscillatory integral. As we shall see in what follows,

this suffices to make the above formal manipulations rigorous.
For example, the factor of η2 can be obtained from deriving the phase factor,

η2 e−iη·y = −∂2ye−iη·y.

These derivatives in y can be pushed over to ψ by partial integration,

. . . = − 1

2π

∫
R
dx
∫
R
dy
∫
R
dη e−iη·(y−x) ϕ(x) 〈η〉−4

(
(1−∆y)

2∂2yψ
)
(y).

Note that all integrals have remained integrable since ψ ∈ S(Rd) and η 7→ 〈η〉−4 decays
even more rapidly.
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5 Oscillatory Integrals

The proof shifts the difficulty from proving the existence of the limit (5.1.1) and show-
ing it is independent of our choice of cutoff function χ to finding an L operator.

Proposition 5.1.5 Suppose the phase ϑ(x, ξ)

(a) is real-valued,

(b) positively homogeneous of degree 1 with respect to ξ,

(c) ϑ ∈ C∞ for ξ 6= 0, and

(d) ϑ has no critical points with ξ 6= 0.

Then there exists an L operator with the properties enumerated in Theorem 5.1.4.

Corollary 5.1.6 Under the above hypotheses on ϑ the oscillatory integral (5.1.1) exists
for all f ∈ Smρ,δ, 0 ≤ δ < ρ ≤ 1.

Proof By hypothesis the function

ϕ := ξ2
n∑
j=1

(
∂ξjϑ

)2
+

d∑
k=1

(
∂xk

ϑ
)2

is homogeneous of degree 2 in ξ and 6= 0 when ξ 6= 0. Consequently, ϕ−1 is homoge-
nous of degree −2 in ξ and C∞ away from ξ = 0.
To deal with the potential singularity of the derivative at ξ = 0, we pick out a cutoff

function χ ∈ C∞
c (Rn) with χ(x) = 1 in a neighborhood of ξ = 0.

With that we propose to use the L operator,

L =

n∑
j=1

aj ∂ξj +

d∑
k=1

bk ∂xk
+ c,

whose coefficients

aj(x, ξ) = −i
(
1− χ(ξ)

)
ϕ(x, ξ)−1 ξ2 ∂ξjϑ(x, ξ) ∈ S0

1,0,

bk(x, ξ) = −i
(
1− χ(ξ)

)
ϕ(x, ξ)−1 ∂xk

ϑ(x, ξ) ∈ S−1
1,0 ,

c(x, ξ) = χ(ξ) ∈ S−1
1,0 ,

are defined in terms of the cutoff function and ϕ. The presence of 1 − χ in the first
two terms avoids singularities in the derivatives and ensures that aj and bk are smooth
functions on all of Rd × Rn.
Furthermore, for large |ξ|where 1−χ(ξ) = 1 the ajs remains bounded: the quadratic

growth caused by ξ2 is compensated for by the presence of ϕ−1 that decays like |ξ|−2.
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5.2 Basic properties of oscillatory integrals

And each derivative in ξ improves decay by a factor of |ξ|−1: derivatives of aj are sums
of products of polynomials in ξ, inverse powers of ϕ and derivatives of ϕ. Derivatives
in ξ improve the decay of each of these terms, so the claim aj ∈ S0

1,0 follows from the
product rule.
Similarly, the bks decay like |ξ|−1 as the linear growth of ∂xk

ϑ is balanced out by the
|ξ|−2 decay of ϕ−1. The fact that each derivative in ξ improves decay follows from the
same arguments as before.
Lastly, c = χ is smooth and has compact support; therefore, it belongs to Sm1,0 for any

m ∈ R, positive or negative, including m = −1.
Consequently, the prefactors satisfy the conditions enumerated in Theorem 5.1.1. It

remains to show that Le+iϑ = e+iϑ, which follows from direct computation: the first
two terms combine to give ϕ and in aggregate cancel the factor ϕ−1,

Le+iϑ = −i (1− χ)ϕ(x, ξ)−1

ξ2 n∑
j=1

∂ξjϑ (+i) ∂ξjϑ+

d∑
k=1

∂xk
ϑ (+i) ∂xk

ϑ

 e+iϑ+
+ χ e+iϑ

= (1− χ)ϕ−1 ϕ e+iφ + χ e+iφ = e+iφ.

This concludes the proof. □

5.2 Basic properties of oscillatory integrals

With classical integrals we had to be careful when exchanging limits and integrals
or exchanging the order of integration, it was not automatic that we were able to
do that without changing the value of the integral. The nice thing about oscillatory
integrals is that the necessary conditions are baked right into the definition. Additional
assumptions are unnecessary. We could make very precise mathematical statements,
but we opt to give a “meta theorem” instead.

Theorem 5.2.1 For oscillatory integrals we are free to

(1) change the order of integration (Fubini’s Theorem),

(2) exchange limits and oscillatory integration, and

(3) integrate by parts. 2021.01.06

The important thing is that we may use these techniques to make sense of an oscillatory
integral, to define it.
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5 Oscillatory Integrals

Remark 5.2.2 (“Meta corollary”) The validity of this theorem leads to a few more
consequences: under the conditions we ordinarily place on the phase ϑ and the func-
tion f , the following holds true:

(1) For oscillatory integrals we are free to derive under the integral sign.

(2) If the phase ϑλ and fλ depend on a parameter λ in a k times continuously differ-
entiable fashion, then so does the oscillatory integral.

The formulation may be vague, e. g. it does not stipulate with respect to which topol-
ogy λ 7→ fλ is continuous. Nevertheless, they are consequences of us being able to
exchange limits and oscillatory integrals.

On the other hand, the proof below explains why: properties of the regularized integral
extend to the oscillatory integral. And while for a generic sequence of integrals, the
limit need not exist, here it does by assumption.

Proof (1) The proofs of all these statements just go back to the definition: the reg-
ularized integral exists as an absolutely convergent integral, so for fixed ε > 0

Fubini’s Theorem applies and we may exchange the order of integration, e. g.∫
Rn1

dξ1
∫
Rn2

dξ2
∫
Rd

dx e+iφ(x,ξ1,ξ2) χ(εξ1, εξ2) f(x, ξ1, ξ2)ψ(x) =

=

∫
Rn2

dξ2
∫
Rn1

dξ1
∫
Rd

dx e+iφ(x,ξ1,ξ2) χ(εξ1, εξ2) f(x, ξ1, ξ2)ψ(x).

For any sequence εk → 0 as k → ∞ the sequences computed from the original
order of integration and the alternate order of integration are identical. And the
limit ε → 0 is assumed exist as we are dealing with an oscillatory integral. Con-
sequently, the integral with the reversed order of integration is also an oscillatory
integral that converges to the same limit.

(2) That follows from applying the Dominated Convergence Theorem to the regular-
ized integral; since the limit exists by assumption, this then extends as above to
the oscillatory integral. Note that if the limit of the integrand is not oscillatorily
integrable, the same holds for the limit of the oscillatory integrals.

(3) Also here, if we can integrate the regularized integral by parts, then this is inherited
by the oscillatory integral. □

To illustrate how to deal with parameter-dependent oscillatory integral, we turn back
to (1.3.1) from the introduction.
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5.2 Basic properties of oscillatory integrals

Example (Weyl quantizations associated with f ∈ Sm
ρ,δ) Equation (1.3.1) defines the

matrix elements of the operator Op(f). The question is whether there exists a more
direct way to define

Op(f)ψ(x) =
1

(2π)d

∫
Rd

dy
∫
Rd

dη e−iη·(y−x) f
(
1
2 (x+ y), η

)
ψ(y)

as an oscillatory integral, where we regard x ∈ Rd as a parameter, and study its proper-
ties. An obvious question is whether Op(f)ψ ∈ S(Rd) is a Schwartz function whenever
ψ ∈ S(Rd) is, and whether Op(f) : S(Rd) −→ S(Rd) is a continuous map. We will not
answer all these questions at once and just start with one.
Existence for x ∈ Rd. Evidently, the integrand depends on x in a C∞ fashion, and for

fixed x the function

(y, η) 7→ f
(
1
2 (x+ y), η

)
∈ Smρ,δ

is still a Hörmander symbol of the same order and type as f . Moreover, taking deriva-
tives in x is the same as taking derivatives in y, and the supremum in y to compute the
the seminorms is independent of x. Putting this together shows what the x-dependent
linear coordinate transformation

(x, y) 7→ 1
2 (x+ y)

can be viewed as a continuous map on Smρ,δ. The same is true for the phase, which
depends linearly on x, y and η.
We can apply the method of L operators. Here, it is convenient to choose

L := 〈η〉−1
√
1−∆y.

Each time we add L, we improve decay by 1/|η| for large η. Derivatives with respect to
y worsen decay by δ < 1, but that is more than made up for by the factor 〈η〉−1.
We could have picked derivatives with respect to x instead, but those would dis-

tribute amongst e−iξ·(y−x) and f rather than f and ψ.
This L operator does not fit into the scheme of Theorem 5.1.4 directly, we can nev-

ertheless use the exact same arguments as in the proof. In fact, the L operator above is
probably amongst the most common choices, not least because the transpose operator
Lt = L coincides with L itself. Choosing k large enough, we can make the integrand
absolutely integrable,

1

(2π)d

∫
Rd

dy
∫
Rd

dη
(
L2ke−iη·y

)
e+iη·x f

(
1
2 (x+ y), η

)
ψ(y) =

=
1

(2π)d

∫
Rd

dy
∫
Rd

dη e−iη·y e+iη·x 〈η〉−2k (1−∆y)
k
(
f
(
1
2 (x+ y), η

)
ψ(y)

)
.
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5 Oscillatory Integrals

A more detailed argument would involve a regularizing cutoff function, which can be
inserted and then removed with the help of Lemma 5.1.3.
The derivatives with respect to y distribute. But for our arguments it suffices to

identify the term with the worst behavior. Derivatives of Schwartz functions remain
Schwartz functions, so taking derivatives of ψ is harmless. Each derivative of f with
respect to y worsens decay by δ. Therefore, the term with the worst behavior is the
one where all the derivatives act on f . The assumption f ∈ Smρ,δ implies that the term

(y, η) 7→ 〈η〉−2k∆k
yf
(
1
2 (x+ y), η

)
∈ S

m−2k(1−δ)
ρ,δ

is in a symbol class of order strictly smaller than m. Choosing k so that

m− 2k(1− δ) < −d

holds makes the integral absolutely integrable in η.
The nesting of Hörmander classes ensures that also the better-behaved terms with

less derivatives in y belong to the same symbol class.
Consequently, we conclude that the oscillatory integral exists. Furthermore, it is

continuous and uniformly bounded in the parameter x. The latter follows from the
fact that we can estimate the integrand∣∣∣〈η〉−2k ∂ayf

(
1
2 (x+ y), η

)
∂byψ(y)

∣∣∣ ≤ Ca〈η〉m−2k(1−δ) ∣∣∂byψ(y)∣∣
independently of x, which shows that we can estimate the supremum in x from above
by finitely many seminorms,∥∥Op(f)ψ∥∥

00
≤ C

∑
|a|≤n(d,m,δ)

‖ψ‖0a,

where n(d,m, δ) is a constant that only depends on the dimension of Rd, the order of
the symbol m and δ < 1.
Furthermore, the oscillatory integral inherits the continuity of the integrand in the

parameter x. We will continue with this example later on to derive similar estimates
for all seminorms of S(Rd).

