The Utility & Limitations of Imaging in the Management of Gynecologic Malignancy

Katherine Moxley, MD
Assistant Professor of Obstetrics & Gynecology
University of Oklahoma
Disclosures

None
Objectives

• Overview of Current Imaging Modalities
 o Current Limitations in Imaging
 o Unmet Clinical Needs

• Review the Role of Emerging Imaging Technology and Potential Application to Gynecologic Malignancy
Brief Overview of the Gynecologic Malignancies
Lifetime Probability of Developing Cancer, Women, US, 2004-2006*

<table>
<thead>
<tr>
<th>Site</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>All sites†</td>
<td>1 in 3</td>
</tr>
</tbody>
</table>

* For those free of cancer at beginning of age interval.
† All Sites exclude basal and squamous cell skin cancers and in situ cancers except urinary bladder.
‡ Includes invasive and in situ cancer cases
§ Statistic for white women.

<table>
<thead>
<tr>
<th>Site</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>All sites†</td>
<td>1 in 3</td>
</tr>
<tr>
<td>Breast</td>
<td>1 in 8</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>1 in 16</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>1 in 20</td>
</tr>
<tr>
<td>Uterine corpus</td>
<td>1 in 40</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>1 in 52</td>
</tr>
<tr>
<td>Urinary bladder‡</td>
<td>1 in 84</td>
</tr>
<tr>
<td>Melanoma§</td>
<td>1 in 56</td>
</tr>
<tr>
<td>Ovary</td>
<td>1 in 71</td>
</tr>
<tr>
<td>Pancreas</td>
<td>1 in 72</td>
</tr>
<tr>
<td>Uterine cervix</td>
<td>1 in 145</td>
</tr>
</tbody>
</table>

* For those free of cancer at beginning of age interval.
† All Sites exclude basal and squamous cell skin cancers and in situ cancers except urinary bladder.
‡ Includes invasive and in situ cancer cases
§ Statistic for white women.
Lifetime Probability of Developing Cancer, Women, US, 2004-2006*

<table>
<thead>
<tr>
<th>Site</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>All sites†</td>
<td>1 in 3</td>
</tr>
<tr>
<td>Breast</td>
<td>1 in 8</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>1 in 16</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>1 in 20</td>
</tr>
<tr>
<td>Uterine corpus</td>
<td>1 in 40</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>1 in 52</td>
</tr>
<tr>
<td>Urinary bladder‡</td>
<td>1 in 84</td>
</tr>
<tr>
<td>Melanoma§</td>
<td>1 in 56</td>
</tr>
<tr>
<td>Ovary</td>
<td>1 in 71</td>
</tr>
<tr>
<td>Pancreas</td>
<td>1 in 72</td>
</tr>
<tr>
<td>Uterine cervix</td>
<td>1 in 145</td>
</tr>
</tbody>
</table>

* For those free of cancer at beginning of age interval.
† All Sites exclude basal and squamous cell skin cancers and in situ cancers except urinary bladder.
‡ Includes invasive and in situ cancer cases
§ Statistic for white women.

Cancer of the Lower Genital Tract

- **Vulvar Cancer**
 - Incidence – 4700 cases/year
 - Mortality – 990 deaths/year

Cancer of the Lower Genital Tract

• Vulvar Cancer
• Vaginal Cancer
 o Incidence – 2890 cases/year
 o Mortality – 840 deaths/year

Cancer of the Lower Genital Tract

- Vulvar Cancer
- Vaginal Cancer
- **Cancer of the Uterine Cervix**
 - Incidence:
 - Worldwide – 530,000 cases/year
 - 3rd leading cause of female cancer worldwide
 - Developing nations carry the burden
 - USA – 12,304 cases/year
 - Mortality
 - Worldwide – 275,000 deaths/year
 - 8% of female cancer death
 - 90% in developing countries
 - USA – 4030 deaths/year

