Mortality in the United States (2006)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Cause of Death</th>
<th>No. of deaths</th>
<th>% of all deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Heart Diseases</td>
<td>631,636</td>
<td>26.0</td>
</tr>
<tr>
<td>2.</td>
<td>Cancer</td>
<td>559,888</td>
<td>23.1</td>
</tr>
<tr>
<td>3.</td>
<td>Cerebrovascular diseases</td>
<td>137,119</td>
<td>5.7</td>
</tr>
<tr>
<td>4.</td>
<td>Chronic lower respiratory diseases</td>
<td>124,583</td>
<td>5.1</td>
</tr>
<tr>
<td>5.</td>
<td>Accidents (unintentional injuries)</td>
<td>121,599</td>
<td>5.0</td>
</tr>
<tr>
<td>6.</td>
<td>Diabetes mellitus</td>
<td>72,449</td>
<td>3.0</td>
</tr>
<tr>
<td>7.</td>
<td>Alzheimer disease</td>
<td>72,432</td>
<td>3.0</td>
</tr>
<tr>
<td>8.</td>
<td>Influenza & pneumonia</td>
<td>56,326</td>
<td>2.3</td>
</tr>
<tr>
<td>9.</td>
<td>Nephritis*</td>
<td>45,344</td>
<td>1.9</td>
</tr>
<tr>
<td>10.</td>
<td>Septicemia</td>
<td>34,234</td>
<td>1.4</td>
</tr>
</tbody>
</table>

*Includes nephrotic syndrome and nephrosis
Source: US Mortality Data 2006, National Center for Health Statistics, CDC, 2009
Change in US Death Rates* from 1991 to 2006

Rate Per 100,000

- Heart diseases
 - 1991: 313.0
 - 2006: 200.2

- Cerebrovascular diseases
 - 1991: 63.3
 - 2006: 43.6

- Influenza & pneumonia
 - 1991: 34.8
 - 2006: 17.8

- Cancer
 - 1991: 215.1
 - 2006: 180.7

* Age-adjusted to 2000 US standard population
Sources: US Mortality Data, National Center for Health Statistics, CDC, 2009
Continuing Evolution of Imaging

Anatomy
- X-Ray
- Computer Tomography (CT)
- Angiography
- Ultrasound /SPECT/ PET
- Magnetic resonance Imaging (MRI)

Contrast-kinetics
- Perfusion
- Metabolism
- Receptors
- Gene Expression
- Signal Transduction
- Cell Trafficking

Biology
- Tracer Technique (μSPECT,μPET)
- Optical Imaging

MIPS
Molecular Imaging Program at Stanford

Stanford University
School of Medicine
Department of Radiology
Molecular Imaging

Molecular

Clinic

In vitro

In vivo
Molecular Imaging in Oncology

- Peptide Receptors
- FDG
- Choline
- Antibodies
- Acetate
- Nucleosides
- Enzymes (HSV-Tk)
- Enzymes (Tk)
- O₂
- RGD’s
- PS
- Regional Concentration
- Antisense
- Amino Acids

Stanford University
School of Medicine
Department of Radiology
^{85}Sr (circa 1966) ^{18}F (circa 1970) ^{87m}Sr (circa 1974) ^{99m}Tc (circa 1974)

99mTc MDP
Dynamic 18F NaF PET

Diagnostic 18F NaF PET
DJD Single metastasis Multiple metastases
Prospective Evaluation of 99mTc MDP Scintigraphy, 18F NaF PET/CT, and 18F FDG PET/CT for Detection of Skeletal Metastases

Mol Imaging Biol (2011)