Put another way, our example above shows that

Op(f)ψ : ϕ 7→
(
Op(f)ψ,ϕ

)
is not just a tempered distribution, but is also a continuous bounded function of x.
Proving smoothness can (and will be) done with explicit arguments later, but as usual
in mathematics it tends to be better to extract more general statements.
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5.3 Functions defined by oscillatory integrals and the abbreviated L operator method

5.3 Functions defined by oscillatory integrals and the
abbreviated L operator method

Almost always we are not interested in the oscillatory integral itself, but in functions
that are defined by them. Let us be more precise: we usually would like to know
whether

L : ψ 7→ Iϑ(f, ψ)

defines a tempered distribution. Not only that, typically this tempered distribution is
defined through a smooth, polynomially bounded function g ∈ C∞

pol(R
d),

Iϑ(f, ψ) = (L,ψ) = (g, ψ) ∀ψ ∈ S(Rd).

Proposition 5.3.1 Under the assumptions of Theorem 5.1.4 the map

L : ψ 7→ Iϑ(f, ψ) ∈ S ′(Rd)

defines a tempered distribution.

Proof Theorem 5.1.4 tells us that Iϑ(f, ψ) exists as an oscillatory integral for all ψ ∈
S(Rd).
Therefore, it remains to show that we can estimate∣∣(L,ψ)∣∣ ≤ ∑

a,α∈Nd
0

Caα ‖ψ‖aα

in terms of finitely many Fréchet seminorms. These terms come from writing out the
finite sum

(Lt)k
(
f(x, ξ)ψ(x)

)
=
(
(Lt)kf(x, ξ)

)
ψ(x) + lower order (5.3.1)

=
∑
a,b∈Nd

0
α∈Nn

0

|a|+|α|+|β|≤k

ca,b,α(x, ξ) ∂
a
x∂

α
ξ f(x, ξ) ∂

b
xψ(x), (5.3.2)

where the coefficients ca,b,α are functions of x and ξ that can be computed from the
coefficients of the Lt operator and their derivatives. Revisiting the arguments from the
proof of Theorem 5.1.4 and exploiting that Hörmander classes are nested, we see that
each of the terms belongs to

ca,b,α ∂
a
x∂

α
ξ f ∈ Sm−kµ

ρ,δ
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5 Oscillatory Integrals

where µ = min(ρ, 1− δ). Put another way, we may estimate this term by∣∣∣ca,b,α(x, ξ) ∂ax∂αξ f(x, ξ)∣∣∣ ≤ Ca,b,α 〈ξ〉m−kµ. (5.3.3)

By our choice of k, this term on the right is integrable. Consequently, we may estimate
the oscillatory integral by∣∣Iϑ(f, ψ)∣∣ ≤ ∑

a,b∈Nd
0

α∈Nn
0

|a|+|b|+|α|≤N

Ca,b,α Ck,d ‖∂αxψ‖L1(Rd)

for some appropriate choice ofN ∈ N0. Estimating ‖∂αxψ‖L1(Rd) by Fréchet seminorms
via Lemma 4.1.3 now yields the claim. □

Very often, we would like to know more, not only that L is a tempered distribution, but
a tempered distribution defined in terms of function g. In that case we abuse notation
and also call

g(x) =

∫
Rn

dξ e+iϑ(x,ξ) f(x, ξ) (5.3.4)

an oscillatory integral. As usual it is implied that g is related to the original oscillatory
integral (5.0.1) via

(g, ψ) = Iϑ(f, ψ) ∀ψ ∈ S(Rd). (5.3.5)

This was precisely the strategy spelled out in Chapter 5.1.1: we constructed an oscil-
latory integral of the form (5.0.1) by writing out the definition of

F−1Ff = f ∈ S ′(Rd)

on the level of distributions, i. e.(
F−1Ff , ψ

)
= (f, ψ) ∀ψ ∈ S(Rd).

In the business of oscillatory integrals, one would then like to establish properties of g.
Typically, g ∈ C∞

pol(R
d) is a polynomially bounded, smooth function g, e. g. a Hörmander

symbol. For the instructional example it was really easy to verify that F−1Ff = f ∈
C∞
pol(R

d) since F−1F = idS′(Rd) reduces to the identity. Consequently, we may read off
directly that f is smooth and polynomially bounded.
But normally, we need to estimate Fréchet seminorms in order to show that (5.3.4)

belongs to some class of functions (e. g. some Hörmander symbol class). The default
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5.3 Functions defined by oscillatory integrals and the abbreviated L operator method

strategy is to employ the method of L operators in an abbreviated form. Looking at
the proof of Theorem 5.1.4, we arrive at the integral

Iϑ(f, ψ) =

∫
Rn

dξ
∫
Rd

dx e+iϑ(x,ξ) (Lt)k
(
f(x, ξ)ψ(x)

)
where repeated application of the transpose L operators gives us a finite sum

(Lt)k
(
f(x, ξ)ψ(x)

)
=
(
(Lt)kf(x, ξ)

)
ψ(x) + lower order. (5.3.6)

We see that the worst term is the first one where the Lt operators all act on f . In
the context of that theorem, the critical question is whether we can pick k ∈ N0 large
enough so that ∫

Rn

dξ e+iϑ(x,ξ) (Lt)kf(x, ξ)

exists as an ordinary Lebesgue integral. In that case the answer was yes.
This generalizes to many situations where the term with the worst behavior is the

one where Lt acts only on f , and showing the existence of the oscillatory integral from
Theorem 5.1.4 is equivalent to proving that for k ∈ N0 large enough

x 7→ g(x) =

∫
Rn

dξ e+iϑ(x,ξ) (Lt)kf(x, ξ) ∈ C(Rd)

exists as an ordinary, absolutely convergent integral. Our assumptions on f further
guarantee that we may use a Dominated Convergence argument to commute the limit
x→ x0 and the integral in ξ for any x0 ∈ Rd; this shows that the integral is continuous
in x. What is more, the estimate (5.3.3) is uniform in x, which means that we may
bound the supremum of g in x by summing up the terms.
Under assumptions (a)–(c) (excluding (d)) from Proposition 5.1.5 we can show that

derivatives in x and the integral commute: at least on the open set

Xϑ :=
{
x ∈ Rd | ξ 7→ ϑ(x, ξ) has no critical points for ξ 6= 0

}
the oscillatory integral is smooth, i. e. g ∈ C∞(Xϑ). So when we add assumption (d),
then Xϑ = Rd and g ∈ C∞(Rd) is smooth everywhere.

Corollary 5.3.2 Suppose the phase function satisfies the assumptions in Proposition 5.1.5
and the function f ∈ Smρ,δ is a Hörmander symbol of order m with 0 ≤ δ < ρ ≤ 1. Then
the tempered distribution

L : ψ 7→ Iϑ(f, ψ) = (g, ψ) ∈ S ′(Rd)

defined by the oscillatory integral is a smooth, bounded function g ∈ C∞(Rd) (but need
not have bounded derivatives). 2021.01.13
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5 Oscillatory Integrals

There are situations where we need to estimate other seminorms, e. g. to prove g ∈ Smρ,δ.
In the abstract, the strategy looks as follows: suppose we would like to prove that the
function g ∈ S ⊆ C∞

pol(R
d) defined by (5.3.4), where S is some Fréchet space; the

seminorms are typically suprema of derivatives of g times some polynomially bounded
function (e. g. 〈x〉).

(1) Use the (abbreviated) L operator method to show that (5.3.4) exists as long as
k ∈ N0 is chosen large enough. Note that it is sometimes useful to choose L
operators that are of a different form, a common choice is

L = 〈ξ〉−1
√
1−∆x.

Estimate the integrand (at least locally) uniformly in x; then Dominated Conver-
gence proves continuity in x.

(2) Write out the seminorms for g, which are typically of the form xa ∂αx g. Repeat the
above arguments for this function. Note that sometimes you need to convert xa

to derivatives of f by exploiting that monomials of x can be obtained by deriving
the phase function,

xa e+iϑ(x,ξ) = c(a) ∂aξ e
+iϑ(x,ξ), a ∈ Nd0, c(a) ∈ C,

and partially integrating (which youmay by definition according to Theorem 5.2.1).
This is not always possible, of course, but often phase functions take simple forms
like ϑ(x, ξ) = x · ξ.

5.4 Asymptotic expansions

Very often oscillatory integrals cannot be computed exactly, and it is useful to develop
some systematic approximation techniques. The idea is to expand certain functions

f �
∞∑
n=0

fn

into an infinite sum. The symbol � emphasizes that the sum on the right need not
converge in any sense — we are speaking of asymptotic expansion.
In the context of Hörmander symbols, the terms fn need to be better and better

behaved. More precisely, there must exist a non-increasing sequencem(n) → −∞ that
diverges to −∞, which

(a) captures the decay of the terms in ξ,

fn ∈ S
m(n)
ρ,δ ,
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5.4 Asymptotic expansions

(b) and correctly predicts the symbol class of the remainder

Rn := f −
n∑
k=0

fk ∈ S
m(n+1)
ρ,δ .

Very often we need to include a small perturbation parameter ε that orders the term
“by size”,

f �
∞∑
n=0

εnfn.