Cancer of the Uterine Corpus

- **Histology**
 - Endometrial - 98%
 - Adenocarcinoma arising from glandular tissue
 - Sarcoma - 2%
 - Arise from mesenchymal tissue of uterus
 - Leiomyosarcoma
 - Endometrial Sarcomas
 - Endometrial stromal sarcoma
 - Adenosarcoma
Cancer of the Uterine Corpus

- Incidence – 49,560 cases/year
 - 98% of uterine corpus cancer - ENDOMETRIAL
 - Increasing 1% per year (2000 - 2010)
 - Prevalence > 600,000 women

- Mortality – 8190 deaths/year
Histologic Division of Ovarian Cancer

- **Epithelial tumors – 85%**
 - Coelomic epithelial lining of the ovary – adenocarcinoma
 - Serous predominant histology
 - Late stage at diagnosis – 80%

- **Germ cell – 10%**
 - Germinal epithelium within the ovary
 - Young patients
 - Early stage at diagnosis is the norm

- **Sex cord-stromal – 5%**
 - Mesenchymal tissue of the ovary
 - Early stage at diagnosis
 - Delayed time to recurrence
Cancer of the Ovary

- Incidence – 22,240 cases/year
- Mortality – 14,030 deaths/year
 - 5th leading cause of cancer death in USA
The Role of Standard Imaging in the Lower Genital Tract
Lower Genital Tract

- Vulva, vagina & cervix
 - Staging & Treatment Planning

LIMITED USE OF SURGERY IN THESE DISEASE SITES
Lower Genital Tract

- Vulva, vagina & cervix
 - Staging & Treatment Planning

TREATMENT = CLINICAL EXAM + IMAGING RESULTS
Lower Genital Tract

- Vulva, vagina & cervix
 - Staging & Treatment Planning

\[\text{TREATMENT = CLINICAL EXAM + IMAGING RESULTS} \]

\[+/- \text{ LYMPH NODE ASSESSMENT} \]
Vulvar cancer: a surgically staged disease

Table 1
Carcinoma of the vulva.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
</table>
| Stage I | Tumor confined to the vulva
IA | Lesions ≤2 cm in size, confined to the vulva or perineum and with stromal invasion ≤1.0 mm*, no nodal metastasis
IB | Lesions >2 cm in size or with stromal invasion >1.0 mm*, confined to the vulva or perineum, with negative nodes |
| Stage II | Tumor of any size with extension to adjacent perineal structures (1/3 lower urethra, 1/3 lower vagina, anus) with negative nodes |
| Stage III | Tumor of any size with or without extension to adjacent perineal structures (1/3 lower urethra, 1/3 lower vagina, anus) with positive inguino-femoral lymph nodes
IIIA | (i) With 1 lymph node metastasis (≥5 mm), or
(ii) 1–2 lymph node metastasis(es) (<5 mm)
IIIB | (i) With 2 or more lymph node metastases (≥5 mm), or
(ii) 3 or more lymph node metastases (<5 mm)
IIIC | With positive nodes with extracapsular spread |
| Stage IV | Tumor invades other regional (2/3 upper urethra, 2/3 upper vagina), or distant structures
IVA | Tumor invades any of the following:
(i) upper urethral and/or vaginal mucosa, bladder mucosa, rectal mucosa, or fixed to pelvic bone, or
(ii) fixed or ulcerated inguino-femoral lymph nodes
IVB | Any distant metastasis including pelvic lymph nodes |

*The depth of invasion is defined as the measurement of the tumor from the epithelial-stromal junction of the adjacent most superficial dermal papilla to the deepest point of invasion.
Anatomy of the Groin

- Superficial inguinal nodes
- Inguinal ligament
- Iliopsoas m.
- Femoral lymph nodes
- Femoral v. and a.
- Sartorius m.
- Femoral n.
- Fossa ovalis
- Pectineus m.
- Adductor longus m.

Skin and subcutaneous tissues
Fascia lata

Transversalis fascia
The Clinically Staged Malignancies of the Lower Genital Tract

Figure 1. Staging of uterine cervix carcinoma according to FIGO(3).

