
24-681: Computer-Aided Design
Spring 2013

Constructive Solid Geometry Using BSP Tree
Christian Segura1, Taylor Stine2, Jackie Yang3

Abstract
Constructive solid geometry (CSG) is a pivotal component of CAD and CAE packages. CSG allows us to represent complex
shapes and models as a series of Boolean operations between primitives. For example, punching a hole through a cube
would be difficult to represent with an implict or explicit funciton. The CSG algorithm we have developed allows something
like this to be represented as a simple Boolean operation between a cube and cyllinder. Here we present an implementation
of CSG using an efficient spatial datastructure called a binary space partitioning tree (BSP tree). These BSP trees allow us
to perform Boolean operations on complex models in a matter of milliseconds. In this paper, we validate our concept and
implementation by performing Boolean operations on a series of intracate models. The results show our algorithm is efficient
and accurate.

Keywords
Computer-aided design(CAD) — Constructive solid geometry(CSG) — Binary space partitioning(BSP)

1csegurar@andrew.cmu.edu
2tstine@andrew.cmu.edu
3jackiey@andrew.cmu.edu
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, United States

Contents

1 Problem Summery 1

2 Algorithm 2
2.1 Create BSP tree . 2
2.2 Merge two trees . 4

3 Results & Discussion 6

4 Future Work 6

References 7

1. Problem Summery

Constructive Solid Geometry is a solid modeling technique
that allows a user to create a complex surfaces or volumes by
using Boolean operators. In doing so the user can combine
different geometry as they seem fit to generate a result.

Multiple techniques exist in CAD packages and graphics
applications which allow the creation of geometric models.
CAD packages and computer graphics applications tackle
different geometry problems with different approaches. For
instance, voxel modeling can be used to represent three di-
mensional information, while boundary representation can
be used for mesh generation. However, the best technique to
create geometries from existing geometries is CSG.

CSG offer many advantages over other computational ge-
ometry methods. The main one is that it allows the user to
perform basic operations on simple models that result in com-
plex yet accurate geometric objects. For instance creating a
single layer of a gyrocube, would be prove to be quite com-
plex with other methods. With CSG, we can easily find the

intersection of a cube and sphere, the union of three differ-
ently oriented cylinders, and then finally subtract the cylinders’
composite model from the first one to build a 3D single layer
of a gyrocube. Figure 1 shows the process described above.
CSG also allows efficient detection of various geometric char-
acteristics within 3D models, such collision detection and
water tightness. Collision Detection (Figure 2) can very often
be a computationally expensive process. Using CSG reduces
the collision detection computational cost by instead spend-
ing those resources up front in creating a more efficient data
structure which yields faster results when testing for intersec-
tions/collisions between models. Furthermore, some model
characteristics can be inherited from base geometries after
Boolean operations. One can easily check if a model is water
tight by checking if the components used to create it are also
water-tight. This prove to be very helpful when characterizing
certain geometric information which is not immediately obvi-
ous or is computationally expensive to calculate on a newly
created model. Another important use for CSG is efficiently
determining the visibility of models relative to each other
with a changing viewpoint. This offers graphics processors a
powerful and efficient method to render front objects without
the occlusion of the back ones. The binary space partition-
ing used for CSG Boolean operations facilitates this function
(Figure 3).

CSG can be used for multiple applications, but must re-
main watchful of its pitfalls. CSG can be implemented in
various manners, but the programmers must ensure that com-
putational costs don’t exceed the processing power or allo-
cated loading time. The smarter method encourages data
restructuring inside a BSP tree, which ensures the compu-
tational cost is paid for up front instead of doing so when

Constructive Solid Geometry Using BSP Tree — 2/7

Figure 1. Example of CSG tree [6]

Figure 2. Collision detection [7]

performing each of the different Boolean operations.

2. Algorithm

One of the key problems in computer aided design and graph-
ics is determining what objects are visible relative to one
another, with a constantly changing viewpoint (Figure 4).
Furthermore, the problem of surface to surface interference
is difficult to classify for models with a complex geometry.
When a scene or rendering consists of several models, this
problem becomes even more difficult.

