Cardiac PET and Quantification of Absolute Myocardial Flow in Routine Cardiology Practices

Robert M. Bober, MD, FACC
Director of Cardiac Molecular Imaging
Ochsner Health System
Disclosures

- Astellas – Speaker bureau, research grant
- Bracco – consultant
- Not an interventional cardiologist
 - Highly critical
Target Audience

- Physicians
- Technologists
- Basic principles and current data
- Will not be a scientific analysis:
 - Compartment models
 - Differences in software algorithms
What is Flow and Why Measure It?

What
- Measurement of volume/time
- Cardiac purposes = volume blood/time/gram of myocardium
- Typically expressed as cc/min/gm

Why?
- Current revascularization practices only modestly effective
- Data
- Data
- Data
Current Revascularization Practice

- LHC (angiogram) – “Gold Standard”
- “See and Fix” approach based on % stenosis
- Current guidelines: 50% LM and 70% for revascularization
- FFR/Stress “intermediate lesions”
- FFR used in 6% of patients

1ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention JACC 2012
2Dattilo PB, et al. Contemporary patterns of fractional flow reserve. JACC. 2012;60(22):2337-2339.
A Brief Word on FFR

- FFR = Fractional flow reserve
- Pressure derived flow surrogate
- “stress test” of an artery in the cath lab

\[
FFR = \frac{\text{Distal Coronary Pressure (Pd)}}{\text{Proximal Coronary Pressure (Pa)}}
\]

(During Maximum Hyperemia)
resting state maximum hyperemia (i.v. adenosine)
Revascularization guided by % stenosis will lead to better outcomes

DATA DATA DATA
COURAGE and STICH

- Revasc based on % stenosis
- Stress testing NOT mandatory
- Decisions to guide revascularization based on judgment of angiographer
- FFR not utilized

Revascularization guided by % stenosis will lead to better outcomes.
FAME I and II

- FFR guided revascularization
- I - FFR vs. Angio
- II - FFR vs. optimal medical therapy (OMT)

Ziadi MC, JACC. 2011;58:740-748.

Introduction to Coronary Blood Flow (CBF)

- Ischemia - Myocardial O2 supply vs. demand
- Adequate supply is maintained with ability to increase CBF
- 2 major resistances to flow
 - Epicardial arteries (>350 µm)
 - Arterioles and capillaries (microvasculature)
 - Resting microvascular (R₂) >>>> epicardial (R₁)
 - Normally regulation occurs at level of microvasculature
- CBF increases automatically to increase O2 demands
 - Exercise
 - Pharm stress
 - Neurohormonal
Pathologic Conditions

- $R_1 \gg R_2$
 - Coronary stenosis \rightarrow Flow impaired at level of the epicardial artery

- $R_2 \gg R_1$
 - Diastolic dysfunction
 - HOCM
 - Non-ischemic myopathies/ infiltrative

- Clinical CAD is a combination of abnormal R_1 and R_2.
Top: Normal flow response in left circumflex (LCX) artery without stenosis
Bottom: Flow response in LCX with 83% stenosis.

Baseline flow remains stable up to ~ 83% stenosis
Hyperemic flow declines steeply ~ 70% stenosis

R_{sys}

\[R_{sys} \]

FFR

\[FFR \]

CFR

\[CFR \]

RFR \[= \frac{\text{MAX FLOW}_{s}}{\text{MAX FLOW}_{n}} \]

\[RFR = \frac{\text{MAX FLOW}_{s}}{\text{MAX FLOW}_{n}} \]

In case of ISOLATED coronary artery stenosis

\[RFR = FFR \]

(per unit of tissue mass)
67% 83%

CFR \geq 3.5 \quad CFR \leq 1.7
% Stenosis vs. FFR

Tonino, P. et al. J. Am Coll Cardiol. 2010:55;2816-2821
Flow vs. Stenosis Paradox

Why is there a huge disparity between flow and anatomy?
Flow Dynamics

- describes relation of pressure to flow in an artery
 - $f =$ constant of pressure loss due to friction
 - $S =$ constant of pressure loss due to expansion

- F and s are related to stenosis geometry:
 - $F = 8^2$, $S = 2$
 - $\mu =$ blood viscosity, $A =$ cross sectional area of stenosed artery, $A_n =$ cross section area of normal artery, $L =$ length stenosis, $\rho =$ blood density.
 - $Area = \pi / 4$

- Critical dimensions are 1) L and 2) diameters of stenotic segment and normal segment to the fourth power.