TABLE 1

<table>
<thead>
<tr>
<th>FIGO staging system for cervical cancer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIIa</td>
</tr>
<tr>
<td>IIIa1</td>
</tr>
<tr>
<td>IIIa2</td>
</tr>
<tr>
<td>IIIb</td>
</tr>
<tr>
<td>IIIb1</td>
</tr>
<tr>
<td>IIIb2</td>
</tr>
<tr>
<td>IVa</td>
</tr>
<tr>
<td>IVa1</td>
</tr>
<tr>
<td>IVa2</td>
</tr>
<tr>
<td>IVb</td>
</tr>
<tr>
<td>IVb1</td>
</tr>
<tr>
<td>IVb2</td>
</tr>
<tr>
<td>IVc</td>
</tr>
<tr>
<td>IVc1</td>
</tr>
<tr>
<td>IVc2</td>
</tr>
</tbody>
</table>

FIGO = International Federation of Gynecology and Obstetrics.
Vagina Staging Form

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Stage Category Definitions</th>
<th>Pathologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent of disease before any treatment</td>
<td></td>
<td>Extent of disease during and from surgery</td>
</tr>
<tr>
<td>TNM Category</td>
<td>FIGO Stage</td>
<td>TNM Category</td>
</tr>
<tr>
<td>T0</td>
<td>Primary Tumor (T)</td>
<td>T0</td>
</tr>
<tr>
<td>Tis</td>
<td>Carcinoma in situ</td>
<td>Tis</td>
</tr>
<tr>
<td>T1</td>
<td>Tumor confined to vagina</td>
<td>T1</td>
</tr>
<tr>
<td>T2</td>
<td>Tumor invades paravaginal tissues but not to pelvic wall</td>
<td>T2</td>
</tr>
<tr>
<td>T3</td>
<td>Tumor extends to pelvic wall**</td>
<td>T3</td>
</tr>
<tr>
<td>T4</td>
<td>Tumor invades mucosa of the bladder or rectum and/or extends beyond the true pelvis (bullous edema is not sufficient evidence to classify a tumor as T4)</td>
<td>T4</td>
</tr>
</tbody>
</table>

*FIGO staging no longer includes Stage 0 (Tis).

**Pelvic wall is defined as muscle, fascia, neurovascular structures, or skeletal portions of the bony pelvis.

Regional Lymph Nodes (N)

<table>
<thead>
<tr>
<th>TNM Category</th>
<th>FIGO Stage</th>
<th>Regional Lymph Nodes cannot be assessed</th>
<th>No regional lymph node metastasis</th>
<th>Pelvic or inguinal lymph node metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>N0</td>
<td>Regional lymph nodes cannot be assessed</td>
<td>No regional lymph node metastasis</td>
<td>Pelvic or inguinal lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
<td>III</td>
<td>Regional lymph nodes cannot be assessed</td>
<td>No regional lymph node metastasis</td>
<td>Pelvic or inguinal lymph node metastasis</td>
</tr>
</tbody>
</table>

Distant Metastasis (M)

<table>
<thead>
<tr>
<th>TNM Category</th>
<th>FIGO Stage</th>
<th>Distant Metastasis (no pathologic M0; use clinical M to complete stage group)</th>
<th>Distant Metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>IVB</td>
<td>No distant metastasis (no pathologic M0; use clinical M to complete stage group)</td>
<td>Distant metastasis</td>
</tr>
<tr>
<td>M1</td>
<td>IVB</td>
<td>No distant metastasis (no pathologic M0; use clinical M to complete stage group)</td>
<td>Distant metastasis</td>
</tr>
</tbody>
</table>
CT Imaging: Lower Genital Tract

- **Vulva**
 - Staging & Treatment Planning
 - CT
 - Lymph node assessment
 - Grossly positive - >90%
 - Grossly negative – 30%