Taylor expansions are a good example of an asymptotic expansion: we can expand any
smooth function in terms of its Taylor series. But a priori we have no idea whether
the Taylor series converges. This is only the case for analytic functions — and smooth
functions need not be analytic. Here, the distance ε := |x − x0| from the expansion
point plays the role of the small parameter, and e. g. in d = 1 we may write

f(x) �
n∑
k=0

1

k!
∂kxf(x0) (x− x0)

k +O
(
(x− x0)

n+1
)

But there are cases where f 6= 0 even though all derivatives vanish in a point such as

f(x) =

{
e−

1
1−x2 x ∈ (−1,+1)

0

at x = ±1. For these functions the remainder Rn(x) = f(x) coincide with the original
function for all n ∈ N0. Such functions are evidently not analytic and the terms of the
Taylor expansion do not allow us to approximate the behavior of the function near the
expansion point.
In that case, the function f(x) = O

(
(x− x0)

∞) meaning
f(x) = O

(
(x− x0)

n
)

∀n ∈ N0.

Asymptotic expansions of Hörmander symbols are inherently non-unique, the best we
can hope for is

f −
∞∑
n=0

fn ∈ S−∞
ρ,δ

where S−∞
ρ,δ :=

⋂
m∈R S

m
ρ,δ is the space of smoothing symbols. Its elements belong to

any of the symbol classes Smρ,δ.
We may also read this in reverse: given an asymptotic expansion

∑∞
n=0 fn we can

find a symbol f , which agrees with the infinite series up to a smoothing symbol.
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Proposition 5.4.1 (Proposition 1.1.9 in [Hör71]) Suppose we are given a series of sym-
bols (fn)n∈N0 of decreasing order (mn)n∈N0 ,mn → −∞ as n→ ∞. Then for each k ∈ N0

we can find a symbol f ∈ S
m′

0

ρ,δ of order m′
0 := maxk∈N0

mk so that the remainder

f −
k∑

n=0

fn ∈ S
m′

k

ρ,δ

belongs to the Hörmander symbol class of order m′
k := maxk≤jmj .

The function f is uniquely determined modulo S−∞
ρ,δ and has the same property relative

to any rearrangement of the series f �
∑∞
n=0 fn.

Up until now everything was fairly abstract, so let us get to an example. Consider the
Weyl product

(f]g)(x, ξ) :=
1

(2π)2d

∫
Rd

dy
∫
Rd

dη
∫
Rd

dz
∫
Rd

dζ e+iξ·(y+z) e−ix·(η+ζ) ei
ε
2 (η·z−y·ζ) ·

· (Fσf)(y, η) (Fg)(z, ζ) (5.4.1)

of two suitable functions f, g : Rd × Rd −→ C, where

(Fσf)(x, ξ) :=
1

(2π)d

∫
Rd

dx′
∫
Rd

dξ′ e+i(ξ·x
′−x·ξ′) f(x′, ξ′)

is a convenient variant of the Fourier transform that is its own inverse, F2
σ = id. We

will not show how to obtain an asymptotic expansion of the Weyl product from rather
elementary considerations.

Proposition 5.4.2 Suppose f ∈ Sm1

ρ,δ and g ∈ Sm2

ρ,δ are two Hörmander symbols. Then
their Weyl product f]g ∈ Sm1+m2

ρ,δ has an asymptotic expansion to any order,

f]g =

n∑
k=0

εk(f]g)(k) + εn+1Rn, (5.4.2)

where each of the terms lies in symbol class Sm1+m2−2n(ρ−δ) and is explicitly given by

(f]g)(k)(x, ξ) =
ik

2k
1

k!

(
∇η · ∇z −∇y · ∇ζ

)k
f(y, η) g(z, ζ)

∣∣∣(y,η)=(x,ξ)
(z,ζ)=(x,ξ)

. (5.4.3)

The remainder Rn ∈ Sm1+m2−2(n+1)(ρ−δ) is of O(1) in ε.

Because the purpose of this section is to study asymptotic expansions, we will factor
out one important statement:
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5.4 Asymptotic expansions

Lemma 5.4.3 For each m1,m2 ∈ R and 0 ≤ δ < δ ≤ 1 the Weyl product is a continuous
map ] : Sm1

ρ,δ × Sm2

ρ,δ −→ Sm1+m2

ρ,δ .

Even though we can prove it with the method of L operators from Chapter 5.1.2, we
will postpone that until Chapter 6.

Proof First off, by Lemma 5.4.3 the Weyl product is well-defined as an oscillatory in-
tegral and maps Hörmander symbols onto Hörmander symbols.
To obtain the asymptotic expansion, we Taylor expand the “twister” term

ei
ε
2 (η·z−y·ζ) =

n∑
k=0

εk
ik

2k
1

k!
(η · z − y · ζ)k + εn+1 rn(y, η, z, ζ)

up to nth order in ε; for the explicit form of the remainder, wemay pick e. g. the integral
form of the remainder of Taylor series,

rn(y, η, z, ζ) =
1

εn+1

1

n!

∫ 1

0

dτ (1− τ)n ∂n+1
τ eτ u

∣∣
u=i ε2 (η·z−y·ζ)

=
1

n!

in+1

2n+1
(η · z − y · ζ)n+1

∫ 1

0

dτ (1− τ)n eτ i
ε
2 (η·z−y·ζ) = O(1).

The kth order term of the Taylor expansion yields the kth-order term of the asymptotic
expansion,

(f]g)(k)(x, ξ) :=
1

(2π)2d

∫
Rd

dy
∫
Rd

dη
∫
Rd

dz
∫
Rd

dζ e+iξ·(y+z) e−ix·(η+ζ) ·

· i
k

2k
1

k!
(η · z − y · ζ)k ·

· (Fσf)(y, η) (Fg)(z, ζ)

and the remainder term is defined in terms of the remainder of the Taylor expansion,

Rn(x, ξ) :=
1

(2π)2d

∫
Rd

dy
∫
Rd

dη
∫
Rd

dz
∫
Rd

dζ e+iξ·(y+z) e−ix·(η+ζ) rn(y, η, z, ζ) ·

· (Fσf)(y, η) (Fg)(z, ζ).

The kth-order term can be computed explicitly: up to constants, which are not impor-
tant for the existence, (f]g)(k) the the linear combination of monomials in y, η, z and ζ,
which can be converted into derivatives with respect to η, y, ζ and z (position variables
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become momenta and vice versa),

1

(2π)2d

∫
Rd

dy
∫
Rd

dη
∫
Rd

dz
∫
Rd

dζ e+iξ·(y+z) e−ix·(η+ζ) ya ηα zb ζβ ·

· (Fσf)(y, η) (Fg)(z, ζ) =

=
1

(2π)2d

∫
Rd

dy
∫
Rd

dη
∫
Rd

dz
∫
Rd

dζ e+iξ·(y+z) e−ix·(η+ζ) ·

· (−i)|a|+|b| (+i)|α|+|β| ·
· (Fσ∂αy ∂aηf)(y, η) (F∂βz ∂bζg)(z, ζ).

Of the four multiindices, only two are independent. When taking powers of

η · y − y · ζ =

d∑
j=1

(
ηj zj − zj ζj

)
we get monomials for which the multiindices a = β and b = α are necessarily the same.
A nice side benefit is that the prefactor

(−i)|a|+|α| (+i)|α|+|a| = (−i2)|α|+|a| = 1.

is always 1.
Refactoring the phase factors we see that this oscillatory integral becomes the Fourier

transform of the Fourier transform,

. . . =
1

(2π)2d

∫
Rd

dy
∫
Rd

dη
∫
Rd

dz
∫
Rd

dζ e+i(ξ·y−x·η) e+i(ξ·z−x·ζ) ·

· (Fσ∂αy ∂aηf)(y, η) (F∂az∂αζ g)(z, ζ)
= ∂αx ∂

a
ξ f(x, ξ) ∂

a
x∂

α
ξ g(x, ξ)

which in this case just reduces to the identity. Consequently, according to our ar-
guments in Chapter 5.1.1 the oscillatory integral reduces to the pointwise product of
derivatives of f and g.
All that remains is to insert the proper coefficients and sum up. That gives us the

claimed form of the kth-order term. Moreover, as pointwise products of Hörmander
symbols, (f]g)(k) is again a Hörmander symbol; counting derivatives, we indeed con-
firm that

(f]g)(k) ∈ S
m1+m2−2k(ρ−δ)
ρ,δ

is a symbol of order that is 2k(ρ− δ) lower than the 0th-order term.
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5.4 Asymptotic expansions

We postpone a proof that the remainder belongs to the correct symbol class. But we
can already see that this integral can be brought into the same form as the original Weyl
product, save for an extra integral over τ — we merely have to convert the monomial
into derivatives and identify ε with τε.
The integral over τ does not change the story since we may estimate the integrand

in absolute value by 1.
Invoking the auxiliary Lemma 5.4.3 and counting the number of derivatives with

respect to x and ξ once more yields

Rn ∈ S
m1+m2−2(n+1)(ρ−δ)
ρ,δ .

This concludes the proof. □

Let us reiterate the utility of this proof: the asymptotic expansion allows us to compute
f]g order-by-order up to an error of higher order, and it turns out that the oscillatory
integral reduces to the pointwise product of functions,

f]g =

n∑
k=0

∑
a,b∈Nd

0

|a|+|b|=2k

c(a, b) ∂ax∂
b
ξf ∂

b
x∂

a
ξ g.