In order to resolve these issues, graphics software engi-
neers utilize a spatial data structure known as a binary space
partitioning tree (a.k.a. BSP tree). The BSP tree represents a
way to recursively divide a scene along two sides of a plane,
until some partitioning criterion is met. There are many simi-
lar data structures known to computer graphics, (octrees, k-d
tree, bounding box hierarchy etc.) but BSP trees provide us
with the most flexibility in partitioning our scene. That flexi-
bility results from our ability to orient the partitioning plane
in any direction, without being constrained by orthogonality
as in octrees or k-d trees.

2.1 Create BSP tree
The construction of a BSP tree is simple to visualize. Image
a scene consisting of three triangles. The key properties of
the implicit planes these triangles define in 3D space is that
for all points on one side of the plane p+ we can easily create
a function f1(p+) > 0. Similarly for all points on the other

Figure 3. Render objects using BSP tree

Figure 4. Concept of CSG in 3D

side of the plane, f1(p−)< 0. Using this property of implicit
planes we can define on which side of the plane a triangle
(consisting of three points) lies. Initially, let us assume that all
of the triangles in our scene are either on one side of our parti-
tioning plane defined by our triangle (Figure 5, Figure 6). We
can pick one of the triangles and partition the other triangles
about it with pseudo code in Algorithm 1.

This example can be generalized to many object, again
assuming the simple case where none of our polygons span our
dividing plane. In this example, f1(p) is the implicit function
of a plane created by triangles with counter clockwise vertices
a, b, and c:

f1(p) = ((b−a)× (c−a)) · (p−a) = 0 (1)

However it can be faster to store the values of the implicit

Constructive Solid Geometry Using BSP Tree — 3/7

(a) Multi-plane in 3D space (b) BSP tree representation

Figure 5. BSP tree creation (without intersection)

(a) Multi-plane in 3D space (b) BSP tree representation

Figure 6. BSP tree creation (with intersection)

Algorithm 1 Triangle partition pseudo code

Require: partition = triangles[0]
1: for triangle = triangles[begin→ end] do
2: for p = points[in M] do
3: if f1 < 0 then
4: return in back of plane
5: else if f1 > 0 then
6: return in front of plane
7: end if
8: end for
9: end for

plane equation in the form:

Ax+By+Cz+D = 0 (2)

This is the same expression, and can be faster to solve
than equation (1). Here the constant D is equal to:

D =−n ·a (3)

Storing the equation in this form can reduce some com-
putation time associated with taking the cross product. Thus,
this naturally leads to the follow pseudo-code for BSP tree
construction shown in Algorithm 2.

Algorithm 2 BSP tree initial pseudo code

Require: tree.node = triangles[0]
1: for i = 2→ N do
2: tree.add(triangles[i])
3: end for
4: function ADD(triangle T)
5: if f (a)< 0 ∧ f (b)< 0 ∧ f (c)< 0 then
6: if back-subtree does not exist then
7: create back-subtree
8: back-subtree.node = T
9: else

10: front-subtree.add(T)
11: end if
12: else if f (a)> 0 ∧ f (b)> 0 ∧ f (c)> 0 then
13: if front-subtree does not exist then
14: create front-subtree
15: front-subtree.node = T
16: else
17: front-subtree.add(T)
18: end if
19: end if
20: end function

From our above constraints on building the tree (i.e. none
of the triangles span the tree) we have not yet defined how
to handle the case of when some functions of the vertices of
the triangle are positive, and others are negative. In this case,
the only thing we can do is split the triangle into three new
triangles (Figure 7).

Figure 7. Principle to split a triangle

Assuming that a and b are always on one side of the
triangle and c is on the other the new triangles will always be

Constructive Solid Geometry Using BSP Tree — 4/7

equal to:

T1 = (a,b,A)
T2 = (b,B,A)
T3 = (A,B,c)

(4)

It is clear from this representation that a special case will
emerge when the triangle is split perfectly down the middle.
Although rare, We will account for this by not splitting the
triangles if this occurs. Thus our final implementation of the
BSP tree creation is shown in Algorithm 3.