- **Cervix (Vagina)**
 - Staging & Treatment Planning
 - CT
 - Parametria – 75% accuracy
 - Lymph node metastasis
 - Grossly positive – 80-85%
 - Grossly negative – 20-30%
MRI: Lower Genital Tract

- Vulva
 - Staging & Treatment Planning
 - MRI – not validated

- Cervix
 - Staging & Treatment Planning
 - MRI
 - Parametria – 90%
 - Lymph nodes (similar to CT)
 - Grossly positive – 90%
 - Grossly negative – 20-30%
ACRIN 6651:

MRI & CT Evaluation in Early Cervical Cancer

- MRI Superior
 - Primary tumor
 - Parametrial invasion
 - Prediction of nodal metastases

- CT Concerns
 - More interobserver variability

Neither method reliable in predicting cervical stromal invasion
Correlating Clinical Staging & MRI

Table 1 Correlation between FIGO staging of uterine cervix cancer and MRI findings(17).

<table>
<thead>
<tr>
<th>Stage</th>
<th>MRI T2-weighted sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia Microinvasor</td>
<td>No tumor evidence</td>
</tr>
<tr>
<td>Ib Invasive, confined to the cervix</td>
<td>Hyperintense tumor on T2-weighted sequence in contrast with hypointense signal from cervical stroma</td>
</tr>
<tr>
<td>Ib\textsubscript{1} Clinically visible lesion \leq 4 cm</td>
<td>Tumor partially or completely replacing the hypointense cervical stroma, not surpassing the parametrial interface represented by a hypointense halo</td>
</tr>
<tr>
<td>Ib\textsubscript{2} Clinically visible lesion $>$ 4 cm</td>
<td>Segmental interruption of hypointense signal on the upper third of the vaginal wall</td>
</tr>
<tr>
<td>IIa Tumor invades the upper vaginal third, but does not affect the lower vaginal third</td>
<td>Hyperintense tumor interrupting hypointense halo of the interface between cervical stroma and parametrium</td>
</tr>
<tr>
<td>IIb Tumor invades the parametrium, but not the pelvic wall neither the lower vaginal third</td>
<td>Segmental interruption of the hypointense signal of the lower vaginal third</td>
</tr>
<tr>
<td>IIIa Involvement of the lower vaginal third, without affecting the pelvic wall</td>
<td>Tumor extending to the musculature (internal obturator muscle, piriform muscle or levator ani muscle) or causing hydroureter</td>
</tr>
<tr>
<td>IIIb Pelvic wall involvement or hydrencephrosis</td>
<td>Loss of hypointense signal of the internal wall (mucosa) of the bladder or rectum</td>
</tr>
<tr>
<td>IVa Tumor invades the bladder or rectum mucosa</td>
<td>Distant metastasis</td>
</tr>
<tr>
<td>IVb Distant metastasis</td>
<td>Distant metastasis</td>
</tr>
</tbody>
</table>
Ultrasound : Lower Genital Tract

- Vulva
 - Staging & Treatment Planning
 - Ultrasound – no clinical utility

- Cervix
 - Staging & Treatment Planning
 - Ultrasound
 - Limited role in assessment
 - Fertility preservation
Disease Surveillance in Lower Genital Tract Malignancy

- Post-Treatment Surveillance
 - CT
 - MRI
The Role of Standard Imaging in the Uterine Malignancy
Standard Imaging: Uterine Corpus