Here, c(a, b) ∈ C is just a collection of complex coefficients.
When it comes to deriving asymptotic expansions, choosing a suitable formula for

the oscillatory integral is very important. For instance, with a little bit of algebra we
can verify that we may equivalently write the Weyl product as

(f]g)(x, ξ) =

=
1

(πε)2d

∫
Rd

dy
∫
Rd

dη
∫
Rd

dz
∫
Rd

dζ e−i
2
ε ((η−ξ)·(z−x)−(y−x)·(ζ−ξ)) f(y, η) g(z, ζ)

by writing out the Fourier transforms and integrating out the right variables. This
second formula for the Weyl product is less conducive to an asymptotic expansion —
although it is not impossible. 2021.01.20
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6Chapter 6

Pseudodifferential operators and
Weyl calculus

The name “pseudodifferential operators” stems from the desire to define and under-
stand operators like √

1−∆x

and fractional derivatives like |∇x|1/2. While these simple operators can be defined via
functional calculus for the so-called momentum operator

P = −iε∇x

on L2(Rd), pseudodifferential theory allows us to connect properties of certain asso-
ciated functions to properties of the resulting operator. We introduce the parameter ε
already here in anticipation of the asymptotic expansions we will study in Chapter 6.3.
There is also a second motivation that comes from the so-called quantization prob-

lem from physics: the idea is to generate quantum mechanical observables, selfadjoint
operators on a Hilbert space, from classical observables, functions on phase space.
Observables are mathematical representations of quantities that can be measured in
experiment.
In the cases we are considering here, the relevant Hilbert space is L2(Rd) and phase

space is Rd×Rd. For simple classical observables such as classical angular momentum

l(q, p) = q × p,

we can replace position qj by the position operator

Qj : ϕ 7→ (Qjϕ)(x) = xj ϕ(x)
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6 Pseudodifferential operators and Weyl calculus

and classical momentum pj by Pj = −iε∇j . For brevity, we will skip over technical
complications that arise due to the unboundedness of Qj and Pj; these can be solved.
This heuristic procedure only works for very simple classical observables, e. g. those of
the form f(q, p) = k(p) + V (q) or polynomials of low order. The quantum mechanical
angular momentum operator

L = l(Q,P ) = Q× P = L∗

is of this category, once we insist that suitable real-valued functions are mapped onto
selfadjoint operators, this mapping should be unique.
This is how quantum hamiltonians (the energy observable) can by systematically

“guessed” from classical hamilton functions; these are particularly important, because
the energy observable generates the time evolution. While the quantization of the
non-relativistic Hamilton function

h(q, p) = 1
2mp

2 + V (q)

is unambiguous and yields the Schrödinger operator

H = h(Q,P ) = 1
2mP

2 + V (Q)

=
ε2

2m
∆x + V (x̂),

there are physical systems where this is not obvious. An example is the Hamilton
function for a semirelativistic particle in a magnetic field,

h(q, p) =

√
m2 +

(
p−A(q)

)2
+ V (q).

That is because the operators Q and P do not commute,

i
[
Qj , Qk

]
= 0 i

[
Pj , Pk

]
= 0 i

[
Pj , Qk

]
= εδjk.

To extend this prescription to more general functions, we will use a variant of the
Fourier transform called the symplectic Fourier transform,

(Fσf)(X) :=
1

(2π)d

∫
Rd×Rd

dX ′ eiσ(X,X
′) f(X ′)

defined with the help of the so-called symplectic form

σ(X,Y ) := σ((x, ξ), (y, η)) := ξ · y − x · η

that has the advantage that it is its own inverse, F2
σ = id. To simplify notation, we will

label phase space coordinates such as X = (x, ξ) ∈ Rd ×Rd, Y = (y, η) and Z = (z, ζ)
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6.1 Weyl calculus on S

with capital letters, positions with small letters (x, y and z) and momenta with greek
letters. These pairings makes it easier to understand integrals.
Now we propose the solution

f(Q,P ) := Op(f) :=
1

(2π)d

∫
R2d

dX e−iσ(X,(Q,P )) (Fσf)(X) (6.0.1)

which formally just corresponds to writing out F2
σf and “evaluating it” at (Q,P ). Of

course, Q and P are operators, so the expression on the right actually defines f(Q,P ).
Note that we already know to make sense of the integral on the left at least when

f ∈ L1(R2d) and its symplectic Fourier transform are integrable: the operator

W (X) := e−iσ(X,(Q,P )) (6.0.2)

turns out to be unitary and therefore has norm 1. Consequently, the integral on the
right-hand side of equation (6.0.1) is a Bochner integral (cf. Sheet xyz, Problem xyz).
The purpose of this section is to extend Weyl quantization (6.0.1) in a systematic

fashion from Schwartz functions to more general functions such as h(q, p) = p2. We
do this by duality as in Chapter 4. Then we will show how to use the theory of oscilla-
tory integrals when we discuss pseudodifferential operators associated to Hörmander
symbols.

6.1 Weyl calculus on S
• Derive explicit expression for f ∈ S(Rd × Rd) rigorously

• Introduce the operator kernel

• Explain the other option: matrix elements approach

• Derive Weyl product

We will first develop Weyl quantization on S(Rd × Rd). As already mentioned for
Schwartz functions we can define Op(f) as a Bochner integral. However, this approach
is a dead end if we intend to extend it to functions that are not Schwartz functions
(or are integrable with an integrable Fourier transform). This is in anticipation of
extending it to S ′(Rd × Rd) by duality.

6.1.1 TheWeyl system

The first step is to study the action of the Weyl systemW (X) on L2 functions. Instead
of working with Qε and P , each of which defines a selfadjoint operator on its maximal
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6 Pseudodifferential operators and Weyl calculus

domain

D(Qεl) =
{
ϕ ∈ L2(Rd) | Qεlϕ ∈ L2(Rd)

}
⊃ S(Rd)

D(Pl) =
{
ϕ ∈ L2(Rd) | Plϕ ∈ L2(Rd)

}
⊃ S(Rd),

we work with the corresponding evolution groups, namely translations in momentum

V (η) := e−iη·Qε ,
(
V (η)ϕ

)
(x) = e−iη·xϕ(x), ϕ ∈ L2(Rd),

and position

U(y) := e−iy·P ,
(
U(y)ϕ

)
(x) = ϕ(x− εy), ϕ ∈ L2(Rd).

These are not one-parameter groups, but strongly continuous d-parameter groups: one
can check that

V (ξ)V (η) = V (ξ + η), V (ξ)∗ = V (−ξ),
U(x)U(y) = U(x+ y), U(x)∗ = U(−x),

hold as all the different components of position and momentum commute. But what
about combinations of U and V ? Clearly the origin of the fact(

U(y)V (η)ϕ
)
(x) =

(
V (η)ϕ

)
(x− εy) = e−iη·(x−εy)ϕ(x− εy)

6= e−iη·xϕ(x− εy) =
(
V (η)U(y)ϕ

)
(x)

can be traced back to the noncommutativity of the generators of U and V . Instead, we
have just shown

U(y)V (η) = e+iεy·η V (η)U(y) ∀y ∈ Rd, η ∈ Rd.

It turns out that picking an operator ordering can be rephrased into picking an ordering
of U and V . Since we would like real-valued functions to be quantized to potentially
selfadjoint operators, we choose the “symmetrically” defined

Definition 6.1.1 (Weyl system) For all X ∈ T ∗Rd, we define

W (X) := e−i(ξ·Qε−x·P ) =: e−iσ((x,ξ),(Qε,P ))

where σ(X,Y ) := ξ · y − x · η.

We note that the small parameter ε is contained in the definition of the operators Qε
and P . The next Lemma tells us how this operator acts on wave functions:
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6.1 Weyl calculus on S

Lemma 6.1.2 For all Y ∈ T ∗Rd and ϕ ∈ L2(Rd),
(
W (Y )ϕ

)
(x) = e−iη·(x+ ε

2y)ϕ(x+ εy)

holds. The map Y 7→W (Y ) is strongly continuous.

Proof We use the Trotter product formula ([RS72, Theorem VIII.31]) to write W (Y )

as

s-lim
n→∞

(
e−

i
nη·Qεe+

i
ny·P

)n
=

= s-lim
n→∞

(
e−

i
nη·Qεe+

i
ny·P e−

i
nη·Qεe+

i
ny·P · · · e− i

nη·Qεe+
i
ny·P e−

i
nη·Qεe+

i
ny·P

)
= s-lim

n→∞

(
e−

i
nη·Qεe+

i
ny·P e−

i
nη·Qεe−

i
ny·P e+i

2
ny·P e−

i
nη·Qεe−i

2
ny·P e+i

3
ny·P · · ·

· · · e+i
n−1
n y·P e−

i
nη·Qεe−i

n−1
n y·P e+i

n
ny·P

)
.

The terms can be simplified using(
e+i

k
ny·P e−

i
nη·Qεe−i

k
ny·Pϕ

)
(x) =

(
e−

i
nη·Qεe−i

k
ny·Pϕ

)(
x+ ε kny

)
= e−

i
nη·(x+ε

k
ny)
(
e−i

k
ny·Pϕ

)(
x+ ε kny

)
= e−

i
nη·(x+ε

k
ny) ϕ(x) =

(
e−

i
nη·(Qε+ε

k
ny)ϕ

)
(x)

where k ∈ {0, 1, . . . , n− 1}. This means the above expression can be rewritten as

s-lim
n→∞

(
e−i

1
nη·Qεe−i

1
nη·(Qε+ε

1
ny) · · · e−i 1nη·(Qε+ε

n−1
n y)e+iy·P

)
=

= s-lim
n→∞

e−i
1
nη·
∑n−1
k=0(Qε+ε

k
ny)e+iy·P .

The sum in the exponential is a Riemann sum that converges to

1

n

n−1∑
k=0

(
x+ ε kny

) n→∞−−−−→
∫ 1

0

ds
(
x+ sεy

)
= x+ ε

2y

so that we get

W (Y ) = e−iη·(Qε+
ε
2y)e+iy·P .

The strong continuity of Y 7→ W (Y ) follows from the strong continuity of y 7→ U(y)

and η 7→ V (η). □

Remark 6.1.3 Another way to see this is via the Baker-Campbell-Hausdorff formula:
formally, we have

W (Y ) = e−i(η·Qε−y·P ) = e−iη·Qεe+iy·P e−
i2

2 [η·Qε,−y·P ] = e−iη·Qεe+iy·P e−i
ε
2η·y

= e−iη·(Qε+
ε
2y)e+iy·P .
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6 Pseudodifferential operators and Weyl calculus

However, it is a bit tricky to rigorously control commutators of unbounded operators
[RS72, Chapter VIII.5]. 2009.12.08

The Weyl system combines translations in real and reciprocal space. If one of the two
components is 0, thenW reduces to U or V ,

W (x, 0) = U(−x) = U(x)∗,

W (0, ξ) = V (ξ).

The Weyl system completely encodes the commutation relations:

Proposition 6.1.4 Let Y, Z ∈ T ∗Rd. Then, the Weyl system obeys the following compo-
sition law:

W (Y )W (Z) = e+i
ε
2σ(Y,Z)W (Y + Z)

This contains the commutation relations: if we combine a translation along ek in real
space and ej in reciprocal space,

W (ek, 0)W (0, ej) = e−i
ε
2 δkj W (ek, ej),

then the extra factor reduces to the exponential of half of [Qεk, Pj ] = −iεδkj .