- Flow is proportional to diameter to the 4th power \rightarrow a small decrease in diameter may cause a profound effect on flow.

A Little Physics (sorry!!)

- In 1738, Bernoulli published Hydrodynamic.
- \[\Delta P = \frac{1}{A_s \cdot L \cdot V^2} \]
- \[A_s = \pi r^2 \]
Gould, L. JACC Imag 2009; 2:1009
Flow vs. Stenosis Paradox

- Flow is determined by a combination of
 - Stenosis
 - Diffuse disease
 - Arterial remodeling
 - Microvascular function

- Impossible to visually determine the physiologic impact of aggregate disease
A - sMBF pre- and post-revascularization of quadrants with a baseline perfusion defect showing an improvement of 0.6 ± 0.7 cc/min/g (1.1 ± 0.4 vs 1.7 ± 0.8, $p<0.001$). B - sMBF pre- and post-revascularization of quadrants without a baseline defect (1.7 ± 0.3 vs 1.5 ± 0.4 cc/min/g, $p=0.16$). C - pre- and post-sMBF in quadrants without a baseline perfusion defect which were not revascularized (2.0 ± 0.6 vs 1.9 ± 0.7, $p=0.7$). sMBF - stress myocardial blood flow.
Cardiac PET and Flow

- High spatial resolution combined with quantitative measures
 - Relative Images – Attenuation corrected
 - Absolute flow (cc/min/gm)
- Gold standard for assessment of myocardial blood flow.
Conceptual Thresholds of Flow Causing Ischemia

% patients

CFR or stress flow in cc/ min/ gm
Ischemic Thresholds for Absolute Stress Flow

Ischemic Thresholds for Absolute Stress Flow

<table>
<thead>
<tr>
<th>First Author</th>
<th>Citation</th>
<th>n</th>
<th>Ischemia</th>
<th>Reference Standard</th>
<th>CFR [No units]</th>
<th>Stress Flow [UIA/MIA/gm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santucci</td>
<td>Am J Cardiol 1993;12:990</td>
<td>33</td>
<td>N-12</td>
<td>Glycerol ST depression</td>
<td>1.75</td>
<td>0.99</td>
</tr>
<tr>
<td>Matti</td>
<td>J Am Coll Cardiol 1998;31:534</td>
<td>91</td>
<td>N-13</td>
<td>Clinically normal group and cash area</td>
<td>2.74</td>
<td>0.91</td>
</tr>
<tr>
<td>Newman</td>
<td>Eur J Nucl Med Mol Imaging 2009;36:1394</td>
<td>48</td>
<td>0-18</td>
<td>Cash %NST >50 (plus FFIR in half of patients)</td>
<td>1.15</td>
<td>0.6</td>
</tr>
<tr>
<td>Hagin</td>
<td>J Am Coll Cardiol Img 2005;2:781</td>
<td>27</td>
<td>N-13</td>
<td>Cash %NST >70</td>
<td>2.0</td>
<td>0.80</td>
</tr>
<tr>
<td>Aladjer</td>
<td>Circulation 2013;127:608</td>
<td>107</td>
<td>0-18</td>
<td>Cash %NST >50 or FFIR>0.8</td>
<td>2.0</td>
<td>0.96</td>
</tr>
<tr>
<td>Jobst</td>
<td>J Am Coll Cardiol Img 2011;4:390</td>
<td>1.674</td>
<td>Rs-62</td>
<td>PET defect, glycerol angina/ST</td>
<td>1.74</td>
<td>0.53</td>
</tr>
<tr>
<td>Rosing</td>
<td>J Am Coll Cardiol 2012;60:1549</td>
<td>41</td>
<td>N-13</td>
<td>Cash %NST >70</td>
<td>2.44</td>
<td>0.83</td>
</tr>
<tr>
<td>Fischler</td>
<td>J Nucl Med 2012;53:1230</td>
<td>73</td>
<td>N-13</td>
<td>Cash %NST >50</td>
<td>2.0</td>
<td>0.92</td>
</tr>
<tr>
<td>Sardan</td>
<td>J Nucl Med 2013:45:65</td>
<td>120</td>
<td>0-18</td>
<td>Cash %NST >50 (plus FFIR in third of patients)</td>
<td>2.30</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Relative vs. Absolute Perfusion