The last component of building our BSP tree is computing
A and B. Computing the A and B intersection points consist
of simply solving a ray-plane intersection equation:

p(t) = a+ t(c−a)
n · (a+ t(c−a))+D = 0

t =− n ·a+D
n · (c−a)

A = a+ t(c−a)

(5)

Our creation algorithm for a BSP tree is now complete.

2.2 Merge two trees
Because of their ability to divide a series of polygons by an
arbitrarily chosen plane, BSP trees offer the ideal data struc-
ture to perform Boolean operations on arbitrary pieces of
geometry. In order to perform these operations, we have de-
veloped an algorithm that ”merges” two BSP trees. Assuming
a simple case of just two models in a scene with which we
want to perform Boolean operations, the first thing we need
to do is create BSP trees for both of the geometries. These
trees are created independently for each geometry initally,
so we will only be testing polygons in one model for each
BSP tree creation. When we create these BSP trees, instead
of simply arbitrarily choosing planes to divide the polygons
by, we will choose to divide the polygons by the polygons
on the surface of the model. Thus these BSP trees allow us
to create an efficient structure to traverse the boundaries of
a complicated mesh. Now that we have two representations
of the boundaries of the models, we begin to merge them by
traversing one of the trees to obtain a list of polygons that
represent the surface boundary of one of the models. We use
this list of polygons because it contains new polygons created
by splitting the polygons of the model by the dividing planes
chosen when creating the tree. These could not be captured if
we just used the list of polygons provided with the model for
the next step in the merging algorithm. The traversal of the
BSP tree is quite simple as shown in Algorithm 4.

This will give us a list of polygons represented as a pre-
order traversal of the tree. Now that we have a list of polygons
from the tree that represents model A, we have to push these
polygons through the tree of model B so that we can see how
they will be classified according to B’s dividing polygons.
Algorithm 5 looks very similar to the add function listed
above. This algorithm assumes that we are working with
models made up of only triangles.

Algorithm 3 BSP tree final pseudo code

Require: f a = f (a), f b = f (b), f c = f (c)
1: function ADD(triangle T)
2: if | f a|< ε then
3: f a = 0
4: end if
5: if | f b|< ε then
6: f b = 0
7: end if
8: if | f a|< ε then
9: f b = 0

10: end if
11: if f a≤ 0 ∧ f b≤ 0 ∧ f c≤ 0 then
12: if back-subtree does not exist then
13: created back-subtree
14: back-subtree.node = T
15: else
16: back-subtree.add(T)
17: end if
18: else if f a≥ 0 ∧ f b≥ 0 ∧ f c≥ 0 then
19: if front-subtree does not exist then
20: create front-subtree
21: front-subtree.node = T
22: else
23: front-subtree.add(T)
24: end if
25: else
26: cut the triangle
27: end if
28: compute A
29: compute B
30: T1 = (a,b,A)
31: T2 = (b,B,A)
32: T3 = (A,B,c)
33: if f c≥ 0 then
34: back-subtree.add(T1)
35: back-subtree.add(T2)
36: front-subtree.add(T3)
37: else
38: front-subtree.add(T1)
39: front-subtree.add(T2)
40: back-subtree.add(T3)
41: end if
42: end function

Constructive Solid Geometry Using BSP Tree — 5/7

Algorithm 4 Traversal of the BSP tree

1: function TRAVERSE(tree)
2: if tree does not exist then
3: exit
4: end if
5: polygon-list.add(tree.polygon)
6: traverse(tree.back-subtree)
7: traverse(tree.front-subtree)
8: return polygon-list
9: end function

