ELECTRONIC CIGARETTES AND NUCLEAR MEDICINE?

Nicole Langan1, Jonathan Baldwin1, Wendy Galbraith2, Hari Gali2, Evan Floyd3

1. University of Oklahoma Health Sciences Center, College of Allied Health, Department of Medical Imaging and Radiation Sciences
2. University of Oklahoma Health Sciences Center, College of Pharmacy, Department of Nuclear Pharmacy
3. University of Oklahoma Health Sciences Center, College of Public Health, Department of Environmental Science
OBJECTIVE

- Pilot study
- Feasibility of aerosolizing Tc-99m DTPA
- Explore alternate delivery device
- Compare to current nebulizer method
- Nuclear medicine lung ventilation procedures
Evidence of nebulizer inefficiency

25-35 millicuries (mCi) to nebulizer; 0.5-1.0 mCi to lungs

General range of 5-40% inhaled

Less than 20% total drug deposited

E-cigs: category of devices on market
E-CIGS BACKGROUND

Fourth Generation

http://www.casaa.org/electronic-cigarettes/

http://eciglopedia.com/the-4-generations-of-electronic-cigarettes/
MATERIALS & METHODS

- Performed in OUHSC nuclear pharmacy
- Fortified, air-tight box constructed
- E-cig aerosol sampled by filtration
- Respirable (RESP) and inhalable (IOM)
- Mixing fan
- HEPA filter
MATERIALS & METHODS

• Trials: n=11 hot, n=13 cold, n=5 nebulizer, n=8 blank
• Hot- Tc-99m DTPA propylene glycol (PG)
• Cold- PG only
• Hot trials- Dose calibrator reading
• Hot trials- Well counter recordings
• Post-vaporization tagging efficiency
• Nebulizer trials- DTPA aerosolized 5 min
SIMULATED PUFFING PROCESS
• Non-parametric methods used
• Filter count differences- Wilcoxon tests.
 • Also compared to blank trials
• All tests- 5% type 1 error (SAS 9.4 Cary NC)
Figure 1: Filter Radioactive Counts Among Blank, Hot E-Cigarette, and Nebulizer Trials.

<table>
<thead>
<tr>
<th>P Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both filters compared to blanks: p=0.0009</td>
</tr>
<tr>
<td>RESP to blanks: p=0.0189</td>
</tr>
<tr>
<td>IOM to blanks: p=0.0186</td>
</tr>
<tr>
<td>Nebulizer to e-cig RESP: p=0.0043</td>
</tr>
<tr>
<td>Nebulizer to e-cig IOM: p=0.0113</td>
</tr>
</tbody>
</table>
DISCUSSION

• Tc-99m DTPA- aerosolized through e-cig
• Benefit of e-cig- smaller particles\(^3\)
• E-cig aerosol particles:
 • 250-450 nanometers (nm) and 145-168 nm\(^8,9\)
• Venti-Scan IV nebulizer particles:
 • 500 nanometers (nm)\(^10\)
• Aerosolization of metal
DISCUSSION CONT'D.

• Our results- nebulizer superior, however:
 • Address power setting & puffs
• Enhanced delivery- increasing power levels11
 • Drug administration more patient adaptive3
• E-cig disadvantage- thermally stable drug3
• Safety concerns- flavor-free, nicotine-free3 (PG)
• Safety concerns- appropriate power levels3
LIMITATIONS & WEAKNESSES

• Low sample size
• Artificially mimicking processes
• E-cigarette trials assessed one power setting
• Didn’t assess different types - e-cigarettes
CONCLUSION

• Tc-99m DTPA was aerosolized
• Post-vaporization tagging efficiency greater than 90%
• Adaptable power option is promising
• Future studies
• Alternative delivery device hypothesis