- Uterine Corpus
 - Staging & Treatment Planning

SURGICALLY STAGED DISEASE

CURRENT STANDARD: TAH/BSO/PPALND
<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Tumor contained to the corpus uteri</td>
</tr>
<tr>
<td>IA</td>
<td>No or less than half myometrial invasion</td>
</tr>
<tr>
<td>IB</td>
<td>Invasion equal to or more than half of the myometrium</td>
</tr>
<tr>
<td>II</td>
<td>Tumor invades the cervical stroma but does not extend beyond the uterus</td>
</tr>
<tr>
<td>III</td>
<td>Local and/or regional spread of tumor</td>
</tr>
<tr>
<td>IIIA</td>
<td>Tumor invades the serosa of the corpus uteri and/or adnexas</td>
</tr>
<tr>
<td>IIIB</td>
<td>Vaginal and/or parametrial involvement</td>
</tr>
<tr>
<td>IIIC</td>
<td>Metastases to pelvis and/or para-aortic lymph nodes</td>
</tr>
<tr>
<td>IIIC1</td>
<td>Positive pelvic nodes</td>
</tr>
<tr>
<td>IIIC2</td>
<td>Positive para-aortic lymph nodes with or without positive pelvic lymph nodes</td>
</tr>
<tr>
<td>IV</td>
<td>Tumor invades bladder and/or bowel mucosa and/or distant metastases</td>
</tr>
<tr>
<td>IVA</td>
<td>Tumor invasion of bladder and/or bowel mucosa</td>
</tr>
<tr>
<td>IVB</td>
<td>Disant metastases, including intra-abdominal metastases and or inguinal lymph nodes</td>
</tr>
</tbody>
</table>

FIGO = International Federation of Gynecology and Obstetrics

* Includes grades 1, 2, or 3

* Endocervical glandular involvement only should be considered as stage I and no longer as stage II.

* Positive cytology has to be reported separately without changing the stage.
Retroperitoneal Anatomy
CT: Uterine Corpus

- Uterine Corpus
 - Staging & Treatment Planning
 - CT (contrast enhanced)
 - Accuracy – 86%
 - Utility
 - Lymph node metastases
 - Parenchymal solid organ
 - Ascites
MRI: Uterine Corpus

- Uterine Corpus
 - Staging & Treatment Planning
 - MRI
 - Accuracy – 84-94%
 - Myometrial Invasion
 - Dynamic contrast-enhanced T1 & T2 weighted images
 - Accuracy – 85-91%
 - Fertility Preservation
Ultrasound : Uterine Corpus

• Uterine Corpus
 o Staging & Treatment Planning
 • Ultrasound
 o Myometrial Invasion
 • Accuracy – 75% (68-83)
 o Cevical Stromal Invasion
 • Accuracy – 85% (60-88)

Fischerova et al, 2013
The Role of Imaging in the Ovarian Malignancy
Cancer of the Ovary & Peritoneum

- Ovarian Cancer

SURGICALLY STAGED DISEASE
Cancer of the Ovary & Peritoneum

- Ovarian Cancer

ROLE OF SURGERY

1. Staging
2. Therapy
Surgical Cytoreduction

- **Evolving definition**
 - No gross residual disease → 1 cm → 2 cm
 - Survival benefit - ≤ 22 months

- **Rates of “Optimal” resection**
 - 35% (20-85%)
 - 45-50% in experienced centers
 - Predicting who will benefit - KEY
Advanced Ovarian Cancer Surgery

- **Aggressive Surgery**
 - Bowel resection – 15%
 - Splenectomy – 15%
 - Radical peritoneal resection

- **Drawbacks of Surgery**
 - Complications
 - Chemotherapy delays
Primary Cytoreductive Surgery (CRS)

- Meta-analysis: 53 studies (1989-98)
 - Stage III/IV
 - 6885 patients

- Results
 - Expert centers have high optimal rates
 - Optimal = 22 month survival advantage
 - Each 10\% \textbf{in cytoreduction} = 5.5\% \textbf{in survival}

Bristow, J Clin Oncol 20:1248, 2002
Impact of Optimal CRS

Chi Gynecol Oncol (2006) 103:559
GCIG Consensus Recommendations: Surgery in Advanced Ovarian Cancer

1. **Up-front maximal surgical effort** at cytoreduction with the goal of **no residual disease** should be undertaken.