In Algorithm 5, instead of adding these triangles to the
tree, we are traversing the tree to see where they belong in the
BSP representation of the model. If we get to a point where
the triangle is classified as being behind the current dividing
plane and there are no there are no other dividing planes in
the back-subtree of the BSP tree, then we can classify this
triangle as being inside of the model. The same can be said
about a triangle completely in front of the dividing plane.
An interesting case emerges when we find that the dividing
plane we are testing splits the triangle. In this case, we cannot
yet classify the newly split triangles as completely inside or
outside of the polygon, because we could have split a triangle
that may intersect the dividing plane, but isn’t split by the
boundary of the model. The only way to classify these newly
created triangles is to push them through the tree again. Once
all of the triangles have been inserted, we now have a list of
triangles from model B that are inside/outside of model A.
We perform this same procedure for model A, to obtain two
similar lists. Once we have these lists, it is a trivial matter
to combine them to obtain the Boolean operations we desire
(Figure 8).

Figure 8. Merge two trees [8]

The reason we choose to use BSP trees and use Algo-
rithm 5 is because of the efficiency of merging the two trees.
The operation of merging two trees takes milliseconds, and
can be done in O(n logn) efficiency in the best case and O(n2)
in the worst case where we have a very unbalanced tree. The
most computationally expensive portion of the Algorithm 5
comes from actually creating the trees. For convex polygons

Algorithm 5 Push polygons from tree to model

1: for i = 2→ N do
2: insert(treeB.root, Atriangles[i])
3: end for
4: function INSERT(Node node, triangle T)
5: f a = f (a)
6: f b = f (b)
7: f c = f (c)
8: if | f a|< ε then
9: f a = 0

10: end if
11: if | f b|< ε then
12: f b = 0
13: end if
14: if | f c|< ε then
15: f c = 0
16: end if
17: if f a≤ 0 ∧ f b≤ 0 ∧ f c≤ 0 then
18: if back-subtree does not exist then
19: inside-model.add(T)
20: else
21: insert(node.back-subtree, T)
22: end if
23: else if f a≥ 0 ∧ f b≥ 0 ∧ f c≥ 0 then
24: if front-subtree does not exist then
25: outside-model.add(T)
26: else
27: insert(node.front-subtree, T)
28: end if
29: else
30: cut the triangle
31: end if
32: compute A
33: compute B
34: T1 = (a,b,A)
35: T2 = (b,B,A)
36: T3 = (A,B,c)
37: if f c≥ 0 then
38: insert(node.back-subtree, T1)
39: insert(node.back-subtree, T2)
40: insert(node.front-subtree, T3)
41: else
42: insert(node.front-subtree, T1)
43: insert(node.front-subtree, T2)
44: insert(node.back-subtree, T3)
45: end if
46: end function

Constructive Solid Geometry Using BSP Tree — 6/7

Algorithm 5 can take up to O(n2) time, because this creates
a very unbalanced tree. For models with concavity, the cre-
ation of Algorithm 3 can get down to O(n logn) efficiency,
but can take longer to allocate memory for the new triangles
created by the partitioning plane. This is much faster than
the O(n3) case of comparing all planes to all other planes of
a naive implementation of model Boolean operations. The
pre-processing time is the whole purpose of BSP trees. They
are used to pre-cache the information we need in the pre-
processing step, to allow for quick traversal when we need to
render, merge, or test for collisions. This is the reason they
are most often used in video games and CAD systems. Their
traversal efficiency allows us to create the Boolean operations
for these models in a matter of seconds.

3. Results & Discussion
We downloaded multiple 3D models from the web1 and put
this algorithm to the test in the C++ programming language.
They ranged from highly simple 3D shapes like cubes and
toruses (Figure 9), to fully complex video game characters
models (Figure 10, Figure 11). For each model, we created a
BSP tree structure as described in the algorithm above, and
then merged each model’s tree according to the Boolean op-
eration performed on the pair of models. We tested all the
operations, including union, intersection, differences and xor
on our models. We used OpenGL to render each model sepa-
rately on screen first, and then rendered each of the Boolean
operation results. Notice that our meshes only consist of sur-
face polygons and contain no volumetric information. As
such, you can see into or through our model result who oper-
ations cut through the base models. Nonetheless, the results
were quite promising.