A

Absolute Flow Reserve

2.7

(1.8)

(3.0)

Relative Perfusion

60%

100%

B

(1.2)

1.8

(2.0)

60%

100%

C

(1.1)

1.3

(1.4)

79%

100%
Kinetic Models

- **Time sequenced** measurement of radiotracer concentration in blood &/or tissues
- Mathematically illustrates “real life”
- Various models – all correct
- Each isotope has its own model(s)
- Simplified Rb-82 model example
Flow = \(\frac{M}{T_m} \left[1 - e^{-\left(0.45 + 0.16 \text{Flow}\right)/\text{Flow}} \right] A [C_a] [C_m] \)

- \(M \): myocardial activity (measured)
- \(A \): input function (measured)
- \(T_m \): Time duration of image
- \(C_{am} \): partial volume corrections
Simplified model for Rb-82

Yoshida, Mullani, Gould JNM 1996;37:1701

- Aortic activity
- Single image arterial input
- "Instantaneous" myocardial uptake
- Myocardial activity
Acquisition of Cardiac Images for Rb-82 Rest/Stress in List Mode

1. Attenuation Scan
2. Injection of Rb-82 bolus and start of scan
3. Acquisition of arterial input (0-120 secs)
4. Acquisition of myocardial uptake (90-420 sec)
5. Generator recovery and start of dipyridamole infusion
6. Gating
7. Acquisition of arterial input (0-120 secs)
8. Acquisition of myocardial uptake (90-420 sec)
9. Injection of Rb-82 bolus and start of stress scan
10. Gating
Can My Practice Measure Flow?

- Various software packages available
- No standardized reporting guidelines
- Training for physician interpretation
- Training for technologists
- Physician leadership within the practices needs to "own" it
Should My Practice Measure Flow?

- **Cannot be done casually**
- Requires specific interest, commitment, training, and experience
- Physician must be able to:
 - Provide accurate and reliable myocardial perfusion and absolute flow
 - Integrate physiologic data
 - Management decision for each individual patient.
Software Packages

- Corridor4DM™ - Invia
- ImagenQ™ - CVIT
- FlowQuant™ - Ottawa Heart
- FlowTool™ - Emory
- QPET™ - Cedars
Other Software Packages

- CFRQuant™ - Sold through Positron
- SyngoMBF™ - Siemen's
Anatomic Versus Physiologic Assessment of Coronary Artery Disease

Role of Coronary Flow Reserve, Fractional Flow Reserve, and Positron Emission Tomography Imaging in Revascularization Decision-Making

K. Lance Gould, MD, Nils P. Johnson, MD, MS, Timothy M. Bateman, MD, Rob S. Beanlands, MD, Frank M. Bengel, MD, Robert Bober, MD, Paolo G. Camici, MD, Manuel D. Cerqueira, MD, Benjamin J. W. Chow, MD, Marcelo F. Di Carli, MD, Sharmila Dorbala, MD, MPH, Henry Gewirtz, MD, Robert J. Gropler, MD, Philipp A. Kaufmann, MD, Paul Knaapen, MD, PhD, Juhani Knuuti, MD, PhD, Michael E. Merhige, MD, K. Peter Rentrop, MD, Terrence D. Ruddy, MD, Heinrich R. Schelbert, MD, PhD, Thomas H. Schindler, MD, Markus Schwaiger, MD, Stefano Sdringola, MD, John Vitarelli, MD, Kim A. Williams, Sr, MD, Donald Gordon, MD, Vasek Dilsizian, MD, Jagst Narula, MD, PhD

Houston, Texas; Kansas City and St. Louis, Missouri; Ottawa, Ontario, Canada; Hannover and Munich, Germany; New Orleans, Louisiana; Milan, Italy; Cleveland, Ohio; Boston, Massachusetts; Zurich and Geneva, Switzerland; Amsterdam, the Netherlands; Turku, Finland; Niagara Falls and New York, New York; Los Angeles, California; Frederick and Baltimore, Maryland; Detroit, Michigan; and Birmingham, Alabama
CASE #1