2. Surgery should be performed by an appropriately trained surgeon with experience in ovarian cancer management.
Standard Imaging: Ovary & Peritoneum

- Ovary, Fallopian Tube & Peritoneum
 - Screening
 - No effective imaging
CT: Ovary & Peritoneum

- Ovary, Fallopian Tube & Peritoneum
 - Staging & Treatment Planning
 - CT
 - Best resolution
 - Current standard

Contrast enhanced CT: surface implant in intersegmental tissue of liver – Qayyum et al 2005

Contrast-enhanced CT: gastrohepatic ligament & superficial liver implants – Qayyum et al 2005
MRI: Ovary & Peritoneum

- Ovary, Fallopian Tube & Peritoneum
 - Staging & Treatment Planning
 - MRI
 - Movement dependent
 - Improved solid organ characterization

T2 weighted image: gastrohepatic ligament implant – Qayyum et al 2005

Delayed gadolinium enhanced MRI: subdiaphragmatic tumor - Low et al 2009
Ultrasound: Ovary & Peritoneum

- Ovary, Fallopian Tube & Peritoneum
 - Staging & Treatment Planning
 - Pelvic ultrasound
 - Key Role: mass characterization
 - Limited role in predication of stage
Predicting Inoperability in EOC

CT
- 70% accurate (Axtell et al. 2007)
- Models remain UNRELIABLE (Ibeanu & Bristow 2010)
 - Diffuse peritoneal thickening
 - Ascites

MRI
- Conventional MRI = CT (Qayyum et al. 2005)
 - Gadolinium contrast enhanced
Where Are We Continuing To Fall Short?
A Gyn Oncologist’s Opinion
Lower Genital Tract

- What is the Gold Standard?
 - Imaging vs TISSUE
Lower Genital Tract

- What is the Gold Standard?
- Inflammation ≠ Disease
 - Nodal Enlargement
 - Adjacent organ involvement
Lower Genital Tract

• What is the Gold Standard?
• Inflammation ≠ Disease
• Physiologic GI/GU contrast or nuclear imaging agents
Uterine Corpus

- Surgical Staging – A Concept of the Past?
 - Clinical trials question role of lymphadenectomy
 - ASTEC
 - Radiographic prediction of extra-uterine disease may become critical
Uterine Corpus

- Surgical Staging – A Concept of the Past?
- Younger patients (increasing obesity)
 - Fertility conservation
 - When is it safe?
 - What is the optimal imaging strategy:
 - Myometrial Invasion
Ovary & Peritoneum

• Screening Options
 o No identifiable cancer precursor
 o No improvement in stage at diagnosis
 o No improvement in disease related survival
Ovary & Peritoneum

- Screening Options
- Diagnosis of cancer
Ovary & Peritoneum

- Screening Options
- Diagnosis of Cancer
- RESCTABILITY, RESECTABILITY, RESECTABILITY...
Resectability in Person
Overall Cancer Imaging

• **Surrogate Outcomes Measure**
 o Validated
 o Reproducible
 o Cost Effective

• **Assessment of Drug Therapy**
 o Biologics ≠ Cytotoxics
Combating Our Current Shortcomings
GCIG Statement on Imaging

• GCIG Recommendations for Imaging in Clinical Trials
 o Dynamic contrast-enhanced (perfusion) CT
 o Dynamic contrast-enhanced MRI
 o Diffusion weighted MRI
 o FDG-PET/CT and FDG-PET/MRI

• Functional Imaging as a Clinical Trial Endpoint
Lower Genital Tract

- Functional Imaging Modalities
 - 18FDG-PET/CT
 - DWI-MRI
 - DCE imaging
FDG-PET: Lower Genital Tract

- Vulva
- Cervix (Vagina)
 - FDG-PET CT (Grigsby et al)
 - Lymph nodes
 - Grossly positive – 99%
DWI: Lower Genital Tract

- Cervix
FDG-PET: Uterine Corpus

- Uterine Corpus
 - Staging & Treatment Planning – Nodal Assessment
 - PET/CT
 - Accuracy – 83%
 - PPV – 28% / NPV - 94%
DWI: Uterine Corpus

- Uterine Corpus
 - Staging & Treatment Planning – Nodal Assessment
 - Comparable to PET/CT
 - EXCEPT – fertility preservation
FDG-PET: Ovary & Peritoneum