Proof This follows from direct calculation: for all ϕ ∈ L2(Rd), we have(
W (Y )W (Z)ϕ

)
(x) = e−i(x+

ε
2y)·η

(
W (Z)ϕ

)
(x+ εy)

= e−i(x+
ε
2y)·ηe−i(x+εy+

ε
2 z)·ζϕ(x+ εy + εz)

= e+i
ε
2 (−y·ζ+z·η)e−i(x+

ε
2 (y+z))·(η+ζ)ϕ

(
x+ ε(y + z)

)
= e+i

ε
2σ(Y,Z)

(
W (Y + Z)ϕ

)
(x).

Hence, the claim follows. □

6.1.2 Weyl quantization

To define the Weyl quantization, we first introduce a convenient variant of the Fourier
transform, the symplectic Fourier transform on T ∗Rd

(Fσf)(X) :=
1

(2π)d

∫
T∗Rd

dY e+iσ(X,Y ) f(Y ), f ∈ S(T ∗Rd).
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6.1 Weyl calculus on S

Fσ has the nice property of being an involution, i. e. F2
σ = idS . If we pretend for a

moment that Qε and P are variables and not operators, we have

f(Qε, P ) = (F2
σf)(Qε, P ) =

1

(2π)d

∫
T∗Rd

dX e+iσ((Qε,P ),X) 1

(2π)d

∫
T∗Rd

dY e+iσ(X,Y ) f(Y )

=
1

(2π)d

∫
T∗Rd

dX (Fσf)(X) e−iσ(X,(Qε,P ))

=
1

(2π)2d

∫
T∗Rd

dX
∫
T∗Rd

dY e+iσ(X,Y−(Qε,P )) f(Y ) =

∫
T∗Rd

dY δ
(
Y − (Qε, P )

)
f(Y ).

Even though the above does not make sense if Qε and P are operators, it gives an
intuition why we define Weyl quantization the way we do:

Definition 6.1.5 (Weyl quantization) Let f ∈ S(T ∗Rd). Then the Weyl quantization
of f is defined as

Op(f)ϕ :=
1

(2π)d

∫
T∗Rd

dX (Fσf)(X)W (X)ϕ, ∀ϕ ∈ S(Rd).

Lemma 6.1.2 essentially already tells us how Op(f) acts on wave functions:

Proposition 6.1.6 Let f ∈ S(T ∗Rd) and ϕ ∈ L2(Rd). Then Op(f) defines a bounded
operator on L2(Rd) and its action on ϕ is given by

(
Op(f)ϕ

)
(x) =

1

(2π)d

∫
Rd

dy
∫
Rd

dη e−i(y−x)·η f
(
1
2 (x+ y), εη

)
ϕ(y) (6.1.1)

=
1

(2π)d/2

∫
Rd

dy ε−d (F2f)
(
1
2 (x+ y), y−xε

)
ϕ(y)

=:
1

(2π)d/2

∫
Rd

dy Kf (x, y)ϕ(y) =:
(
Int(Kf )ϕ

)
(x).

Proof Let ϕ ∈ S(Rd) ⊂ L2(Rd). Then we can bound Op(f)ϕ by

∥∥Op(f)ϕ∥∥ ≤ 1

(2π)d

∫
T∗Rd

dX
∣∣(Fσf)(X)

∣∣ ∥∥W (X)ϕ
∥∥ =

(
1

(2π)d

∫
T∗Rd

dX
∣∣(Fσf)(X)

∣∣) ∥∥ϕ∥∥
= (2π)−d ‖Fσf‖L1(T∗Rd) ‖ϕ‖ .

The L1-norm of Fσf is certainly bounded as Fσf is a Schwartz function and thus
integrable. Hence, Op(f) defines a bounded operator on S(Rd) ⊂ L2(Rd). Since the
Schwartz functions are dense in L2(Rd) by Lemma ??, we invoke Theorem 3.1.6 which
ensures the existence of a unique extension of Op(f) to all of L2(Rd).
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6 Pseudodifferential operators and Weyl calculus

Equation (6.1.1) follows from direct computation and Lemma 6.1.2: for any ϕ ∈
L2(Rd), we have(
Op(f)ϕ

)
(x) =

1

(2π)2d

∫
T∗Rd

dY
∫
T∗Rd

dZ e+iσ(Y,Z) f(Z)
(
W (Y )ϕ

)
(x)

=
1

(2π)2d

∫
Rd

dy
∫
Rd

dη
∫
Rd

dz
∫
Rd

dζ e+i(η·z−y·ζ) f(z, ζ)·

· e−iη·(x+ ε
2y) ϕ

(
x+ εy

)
=

ε−d

(2π)2d

∫
Rd

dy
∫
Rd

dη
∫
Rd

dz
∫
Rd

dζ e+iη·(z−
1
2 (x+y))e−

i
ε (y−x)·ζ f(z, ζ)ϕ(y)

If we integrate over η, we get a δ that can be used to kill the integral with respect to z.(
Op(f)ϕ

)
(x) =

ε−d

(2π)2d

∫
Rd

dy
∫
Rd

dz
∫
Rd

dζ (2π)dδ
(
z − 1

2 (x+ y)
)
e−

i
ε (y−x)·ζ ·

· f(z, ζ)ϕ(y)

=
1

(2πε)d

∫
Rd

dy
∫
Rd

dζ e−
i
ε (y−x)·ζ f

(
1
2 (x+ y), ζ

)
ϕ(y)

Identifying the integral with respect to ζ as partial Fourier transform, we get the second
line of equation (6.1.1). A variable substitution y′ := εy yields the first line. □

Example Although we cannot justify this example rigorously yet, we will only do a
quick sanity check whether the quantization of h(x, ξ) = 1

2mξ
2 + V (x) gives the ex-

pected result. By linearity, we can consider each of the terms in turn: we have already
computed the Fourier transform of 1

2mξ
2 in the distributional sense in Chapter ??, for

all ϕ ∈ S(Rd)(
Op
(

1
2mξ

2
)
ϕ
)
(x) =

1

(2π)d/2

∫
Rd

dy
1

2m

(
F(ε2η2)

)
(y − x)ϕ(y)

=
1

2m

1

(2π)d/2

∫
Rd

dy (2π)d/2(+i)2ε2∆yδ(y − x)ϕ(y)

= 1
2m

(
(+i)2ε2∆xδx, ϕ

)
= 1

2m (−i)2ε2∆xϕ(x) = − ε2

2m∆xϕ(x)

holds. We see that this calculation hinges on ϕ being a test function. The other term
can also be calculated usingFe+ix·η = (2π)dδx where δx(f) := f(x) is the shifted Dirac
distribution,(

Op(V )ϕ
)
(x) =

1

(2π)d/2

∫
Rd

dy (F 1)(y − x)V
(
1
2 (x+ y)

)
ϕ(y)

=
1

(2π)d/2

∫
Rd

dy (2π)d/2δ(y − x)V
(
1
2 (x+ y)

)
ϕ(y) = V (x)ϕ(x).
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6.1 Weyl calculus on S

Hence, the quantization of h yields

Op(h) = 1
2m (−iε∇x)

2 + V (x̂) = 1
2mP

2 + V (Qε),

exactly what we have expected. We see that it was crucial for this argument to work
that ϕ ∈ S(Rd) and we have to work to extend the integral formula to other ϕ ∈
L2(Rd)\S(Rd). If V is bounded, for instance, then Op(V ) = V (Qε) defines a bounded
operator and we can use Theorem 3.1.6 to extend it to all of L2(Rd). P 2, however,
is an unbounded operator and thus does not extend to a bounded operator on all of
L2(Rd)

In Proposition 6.1.6, we have introduced the notion of operator kernel: the operator
kernel is a function or distribution that tells us how the operator acts on wave functions.
It can be useful in calculating things, e. g. if one wants to compute a trace.
Every bounded operator and many unbounded ones have a distributional operator

kernel. In general, it is not a function, but only distribution on Rd ×Rd. The operator
kernel of −i∂xl

is +i(2π)d/2∂xl
δ(x− y) since for all ϕ ∈ S(Rd) ⊂ L2(Rd)

(−i∂xl
ϕ)(x) =

(
(+i)∂xl

δx, ϕ
)
=

1

(2π)d/2

∫
Rd

dy i(2π)d/2∂xl
δ(x− y)ϕ(y)

=
(
Int
(
+i(2π)

d/2∂xl
δ(x− y)

)
ϕ
)
(x)

holds. Similarly, the operator kernel associated to T = |ψ〉〈ϕ| = 〈ϕ, · 〉 ψ, ϕ,ψ ∈ S(Rd)
is

(Tφ)(x) = 〈ϕ, φ〉ψ(x) = 1

(2π)d/2

∫
Rd

dy (2π)d/2 〈ϕ, φ〉 δ(x− y)ψ(y)

=
1

(2π)d/2

∫
Rd

dy
∫
Rd

dz (2π)d/2 ϕ∗(z)φ(z) δ(x− y)ψ(y)

=
1

(2π)d/2

∫
Rd

dz
(
(2π)

d/2

∫
Rd

dy ϕ∗(z) δ(x− y)ψ(y)

)
φ(z)

=:
1

(2π)d/2

∫
Rd

dz KT (x, z)φ(z).

Hence, even this well-behaved operator has a distributional operator kernel! 2009.12.09
To get back to the properties of quantization procedures: Weyl quantization is linear,

i. e.

Op(f + αg) = Op(f) + αOp(g)
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holds for all f, g ∈ S(T ∗Rd) and α ∈ C. Furthermore, we can compute the quantization
of the constant function 1 to be(

Op(f)ϕ
)
(x) =

ε−d

(2π)d/2

∫
Rd

dy (F2 1)
(
1
2 (x+ y), y−xε

)
ϕ(y)

=
ε−d

(2π)d/2

∫
Rd

dy εd (2π)d/2 δ(y − x)ϕ(y)

= ϕ(x) =
(
idL2ϕ

)
(x).

In the tutorials, we will show that Weyl quantization intertwines complex conjugation
and taking adjoints,

Op(f∗) = Op(f)∗.