- 49 y/o woman admitted for CP
- DM, HTN and tob use
- Presenting BP 173/109
- Trp negative
- ECG sinus with NSSTabn
CASE #1

49 y/o woman admitted for CPDM, HTN and tob use

Presenting BP 173/109

Trp negative

ECG sinus with NSSTabn

CASE #1
Case #1

Rest flow (cc/min/gm)
- LAT average = 1.09
- INF average = 1.04
- SEP average = 0.93
- ANT average = 1.13

Stress flow (cc/min/gm)
- LAT average = 3.24
- INF average = 3.36
- SEP average = 3.13
- ANT average = 3.36

Coronary flow reserve
- LAT average = 2.99
- INF average = 3.28
- SEP average = 3.38
- ANT average = 2.99
Coronary Flow Map

88% Normal flow capacity comparable to healthy young volunteers.
8% No ischemia. Minimally reduced flow capacity.
4% No ischemia. Mildly reduced flow capacity.
0% Moderately reduced flow capacity.
0% Severely reduced flow capacity.
CASE #2

- 65 y/o man CP and DOE
- HTN, DM, HPL, BMI 42 (6’0 315lbs)
- Tchol 206, TG 1326, HDL 20
- ECG - nsr with inc RBBB
CASE #2
Case #2

Coronary Flow Map

0% Normal flow capacity comparable to healthy young volunteers.
2% No ischemia: Minimally reduced flow capacity.
62% No ischemia: Mildly reduced flow capacity.
24% Moderately reduced flow capacity.
13% Severely reduced flow capacity (largest single contiguous region: 9%).
(5% Myocardial steal.)
Case #3

- 44 y/o woman transferred for TMR for lifestyle limiting angina
- h/o >5 PCI's, 5VCABG, 4/5 grafts occluded
- Known RCA and LCX occlusion
- Patent SVG jump to OM1-OM2
- Pt. arrived and PCI of LAD performed
- Angina walking to bathroom later that PM
Case #3
Case 3

Rest flow (cc/min/gm) (max=0.95 min=0.24 whole=0.52 arterial=10.42)
LAT average=0.70
INF average=0.48
SEP average=0.43
ANT average=0.46

Stress flow (cc/min/gm) (max=1.46 min=0.37 whole=0.75 arterial=9.03)
LAT average=0.70
INF average=0.78
SEP average=0.89
ANT average=0.63

Coronary flow reserve (max=2.59 min=0.60 whole=1.52)
LAT average=1.02
INF average=1.59
SEP average=2.04
ANT average=1.45
Case #3

Coronary Flow Map

0% Normal flow capacity comparable to healthy young volunteers.
0% No ischemia. Minimally reduced flow capacity.
23% No ischemia. Mildly reduced flow capacity.
21% Moderately reduced flow capacity.
56% Severely reduced flow capacity (largest single contiguous region: 55%).
(10% Myocardial steal.)

14% Non-transmural myocardial infarction (single contiguous region).
Case #4

- 65 y/o woman with CP in ED
- BP 170/110
- Tob use, HTN, unknown lipids, denies DM
- ECG- LVH strain
- Trp borderline
Case #4
Case #4
Case #4

Coronary Flow Map

0% Normal flow capacity comparable to healthy young volunteers.
12% No ischemia. Minimally reduced flow capacity.
43% No ischemia. Mildly reduced flow capacity.
15% Moderately reduced flow capacity.
30% Severely reduced flow capacity (largest single contiguous region: 23%).
(16% Myocardial steal.)
Case #5

- 87 y/o man with CP and SOB
- Found to be in afib with RVR
- HTN, HPL, DM
- Trp 3.5
- Beta-blockers → converted to sinus
- LHC occluded RCA and "3VD" referred for CABG
- PET requested for 2nd opinion by patient
Case #5
Case #5

Coronary Flow Map

0% Normal flow capacity comparable to healthy young volunteers.
16% No ischemia. Minimally reduced flow capacity.
63% No ischemia. Mildly reduced flow capacity.
9% Moderately reduced flow capacity.
32% Severely reduced flow capacity (single contiguous region).
(6% Myocardial steal.)