Andrei Iagaru,¹ Erik Mittra,¹ David W. Dick,² Sanjiv Sam Gambhir¹,²,³,⁴

- 52 patients with proven malignancy, referred for evaluation of skeletal metastases
- 37 men and 15 women, 19 - 84 year-old (average: 55.6 ± 15.9)
- 19 sarcoma, 18 prostate cancer, 6 breast cancer, 2 colon cancer, 1 bladder cancer, 1 lung cancer, 1 malignant paraganglioma, 1 lymphoma, 1 gastrointestinal stromal tumor, 1 renal cancer and 1 salivary gland cancer
- 99mTc MDP bone scintigraphy, 18F NaF PET/CT and 18F FDG PET/CT were subsequently performed within 1 month
73-year-old man with metastatic prostate cancer

- 99mTc MDP
- 18F FDG
- 18F NaF
73-year-old man with metastatic prostate cancer

18F FDG PET/CT

18F NaF PET/CT
Diagnostic effectiveness:

<table>
<thead>
<tr>
<th></th>
<th>Bone scan</th>
<th>NaF PET/CT</th>
<th>FDG PET/CT</th>
<th>FDG PET/CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>87.5</td>
<td>95.8</td>
<td>66.7</td>
<td>92.9</td>
</tr>
<tr>
<td>95% CI</td>
<td>75.7–93.0</td>
<td>85.2–99.2</td>
<td>54.7–70.1</td>
<td>83.1–97.2</td>
</tr>
<tr>
<td>Specificity</td>
<td>92.9</td>
<td>92.9</td>
<td>96.4</td>
<td>91.7</td>
</tr>
<tr>
<td>95% CI</td>
<td>82.7–97.6</td>
<td>83.8–95.7</td>
<td>86.2–99.4</td>
<td>80.3–96.7</td>
</tr>
<tr>
<td>PPV</td>
<td>91.3</td>
<td>92.0</td>
<td>94.1</td>
<td>92.9</td>
</tr>
<tr>
<td>95% CI</td>
<td>79.0–97.1</td>
<td>81.8–95.2</td>
<td>77.3–98.9</td>
<td>83.1–97.2</td>
</tr>
<tr>
<td>NPV</td>
<td>89.7</td>
<td>96.3</td>
<td>77.1</td>
<td>91.7</td>
</tr>
<tr>
<td>95% CI</td>
<td>79.9–94.2</td>
<td>86.9–99.3</td>
<td>69.0–79.5</td>
<td>80.3–96.7</td>
</tr>
<tr>
<td>Accuracy</td>
<td>90.4</td>
<td>94.2</td>
<td>82.7</td>
<td>92.3</td>
</tr>
<tr>
<td>95% CI</td>
<td>79.5–95.5</td>
<td>84.4–97.3</td>
<td>71.7–85.8</td>
<td>81.8–97.0</td>
</tr>
</tbody>
</table>

CI confidence interval, PPV positive predictive value, NPV negative predictive value
10 participants (5 men, 5 women, 47-81 year-old) diagnosed with cancer and known osseous metastases

- The diagnoses included breast cancer (5 participants), prostate cancer (3 participants), salivary gland cancer (1 participant) and renal cancer (1 participant)

- 18F NaF PET/CT, 18F FDG PET/CT and WBMRI were performed within 1 month for each participant
The image quality and evaluation of extent of disease was superior by 18F NaF PET/CT compared to 99mTc-MDP scintigraphy in all patients with skeletal lesions and compared to 18F FDG PET/CT in 3 of the patients with skeletal metastases.

18F NaF PET/CT showed osseous metastases where 18F FDG PET/CT was negative in another 3 participants.

Extra-skeletal metastases were identified by 18F FDG PET/CT in 6 participants.

WBMRI with the combination of IDEAL, STIR and DWI pulse sequences showed fewer lesions than 18F NaF PET/CT in 5 patients, same number of lesions in 2 patients and more lesions in 1 patient.