Figure 9. CSG of cube & torus

For many of the simple shapes, our results were very ac-
curate. For instance, CSG Boolean operations between cubes
and toruses resulted in error-free models. However, for more
complicated shapes, such as the different character models,

1http://www.turbosquid.com

Figure 10. CSG of cube & Android

Figure 11. CSG of torus & dragon

the Boolean operation would yield results with minor geom-
etry artifacts. For instance, when creating the intersection
between the cube and the werewolf, we get a result which is
not quite as expected (as displayed in Figure 12). The artifacts
that appear in some of our results appear to manifest them-
selves when operations are performed on objects with low
polygon count. We believe that this occurs due to the lower
resolution of one model relative to the other, and thus when
the BSP trees of both models are merged, we occasionally are
left with extraneous triangles that must get pushed through
the BSP tree more than once but end up getting catalogued
incorrectly. Nonetheless, the operation combinations we per-
formed impressive results which looked almost identical to
results in high computer graphics and computer-aided design
applications.

4. Future Work
This project has potential for future work and progress. Due
to the brief time period given to the team to work on this
project, we limited our code to perform operations on a single
pairs of models. Furthermore, we only utilized surface mesh
information as inputs and outputs to our algorithm to facili-
tate its implementation. In the future, we could potentially
be able to perform any number of operations on a larger set

Constructive Solid Geometry Using BSP Tree — 7/7

Figure 12. CSG of werewolf & cube

of models consisting of more than two geometries. In doing
so, we would enable Boolean operation chaining, where we
would created composite models from our base models, and
then further perform other Boolean operations on our compos-
ite models for more impressive and complex results. In the
next stage of our software, we would like to take use voxel
representations of our models as input and output to our CSG
algorithm. In doing so, we allow OpenGL to also render the
volumetric information after performing the Boolean opera-
tions on the pair of models. This would enable a higher level
of accuracy and an easier visual understanding of our results
since we would no longer be rendering just the surfaces of the
models, but the a solid in itself (Figure 13). Our algorithm,
though efficient, lacks any optimization that can be achieved
with tree balancing or parallel programming. Implementing
these would further speed up our algorithm execution. Lastly,
we would look for different methods to eliminate the geom-
etry artifacts that appear in some of the results. We could
automatically increase the number of polygons in a model by
splitting surface faces into smaller polygons and get rid of
these artifacts entirely. Furthermore, we could attempt to run
the algorithm on the polygons themselves instead of having
to split the all non-triangular polygons into triangles. This
would also speed up the process and help eliminate the root
of the artifacts problem.

Figure 13. Render solid model instead of surfaces [9]

Acknowledgments
Thanks to Professor Kenji Shimada for his excellent lectures
which gave us enough background knowledge to start and fin-
ish this project. We appreciate his advice during the semester.

References
[1] B. Naylor, J. Amanatides and W. Thibault, Merging BSP

Trees Yields Polyhedral Set Operations, in Proc. Siggraph
’90, Computer Graphics 24(4), pp 115-124, 1990.

[2] Miklo Lysenko, Roshan D’Souza and Ching-Kuang Shene,
in Improved Binary Space Partition Merging, CAD, Vol. 40,
No. 12, pp. 1113-1120, 2009.

[3] Shirley, Peter et. al, in Fundamentals of Computer Graph-
ics, 3rd ed. Wellesley: A K Peters, 2009.

[4] Tom Duff, Interval arithmetic recursive subdivision
for implicit functions and constructive solid geometry,
inSIGGRAPH ’92, 1992.

[5] H. Jones, in Computer Graphics.: Through Key Mathe-
matics, pp. 227, 2001.

[6] https://en.wikipedia.org/wiki/
Constructive_solid_geometry

[7] http://glscene.sourceforge.net/
oldsite/Gallery/boxedin_h.jpg

[8] http://ars.els-cdn.com/content/image/
1-s2.0-S0010448508002030-gr3.jpg

[9] http://exocortex.com/products/implosia
[10] http://www.cs.cmu.edu/afs/cs/
academic/class/15462-s13/www