This fact has the important consequence that real-valued functions are potentially
mapped onto selfadjoint operators.

Theorem 6.1.7 Weyl quantization is linear, maps the constant function 1 to idL2 and in-
tertwines complex conjugation with taking adjoints in the sense of operators, i. e.Op(f∗) =
Op(f)∗ holds for all f ∈ S(T ∗Rd).

6.1.2.1 TheWeyl product

The Weyl product ] emulates the operator product on the level of functions on phase
space, i. e. it satisfies

Op
(
f]g
)
= Op(f)Op(g)

for suitable f, g : T ∗Rd −→ C. It can be derived from the composition law of the Weyl
system (Proposition 6.1.4).

Theorem 6.1.8 For f, g ∈ S(T ∗Rd), the distribution f]g which satisfies Op
(
f]g
)
=

Op(f)Op(g) is a Schwartz function given by

(f]g)(X) =
1

(2π)2d

∫
T∗Rd

dY
∫
T∗Rd

dZ e+iσ(X,Y+Z) e+i
ε
2σ(Y,Z) (Fσf)(Y ) (Fσg)(Z)

(6.1.2)

=
1

(πε)2d

∫
T∗Rd

dY
∫
T∗Rd

dZ e−i
2
εσ(X−Y,X−Z) f(Y ) g(Z).

Before we can prove this statement, we need an auxiliary result: take two operators T
and S whose operator kernelsKT andKS are in S(Rd×Rd). Then the operator kernel
of TS is given by

(KT �KS)(x, y) :=
1

(2π)d/2

∫
Rd

dz KT (x, z)KS(z, y).
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Lemma 6.1.9 For anyKT ,KS ∈ S(Rd×Rd), the productKT �KS is also in S(Rd×Rd),
i. e. � : S(Rd × Rd)× S(Rd × Rd) −→ S(Rd × Rd).

Proof Weneed to estimate the seminorms ofKT �KS: let a, α, b, β ∈ Nd0 bemultiindices
and for simplicity define Φ : (x, y, z) 7→ (2π)−d/2KT (x, z)KS(z, y). Then Φ ∈ S(Rd ×
Rd × Rd) is a Schwartz function in all three variables. First, we need to show we
can exchange differentiation with respect to x and y and integration with respect to z,
i. e. that for fixed x and y

xayb∂αx ∂
β
y (KT �KS)(x, y) = xayb∂αx ∂

β
y

1

(2π)d/2

∫
Rd

dz KT (x, z)KS(z, y)

=
1

(2π)d/2

∫
Rd

dz xayb∂αx ∂
β
y

(
KT (x, z)KS(z, y)

)
=

∫
Rd

dz xayb∂αx ∂
β
yΦ(x, y, z)

(6.1.3)

holds. We will do this by estimating
∣∣xayb∂αx ∂βyΦ(x, y, z)∣∣ uniformly in x and y by an

integrable function G(z) and then invoking Dominated Convergence. For fixed x and
y, we estimate the L1 norm of xayb∂αx ∂βyΦ(x, y, ·) from above by a finite number of
seminorms of Φ(x, y, ·) with the help of Lemma ??,∫

Rd

dz
∣∣xayb∂αx ∂βyΦ(x, y, z)∣∣ = ∥∥xayb∂αx ∂βyΦ(x, y, ·)∥∥L1(Rd)

≤ C1 sup
z∈Rd

∣∣xayb∂αx ∂βyΦ(x, y, z)∣∣+ C2 max
|c|=2n

sup
z∈Rd

∣∣xayb∂αx ∂βyΦ(x, y, z)∣∣
= C1

∥∥xayb∂αx ∂βyΦ(x, y, ·)∥∥00 + C2 max
|c|=2n

∥∥xayb∂αx ∂βyΦ(x, y, ·)∥∥c0.
Now we interchange sup and integration with respect to z,

sup
x,y∈Rd

∫
Rd

dz
∣∣xayb∂αx ∂βyΦ(x, y, z)∣∣ ≤ ∫

Rd

dz sup
x,y∈Rd

∣∣xayb∂αx ∂βyΦ(x, y, z)∣∣
=
∥∥∥ sup
x,y∈Rd

∣∣xayb∂αx ∂βyΦ(x, y, ·)∣∣∥∥∥
L1(Rd)

,

which can be estimated from above by∥∥∥ sup
x,y∈Rd

∣∣xayb∂αx ∂βyΦ(x, y, ·)∣∣∥∥∥
L1(Rd)

≤ C1 sup
x,y∈Rd

sup
z∈Rd

∣∣xayb∂αx ∂βyΦ(x, y, z)∣∣+
+ C2 max

|c|=2n
sup

x,y∈Rd

sup
z∈Rd

∣∣xayb∂αx ∂βyΦ(x, y, z)∣∣
= C1

∥∥Φ∥∥
aαbβ00

+ C2 max
|c|=2n

∥∥Φ∥∥
aαbβc0

<∞.
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6 Pseudodifferential operators and Weyl calculus

Here
{
‖·‖aαbβcγ

}
a,α,b,β,c,γ∈Nd

0
is the family of seminorms associated to S(Rd×Rd×Rd)

which are defined by

‖Φ‖aαbβcγ := sup
x,y,z∈Rd

∣∣xaybzc∂αx ∂βx∂γxΦ(x, y, z)∣∣.
This means we have found an integrable function

G(z) := sup
x,y∈Rd

∣∣xayb∂αx ∂βyΦ(x, y, z)∣∣
which dominates xayb∂αx ∂βyΦ(x, y, z) for all x, y ∈ Rd. Hence, exchanging differen-
tiation and integration in equation (6.1.3) is possible and we can bound the ‖·‖aαbβ
seminorm on S(Rd × Rd) by∥∥KT �KS

∥∥
aαbβ

= sup
x,y∈Rd

∣∣xayb∂αx ∂βy (KT �KS)(x, y)
∣∣

≤ C1

∥∥Φ∥∥
aαbβ00

+ C2 max
|c|=2n

∥∥Φ∥∥
aαbβc0

<∞.

This means KT �KS ∈ S(Rd × Rd). □

Proof (Theorem 6.1.8) Using the definition of Op, we get

Op(f)Op(g) =
1

(2π)2d

∫
T∗Rd

dY
∫
T∗Rd

dZ (Fσf)(Y ) (Fσg)(Z)W (Y )W (Z)

=
1

(2π)2d

∫
T∗Rd

dY
∫
T∗Rd

dZ (Fσf)(Y ) (Fσg)(Z) e+i
ε
2σ(Y,Z)W (Y + Z)

=
1

(2π)d

∫
T∗Rd

dZ
(

1

(2π)d

∫
T∗Rd

dY e+i
ε
2σ(Y,Z−Y ) (Fσf)(Y ) (Fσg)(Z − Y )

)
W (Z).

We recognize the inner integral as
(
Fσ(f]g)

)
(Z) and thus we add a Fourier transform

to obtain the first of the two equivalent forms of the product formula:

(f]g)(X) = Fσ
(

1

(2π)d

∫
T∗Rd

dY e+i
ε
2σ(Y, · −Y ) (Fσf)(Y ) (Fσg)( · − Y )

)
(X)

=
1

(2π)2d

∫
T∗Rd

dZ
∫
T∗Rd

dY e+iσ(X,Z) e+i
ε
2σ(Y,Z−Y ) (Fσf)(Y ) (Fσg)(Z − Y )

=
1

(2π)2d

∫
T∗Rd

dY
∫
T∗Rd

dZ e+iσ(X,Y+Z) e+i
ε
2σ(Y,Z) (Fσf)(Y ) (Fσg)(Z).

It remains to show that f]g is a Schwartz function: from Remark ??, we know that
the Weyl kernels Kf and Kg of f and g are in S(Rd × Rd). Hence, we can write the
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6.1 Weyl calculus on S

operator product of Op(f) and Op(g) in terms of the associated integral kernels,(
Op(f)Op(g)ϕ

)
(x) =

1

(2π)d/2

∫
Rd

dy
∫
Rd

dz
1

(2π)d/2
Kf (x, z)Kg(z, y)ϕ(y)

=
1

(2π)d/2

∫
Rd

dy (Kf �Kg)(x, y)ϕ(y)
!
= Op

(
f]g
)
.

By Lemma 6.1.9, Kf � Kg ∈ S(Rd × Rd). We use the inverse of Weyl quantization,
Proposition ??, to conclude

f]g = Op−1
(
Op(f)Op(g)

)
= εdW(Kf �Kg) ∈ S(T ∗Rd)

asW maps S(Rd × Rd) bijectively onto S(T ∗Rd).
To show that the first form of the Weyl product, equation (6.1.2), is equivalent to

the second, we have to write out all Fourier tranforms and collect the exponentials
properly to obtain

(f]g)(X) =
1

(2π)4d

∫
T∗Rd

dY
∫
T∗Rd

dY ′
∫
T∗Rd

dZ
∫
T∗Rd

dZ ′ e+iσ(X,Y+Z)e+i
ε
2σ(Y,Z)e+iσ(Y,Y

′)e+iσ(Z,Z
′)·

· f(Y ′) g(Z ′)

=
1

(2π)4d

∫
T∗Rd

dY
∫
T∗Rd

dY ′
∫
T∗Rd

dZ
∫
T∗Rd

dZ ′ e+iσ(Y,Y
′−X)e+iσ(Z,Z

′−X− ε
2Y ) f(Y ′) g(Z ′)

=
(2π)2d

(2π)4d

∫
T∗Rd

dY
∫
T∗Rd

dY ′
∫
T∗Rd

dZ ′ e+iσ(Y,Y
′−X) δ

(
Z ′ −X − ε

2Y
)
f(Y ′) g(Z ′)

=
1

(2π)2d

∫
T∗Rd

dY
∫
T∗Rd

dY ′ e+iσ(Y,Y
′−X) f(Y ′) g

(
X + ε

2Y
)
.

Making one last change of variables, Z̃ := X+ ε
2Y , we get the second form of the Weyl

product,

(f]g)(X) =
1

(2π)2d
22d

ε2d

∫
T∗Rd

dZ̃
∫
T∗Rd

dY ′ e+iσ(
2
ε (Z̃−X),Y ′−X) f(Y ′) g(Z̃)

=
1

(πε)2d

∫
T∗Rd

dY
∫
T∗Rd

dZ e−i
2
εσ(X−Y,X−Z) f(Y ) g(Z).