When compared to 18F FDG, WBMRI showed fewer lesions in 3 patients and the same amount of lesions in 6 patients.
Combined 18F-Fluoride and 18F-FDG PET/CT Scanning for Evaluation of Malignancy: Results of an International Multicenter Trial

Andrei Iagaru¹, Erik Mittra¹, Camila Mosci¹, David W. Dick¹, Mike Sathekge², Vineet Prakash³, Victor Iyer³, Paula Lapa⁴, Jorge Isidoro⁴, Joao M. de Lima⁴, and Sanjiv Sam Gambhir⁵

- 115 patients with proven malignancy who had separate 18F NaF PET/CT, 18F FDG PET/CT and a combined 18F NaF/18F FDG PET/CT scans for evaluation of malignancy (total of 3 scans each)
- 63 men and 52 women, 19-84 year-old (average: 58.5 ± 14.3)
- Tumor type: prostate cancer (41 participants), breast cancer (39 participants), sarcoma (22 participants), and other cancers (13 participants)
- The interval between the first and third scan ranged 3-28 days (average: 6.7 ± 4.9 days)
- A direct comparison for each detected lesion was performed among the 3 scans
74 year-old man with metastatic prostate cancer
Comparison of PET/CT Scans

<table>
<thead>
<tr>
<th></th>
<th>18F FDG PET/CT</th>
<th>18F NaF PET/CT</th>
<th>18F NaF & 18F FDG PET/CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal lesions</td>
<td>38/115</td>
<td>67/115</td>
<td>67*/115</td>
</tr>
</tbody>
</table>

- 18F NaF PET/CT and 18F FDG PET/CT scans identified malignant lesions in 82/115 enrolled patients (71.3%).
- 19 participants: 18F NaF > 18F FDG (osseous metastases)
- 29 patients: 18F NaF positive, 18F FDG negative (osseous metastases)
- 18 participants: 18F NaF = 18F FDG (osseous metastases)
- 1 patient: 18F FDG positive, 18FNaFG negative (osseous metastases)
- 48 participants had no osseous metastases identified on the 18F NaF PET/CT or the 18F FDG PET/CT scans

*2 skull lesions missed
Diagnostic effectiveness:

<table>
<thead>
<tr>
<th></th>
<th>CT only</th>
<th>PET/CT</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FDG</td>
<td>NaF</td>
<td>NaF/FDG</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>51.9</td>
<td>51.9</td>
<td>92.6</td>
<td>96.3</td>
</tr>
<tr>
<td>95% CI</td>
<td>31.9-71.3</td>
<td>31.9-71.3</td>
<td>75.7-99.1</td>
<td>81.0-99.9</td>
</tr>
<tr>
<td>Specificity</td>
<td>75.0</td>
<td>96.9</td>
<td>90.6</td>
<td>84.4</td>
</tr>
<tr>
<td>95% CI</td>
<td>56.6-88.5</td>
<td>83.8-99.9</td>
<td>75.0-98.0</td>
<td>67.2-94.7</td>
</tr>
<tr>
<td>PPV</td>
<td>63.6</td>
<td>93.3</td>
<td>89.3</td>
<td>83.9</td>
</tr>
<tr>
<td>95% CI</td>
<td>40.7-82.8</td>
<td>68.1-99.8</td>
<td>71.8-97.7</td>
<td>66.3-94.5</td>
</tr>
<tr>
<td>NPV</td>
<td>64.9</td>
<td>70.5</td>
<td>93.5</td>
<td>96.4</td>
</tr>
<tr>
<td>95% CI</td>
<td>47.5-79.8</td>
<td>54.8-83.2</td>
<td>78.6-99.2</td>
<td>81.7-99.9</td>
</tr>
</tbody>
</table>
33 Prostate Cancer Patients

- In 3 patients the skeletal disease was more extensive on 18F NaF PET/CT and the combined scan than on 18F FDG PET/CT

- In 16 patients 18F NaF PET/CT and the combined scan showed osseous metastases and 18F FDG PET/CT was negative

- 14 patients had no osseous metastases

- 18F FDG PET/CT and the combined scan showed extra-skeletal metastases in 5 patients
Gastrin-releasing peptide receptors (GRPr) are highly over-expressed in many human cancers, including prostate cancer