• Epithelial Ovarian/Peritoneal Cancer
 o Staging & Treatment Planning
 o Disease surveillance
 • Small, diffuse implants – not well characterized with anatomic imaging
DWI: Ovary & Peritoneum

- Epithelial Ovarian/Peritoneal Cancer
 - Staging & Treatment Planning
 - Predicting Resectability
Active ACRIN Trials

- **ACRIN 6671/GOG233**: Utility of PET/CT scanning prior to retroperitoneal lymphadenectomy in locoregionally advanced cervix cancer OR endometrial cancer that is high grade or involves the uterine cervix
 - Iron oxide (ferumoxtan) MRI for nodal staging
 - Closed early due to supply
Retroperitoneal Lymphadenectomy Pathology Revealing Microscopic Para-Aortic Nodal Metastasis

Primary Cervical Tumor
Active ACRIN Trials

- ACRIN 6651
- ACRIN 6671/GOG233
- **ACRIN 6682**: Phase II trial of 64Cu-ATSM PET/CT in cervical cancer – actively accruing patients
 - Focus – Tumor Necrosis
 - ?Predictor for poorer response?
ACRIN 6682 - 64Cu-ATSM in Necrotic Tumor

FDG-PET/CT

64Cu-ATSM
Active ACRIN Trials

- ACRIN 6651
- ACRIN 6671/GOG233
- ACRIN 6682:

ACRIN 6695/GOG262: Perfusion CT imaging to evaluate treatment response in advanced ovarian cancer
 - Perfusion as a predictor of disease response
 - Perfusion as a predictor for survival
 - Changes in perfusion in response to antiangiogenic therapy
Future Clinical Trial Directions

- Validating Tissue Biomarkers with Functional Imaging
 - Dynamic Contrast-Enhanced Imaging (CT & MRI) – ACRIN 6695
 - Tumor vessel density
 - Microvessel counts
 - VEGF
 - Diffusion Weighted MRI Imaging
 - Ki-67 proliferation index
 - Cellularity index (tumor cells/hpf)
 - EGFR
 - CD31 expression
Molecular Imaging

- Fusing patient-specific and disease-specific molecular targets with traditional anatomical imaging
Molecular Imaging

• Fusing patient-specific and disease-specific molecular targets with traditional anatomical imaging
 o Is there a target?
Molecular Imaging

- Is there a target? **YES**
 - Cancer Specific Targets
 - **Nuclear**
 - 18FDG
 - 18Fluorothymidine
 - Arcitumomab
 - Satumomab
 - Bombesin
 - Estrogen receptor ligands
 - Folate receptor ligands
 - Annexin
 - **MRI**
 - Integrins

Jaffer et al JAMA 2005
Molecular Imaging

- Fusing patient-specific and disease-specific molecular targets with traditional anatomical imaging
 - Is there a target?
 - Is there a ligand that will bind the target?
Molecular Imaging

- Fusing patient-specific and disease-specific molecular targets with traditional anatomical imaging
 - Is there a target?
 - Is there a ligand that will bind the target?
 - What is the appropriate imaging system for the disease?
 - Nuclear (SPECT/PET)
 - MRI/CT platform
Molecular Imaging

- Fusing patient-specific and disease-specific molecular targets with traditional anatomical imaging
 - Is there a target?
 - Is there a ligand that will bind the target?
 - What is the appropriate imaging system for the disease?
 - Can the synthesized molecular target be detected by the imaging system?
Theoretical Benefits & Molecular Imaging

1. Earlier cancer diagnosis
 • Subcentimeter disease
2. Improved imaging specificity
 • Targeted biomarkers
3. Tumor response to drug therapy
 • Molecular readouts of drug activity
4. Improved understanding of disease development and persistence
 • Biologic modeling for cellular and metabolomic events
 o Angiogenesis
 o Apoptosis
 o Stem cell trafficking
 o Thrombosis
References