This concludes the proof. □

Example Let us compute x]ξ which we thenWeyl quantize using problem 23 (i). Since
neither x nor ξ are Schwartz functions, we will dispense with mathematical rigor for
now: in the distributional sense, we see from

(ξl]xl)(x, ξ) =
1

(2π)2d

∫
T∗Rd

dY
∫
T∗Rd

dZ e+iσ(X,Y+Z)e+i
ε
2σ(Y,Z) (Fση′l)(Y ) (Fσz′l)(Z)
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6 Pseudodifferential operators and Weyl calculus

that we need to compute the symplectic Fourier transforms of the factors. As distribu-
tions, their Fourier transforms exist and for the first, we get

(Fση′l)(Y ) =
1

(2π)d

∫
T∗Rd

dY ′ e+iσ(Y,Y
′) η′l =

1

(2π)d

∫
Rd

dy′
∫
Rd

dη′ η′le
+i(η·y′−y·η′)

=
1

(2π)d

∫
Rd

dy′
∫
Rd

dη′ (+i)∂yle
+i(η·y′−y·η′) = i (2π)d ∂ylδ(Y ).

Similarly, we calculate the second Fourier transform to be (Fσz′l)(Z) = −i (2π)d ∂ζlδ(Z).
Plugged into the product formula, we obtain

(ξl]xl)(x, ξ) =
1

(2π)2d

∫
T∗Rd

dY
∫
T∗Rd

dZ e+iσ(X,Y+Z)e+i
ε
2σ(Y,Z) (−i2) (2π)2d ∂ylδ(Y ) ∂ζlδ(Z)

= −
∫
T∗Rd

dY
∫
T∗Rd

dZ ∂yl
(
e+iσ(X,Y+Z)e+i

ε
2σ(Y,Z)

)
δ(Y ) ∂ζlδ(Z)

= +

∫
T∗Rd

dY
∫
T∗Rd

dZ ∂ζl
((
iξl − i ε2ζl

)
e+iσ(X,Y+Z)e+i

ε
2σ(Y,Z)

)
δ(Y ) δ(Z)

=

∫
T∗Rd

dY
∫
T∗Rd

dZ
(
(−i2)

(
ξl − ε

2ζl
)(
xl +

ε
2yl
)
− i ε2

)
e+iσ(X,Y+Z)e+i

ε
2σ(Y,Z)·

· δ(Y ) δ(Z)

=
(
ξl − ε

20
)(
xl +

ε
20
)
− ε i2 = xl ξl − ε i2 .

By problem 23 (i) and Op(1) = idL2 , we can compute the Weyl quantization of this
function explicitly,

Op
(
ξ]x
)
= Op(x · ξ)− ε d i2 idL2

= Qε · P − ε d i2 idL2 − ε d i2 idL2

= Qε · P − ε di idL2 = P ·Qε.

This is exactly what we have expected.2009.12.22

The Weyl product has the following useful properties which can be easily proven:

Proposition 6.1.10 (Properties of Weyl product) Let f, g, h ∈ S(T ∗Rd) and α ∈ C.
Then the Weyl product has the following properties:

(i) The Weyl product is bilinear, i. e.
(
f + αg

)
]h = f]h + α

(
g]h
)
and f]

(
g + αh

)
=

f]g + α
(
f]h
)
hold.

(ii) The Weyl product is associative, i. e.
(
f]g
)
]h = f]

(
g]h
)
.

(iii) If f ≡ f(x) and g ≡ g(x) are functions of position, then the Weyl product reduces to
the pointwise product, f]g = f g.
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6.2 Extending Weyl calculus by duality

(iv) If f ≡ f(ξ) and g ≡ g(ξ) are functions of momentum, then the Weyl product reduces
to the pointwise product, f]g = f g.

The proofs are left as an exercise.

6.2 ExtendingWeyl calculus by duality

6.3 Studying the Weyl product with oscillatory integral
techniques

• ] : Sm1

ρ,δ × Sm2

ρ,δ −→ Sm1+m2

ρ,δ

• Asymptotic expansion

6.3.1 TheWeyl product of two Hörmander symbols

6.3.2 Asymptotic expansion

The most important reason why physicists should care about Weyl calculus is that there
is an asymptotic expansion of the product, i. e. we can write

f]g �
∞∑
n=0

εn(f]g)(n)

where all the terms (f]g)(n) are known explicitly. In general, this expansion does not
converge to any function, but instead for any N ∈ N, we can write

f]g =

N∑
n=0

εn(f]g)(n) + εN+1RN =

N∑
n=0

εn(f]g)(n) +O(εN+1).

As ε → 0, the remainder converges to 0 at least as fast as εN+1. Expansions that do
not converge are the rule rather than the exception, e. g. when one sums up Feynman
diagrams of different processes, they are often sorted by powers of some small coupling
constant, α ' 1/137, for instance. One has no reason to believe that summing over all
terms, one gets something finite! This is where optimal truncation comes into play:
instead of summing all terms, one stops at some N(ε) where the error is minimal.
Before we state the main theorem of this section, we will introduce the Landau symbols
(“little and big O notation”).
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6 Pseudodifferential operators and Weyl calculus

Definition 6.3.1 (Landau symbols) Let f, g : Rd −→ C. We say f(x) = O
(
g(x)

)
as

x→ x0 if and only if

lim sup
x→x0

|f(x)|
|g(x)|

<∞

or quivalently if there existM ≥ 0 and δ > 0 such that |f(x)| ≤M |g(x)| for all |x− x0| <
δ.
We say f(x) = o

(
g(x)

)
as x→ x0 if and only if

lim
x→x0

f(x)

g(x)
= 0.

Example We have x2 = O(x) and x = O(x) as x → 0. However x 6= o(x), but
x2 = o(x) as x→ 0 since

lim
x→0

x2

x
= lim
x→0

x = 0.

Let us now formulate the main theorem of this section:

Theorem 6.3.2 Let f, g ∈ S(T ∗Rd) and ε < 1. Then the Weyl product can be expanded
asymptotically in ε, i. e. for any N ∈ N0 we have

f]g =

N∑
n=0

εn(f]g)(n) + εN+1RN =

N∑
n=0

εn(f]g)(n) +O(εN+1). (6.3.1)

All the terms of the expansion are Schwartz functions, (f]g)(n) ∈ S(T ∗Rd) for all n ∈ N0,
and are known explicitly,

(f]g)(n)(X) =
1

n!

in

2n
(
∇y · ∇ζ −∇η · ∇z

)n
f(Y ) g(Z)

∣∣∣
Y=X=Z

. (6.3.2)

The remainder RN ∈ S(T ∗Rd) as given by equation (6.3.4) is also a rapidly decreasing
function. The first two terms are given by

f]g = f g − ε i2
{
f, g
}
+O(ε2) (6.3.3)

where
{
f, g
}
=
∑d
j=1

(
∂ξjf ∂xj

g − ∂xj
f ∂ξjg

)
is the Poisson bracket.

Proof Step 1: Expanding the twister. Let N ∈ N0 be arbitrary, but fixed. Then we
can expand the twisting factor in they Weyl product,

ei
ε
2σ(Y,Z) =

N∑
n=0

εn
1

n!

in

2n
(
σ(Y, Z)

)n
+ R̃N (Y, Z),
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6.3 Studying the Weyl product with oscillatory integral techniques

where

R̃N (Y, Z) =
1

N !

(
i ε2σ(Y, Z)

)N+1
∫ 1

0

ds (1− s)N e+is
ε
2σ(Y,Z)

= εN+1 1

N !

iN+1

2N+1

(
σ(Y, Z)

)N+1
∫ 1

0

ds (1− s)N e+is
ε
2σ(Y,Z).

is the remainder of the Taylor expansion. If we plug this into the product formula,

(f]g)(X) =
1

(2π)2d

∫
T∗Rd

dY
∫
T∗Rd

dZ e+iσ(X,Y+Z)
(∑N

n=0ε
n 1
n!
in

2n

(
σ(Y, Z)

)n
+ R̃N (Y, Z)

)
·

· (Fσf)(Y ) (Fσg)(Z)

=:

N∑
n=0

εn(f]g)(n)(X) + εN+1RN (X), (6.3.4)

we can define the nth order terms and the remainder.

Step 2: Treating (f]g)(n). First of all, we note that

(
σ(Y, Z)

)n
=
(
η · z − y · ζ

)n
=

∑
|a|+|b|=n

(−1)|b|

a!b!
ηaybzaζb

is just a polynomial in y, η, z and ζ. Since f ∈ S(T ∗Rd), by Theorem ??

ybηa(Fσf) = Fσ
(
(−i∂η′)b(+i∂y′)af

)
∈ S(T ∗Rd)

holds for all multiindices a, b ∈ Nd0 and similarly for g. This means, the integral expres-
sion for (f]g)(n) exists for all X ∈ T ∗Rd and reduces to

(f]g)(n)(X) =
1

n!

in

2n

∑
|a|+|b|=n

(−1)|b|

a!b!

1

(2π)2d

∫
T∗Rd

dY
∫
T∗Rd

dZ e+iσ(X,Y+Z)·

· ηayb(Fσf)(Y ) zaζb(Fσg)(Z)

=
1

n!

in

2n

∑
|a|+|b|=n

(−1)|b|

a!b!

1

(2π)2d

∫
T∗Rd

dY
∫
T∗Rd

dZ e+iσ(X,Y+Z)·

·
(
Fσ
(
(−i∂η′)b(+i∂y′)af

))
(Y )
(
Fσ
(
(−i∂ζ′)a(+i∂z′)bg

))
(Z).

The remaining integral is nothing but the symplectic Fourier transform in Y and Z.
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6 Pseudodifferential operators and Weyl calculus

The symplectic Fourier transform is its own inverse, hence we get expression (6.3.2),

. . . =
1

n!

in

2n

∑
|a|+|b|=n

(−1)|b|

a!b!

(
F2
σ

(
(−i∂η′)b(+i∂y′)af

))
(X)

(
F2
σ

(
(−i∂ζ′)a(+i∂z′)bg

))
(X)

=
1

n!

in

2n

∑
|a|+|b|=n

(−1)|b|

a!b!