BAY 86-7548 is a bombesin antagonist with high GRPr affinity

5 healthy men were imaged

BAY 86-7548 is safe and had a dosimetry profile similar to other FDA-approved radiopharmaceuticals
18F or 64Cu Bombesin Analogues (at Stanford)

64Cu-NODAGA-RM1

MIPS
Molecular Imaging Program at Stanford

Stanford University
School of Medicine
Department of Radiology
Biodistribution, Tumor Detection, and Radiation Dosimetry of 18F-DCFBC, a Low-Molecular-Weight Inhibitor of Prostate-Specific Membrane Antigen, in Patients with Metastatic Prostate Cancer

Steve Y. Cho1,2, Kenneth L. Gage1, Ronnie C. Mease1,2, Srinivasan Senthamizhchelvan1, Daniel P. Holt1, Akimosa Jeffrey-Kwansai1, Christopher J. Endres1, Robert F. Dannals1, George Sgouros1, Martin Lodge1, Mario A. Eisenberger2, Ronald Rodriquez2,3, Michael A. Carducci3, Camilo Rojas4, Barbara S. Slusher4, Alan P. Kozikowski5, and Martin G. Pomper1,2

- 5 patients with radiologic evidence of metastatic prostate had 10 mCi of 18F DCFBC
- 32 PET-positive suspected metastatic sites were identified, with 21 concordant on both PET and conventional imaging for abnormal findings compatible with metastatic disease
- Of the 11 PET-positive sites not identified on conventional imaging, most were within the bone and could be considered suggestive for the detection of early bone metastases
PET imaging with a $[^{68}\text{Ga}]$gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions

37 patients with prostate cancer and rising PSA levels had ^{68}Ga-PSMA PET/CT

31 patients (83.8 %) showed at least one lesion suspicious for cancer at a detection rate of 60% at PSA <2.2 ng/ml and 100% at PSA >2.2 ng/ml

Median tumour to background ratios were 18.8 (2.4-158.3) in early images and 28.3 (2.9-224.0) in late images
82 consecutive patients with biochemical relapse after radical prostatectomy

18F Choline PET/CT detected recurrent lesions in 51 of the 82 patients (62%)

The median PSA value was significantly higher in PET-positive than in PET-negative patients (4.3 ng/ml vs. 1.0 ng/ml; \(P < 0.01 \))

The optimal PSA threshold from ROC analysis for the detection of recurrent prostate cancer lesions was 1.74 ng/ml (AUC 0.818, 82% sensitivity, 74% specificity)

PSA doubling time suggested a threshold of 3.2 months, but this failed to reach statistical significance (\(P = 0.071 \))
(S)-4-(3-18F-Fluoropropyl)-l-Glutamic Acid: An 18F-Labeled Tumor-Specific Probe for PET/CT Imaging—Dosimetry

Kamilla Smolarz¹, Bernd Joachim Krause¹, Frank-Philipp Graner¹, Franziska Martina Wagner¹, Christina Hultsch², Claudia Bacher-Stier², Richard B. Sparks³, Susan Ramsay³, Lüder M. Fels², Ludger M. Dinkelborg²,⁴, and Markus Schwaiger⁴

- 18F FSPG is a glutamic acid derivative
- Already studied in HCC, breast and lung cancers in South Korea
- 10 prostate cancer, 5 H&N cancer, 5 colorectal cancer, 5 NHL and 5 brain cancer patients were imaged at Stanford
- 18F FSPG is safe and has a dosimetry profile similar to other FDA-approved radiopharmaceuticals
Metabolic pathways and the role of 18F FSPG
"Advocates of evidence based medicine have criticized the adoption of interventions evaluated by using only observational data.

We think that everyone might benefit if the most radical protagonists of evidence based medicine organized and participated in a double blind, randomized, placebo controlled, crossover trial of the parachute.

Parachutes reduce the risk of injury after gravitational challenge, but their effectiveness has not been proved with randomized controlled trials.

THANK YOU!

http://nuclearmedicine.stanford.edu

http://mips.stanford.edu