(
(−i∂ξ)b(+i∂x)af

)
(X)

(
(−i∂ξ)a(+i∂x)bg

)
(X)

=
1

n!

in

2n
(
∇y · ∇ζ −∇η · ∇z

)n
f(Y ) g(Z)

∣∣∣
Y=X=Z

.

Since each of the factors consists of derivatives of Schwartz functions, (f]g)(n) ∈
S(T ∗Rd) is also a Schwartz function.

Step 3: Treating the remainder RN . If we combine Theorem 6.1.8, f]g ∈ S(T ∗Rd)
with Step 2, (f]g)(n) ∈ S(T ∗Rd), we conclude that the remainder is also a Schwartz
function,

RN = f]g −
N∑
n=0

εn(f]g)(n) ∈ S(T ∗Rd).

From the explicit expression for the remainder, equation (6.3.4), we also see that it is
indeed of order O(εN+1). This concludes the proof. □

Example In the previous section, we have calculated ξ]x. If we use the asymptotic
expansion – which in this case is exact, we can obtain this result with much less work.
Pluggin in equation (6.3.3), we get

(
ξ]x
)
(x, ξ) = ξ · x− ε

i

2

d∑
l=1

{
ξl, xl

}
+O(ε2)

= x · ξ − ε
i

2

d∑
l,j=1

(
∂ξjξl ∂xjxl − ∂xjξl ∂ξjxl

)
+O(ε2)

= x · ξ − ε
i

2

d∑
l,j=1

δlj +O(ε2) = x · ξ − ε d i2 +O(ε2).

The remainder, however, is exactly 0: the factor
(
σ(Y, Z)

)2 is a polynomial of second
order in y · ζ and η · z and leads to two derivatives with respect to position and mo-
mentum. But x and ξ are linear so their second and higher-order derivatives vanish
identically. Hence, we have shown

ξ]x = ξ · x− ε d i2 .
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Generally, if one of the factors is a polynomial of kth degree, the asymptotic expansion
terminates after finitely many terms and is exact.

In Chapter ??, we have emphasized the importance that the the Moyal commutator[
f, g
]
♯
:= f]g − g]f

vanishes as ε→ 0. Using equation (6.3.3), we immediately get[
f, g
]
♯
= −iε

{
f, g
}
+O(ε3).

The error is of third order as all contributions from even powers vanish. This can be
traced back to(

σ(Y, Z)
)2k

=
(
−σ(Z, Y )

)2k
=
(
σ(Z, Y )

)2k ∀k ∈ N0

and the commutativity of multiplication in C. We mention the latter explicitly as we
will quantize matrix-valued functions in the next section. There, it is not at all clear
that even the 0th order vanishes.

• 2 lectures max

• Keep it short and sweet

109



6 Pseudodifferential operators and Weyl calculus

110



7Chapter 7

The Stationary Phase Method:
Oscillatory Integrals of Another
Kind

• Asymptotic formulas for oscillatory integrals ⇝ evaluation of oscillatory, high-
dimensional integrals (which are way too difficult to do numerically)

• Reference: non-linear Maxwell equations (Babin & Figotin?!)

• Stein, Chapter VIII

• Taylor expand phase⇝ which order is the first non-degenerate order?

• Outline applications

There is another type of integral that is commonly referred to as an oscillatory integral,
namely those of the form

I(ε) :=

∫
dx e

i
εϑ(x) ψ(x) '

∑
k

εn(k) ak

where ε � 1 is small, but non-zero. Unlike the oscillatory integrals we have gotten to
know in Chapter 5, the function ψ can be integrable. Although it is certainly possible
to combine the ideas from Chapter 5 with those developed now.
Add example from non-linear condensed matter physics/non-linear electroma-

tism
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7 The Stationary Phase Method: Oscillatory Integrals of Another Kind

7.1 Extracting the essential features from a simple
one-dimensional example

To avoid having to deal with unnecessary technical complications, suppose we are in
one dimension and want to integrate over some compact interval [a, b]. Both, the phase
ϑ ∈ C∞([a, b]) and the function ψ ∈ C∞([a, b]) are smooth, which automatically makes
the latter and all of its derivatives integrable. Moreover, we suppose that the support

suppψ :=
{
x ∈ [a, b] | ψ(x) 6= 0

}
⊊ (a, b)

is a proper subset of (a, b), which frees us from having to deal with boundary terms.
As in the case of oscillatory integrals from Chapter 5, the idea is that we will only

get appreciable contributions to the integral in regions where ϑ(x) ≈ 0, everything
else will average out to 0. More precisely, we in addition need to require that ϑ has no
critical points. Indeed, this is correct in our simple setting.

Proposition 7.1.1 Let ϑ, ψ ∈ C∞([a, b]) be smooth functions on a compact interval, and
assume that suppψ ⊊ (a, b) is contained in the interior of the interval. Then if ϑ′(x) 6= 0

for all x ∈ [a, b], the oscillatory integral

I(ε) =

∫ b

a

dx e
i
εϑ(x) ψ(x) = O(ε∞)

vanishes to infinite order. That is, for each k ∈ N we have I(ε) = O(εk).

Proof The proof uses the L operator

L = −ε i
ϑ′(x)

∂x

for the phase e+ i
εϑ(x) = Le+ i

εϑ(x). Clearly, the existence of the L operator hinges on
our assumption that the phase ϑ′(x) 6= 0 vanishes nowhere in the interval.
Given that suppψ is contained in the interior of the interval, ψ and all its deriva-

tives vanishe at the boundary. Therefore, the boundary terms after repeated partial
integration are all zero, and we conclude that the integral is O(εk),

I(ε) =

∫ b

a

dxLke
i
εϑ(x) ψ(x)

=

∫ b

a

dx e
i
εϑ(x) (L′)kψ(x)

= O(εk).
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7.1 Extracting the essential features from a simple one-dimensional example

That is because each application of the transpose operator

(L′ψ)(x) = ε
∂

∂x

(
iψ(x)
ϑ′(x)

)
= O(ε)

adds a factor of ε. Note that by assumption ϑ′(x) 6= 0 is bounded away from 0 and
therefore ψ/ϑ′ ∈ C∞([a, b]) is again a smooth function.
As k ∈ N can be chosen arbitrarily large, this proves I(ε) = O(ε∞). □

This proof illustrates that even though this notion of oscillatory integral is different
from that in Chapter 5, some of the methods are very similar.
Let us proceed in our discussion. Suppose ϑ′ has a single isolated point x0 ∈ (a, b)

where ϑ′(x0) = 0; this is a critical or stationary point — hence the name, stationary
phase method. Then we can find a smooth resolution of the identity

1 = χ(x) +
(
1− χ(x)

)
,

which wewill use to isolate the contribution by the stationary point. More precisely, the
function χ : [a, b] −→ [0, 1] is smooth, its support is a neighborhood of x0 and χ(x) = 1

in some smaller neighborhood of x0, say, a small open interval (x0 −µ, x0 +µ) around
x0.
Inserting the resolution of the identity into the integral gives us two integrals,

I(ε) =

∫ b

a

dx e+iϑ(x) χ(x)ψ(x) +
∫ b

a

dx e+iϑ(x)
(
1− χ(x)

)
ψ(x)

=

∫ b

a

dx e+iϑ(x) χ(x)ψ(x) +O(ε∞)

one of which satisfies the assumptions of Proposition 7.1.1. Consequently, the integral
away from x0 can be neglected and only the region near the critical point matters.
Clearly, we can generalize this argument to deal with finitely many stationary points.
Note that χ(x) = 1 in a neighborhood of the stationary point, so derivatives ∂nxχ(x) =

0 on (x0 − µ, x0 + µ) all vanish and only the behavior of the function ψ will matter —
up to O(ε∞), of course. And the question becomes: what is the contribution by the
stationary point x0. Seeing as the phase ϑ is a smooth function, we may Taylor expand
it around the point x0 to any order n,

ϑ(x) =

n∑
k=0

1

n!
∂kxϑ(x0) (x− x0)

k +Rn(x).

The stationarity assumption ϑ(x0) = 0 means that the first term has to vanish. More-
over, Proposition 7.1.1 shows us that as long as ϑ′(x0) 6= 0 (along with it being non-zero
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7 The Stationary Phase Method: Oscillatory Integrals of Another Kind

everywhere else), the oscillatory integral vanishes to any order. In the context of the
example of the introduction, the first condition is the frequency matching condition,
the second one the group velocity matching condition.
So the first potentially non-zero term is quadratic,

ϑ(x) = 1
2∂

2
xϑ(x0) (x− x0)

2 +O
(
(x− x0)

3
)
,

although it could be even higher-order.
The intuition tells us that the higher the order of the first non-zero term, the stronger

the contribution will be. That is because ϑ(x) ≈ 0 will remain small for longer near x0.
Indeed, this is correct.
Let us assume that ϑ only vanishes to finite order at x0, i. e. there exists k so that

∂kxϑ(x0) 6= 0.
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8Chapter 8

Syllabus

Outline

(1) Introduction

• PDEs⇝ differential operators (e. g. H = −∆x + V (x))

• Generalization: simple case
√
m2 −∆z via Fourier transform

• More general operators: pseudodifferential operators

• Give formula

• Question: how to interpret this formula? ⇝
∫
not absolutely convergent

• Notion of oscillatory integral: fast oscillation of integrand⇒
∫
≈ 0

• Give strategy for simple example (phase = e−iξ·x): L operators

=⇒ Make sense of Ff when f ∈ C∞
u,pol(R

d), but not in L1(Rd)

• Extract math problems: S, S ′, Lp-spaces, symbol spaces

(2) Ordinary integrals

• contrast and compare with oscillatory integrals

• L1(Rd)

• Lp(Rd)⇝ Banach spaces
• L2(Rd)⇝ Hilbert spaces
• Dominated and Monotone Convergence

• Fourier transform

• Riemann-Lebesgue Lemma
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8 Syllabus

• Be quick!

(3) Oscillatory integrals

• Schwartz functions

• Tempered distributions

• Rigorous definition of oscillatory integrals

• Frechét topology

(4) Primer on operator theory

• Bounded operators

• Continuous operators (in case we consider Frechét topologies)

• Zoology of bounded operators

• Unbounded operators

• Be quick!

(5) Pseudodifferential operators

• Definition of Op

• Extension to Hörmander classes

• Follow Mantoiu & Purice

• Define product

• Define Wigner transform
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