(Application-level) Security for ROS-based Applications

Bernhard Dieber1
bernhard.dieber@joanneum.at

Benjamin Breiling1, Severin Kacianka2, Stefan Rass3, Peter Schartner3

1 JOANNEUM RESEARCH, Institute for Robotics and Mechatronics, Austria
2 Technical University of Munich, Software Engineering Group, Germany
3 Alpen-Adria Universität Klagenfurt, Institute of Applied Informatics, Austria
Issues in industrial security

- Newly evolving vulnerabilities in industrial control networks
 - Internet of Things
 - Teleworking / remote access
 - Cloud computing
 - Bring your own device
 - …

- Several successful attacks have been reported (not always officially)
 - Stuxnet
 - Jeep hack
 - Ukrainian power grid hack
 - Robots manipulated to put less welding points
 - …

- Network security is not enough
 - Multi-layer security is required
Outside industry

- Use of ROS even more likely (service robots, toys, …)
- Use in private homes
- Attacking the network is even simpler
 - Enter via malware, baby monitor, smart meter, ….
 - (Even) lower security awareness
- Higher volume of devices
- Massive privacy issues
Security in ROS

- Decoupling and transparency in publish / subscribe systems causes security issues
 - Not a ROS-specific problem
- Security: not part of the design so far – many vulnerabilities*
- No authentication
- No encryption
- No data integrity

Attack vectors on a ROS-application

- Data injection
 - Unauthorized publishing
 - Inject commands or false data

- Data eavesdropping
 - Unauthorized subscribing
 - Gain insight into production process
 - What about camera images? *Privacy!*

- Denial of Service
 - Shutdown nodes by using same name
 - High-frequency publishing
Application-level Security Enhancements [1]

- **Authentication of talkers/listeners**
 - Registration: challenge-response authentication of legitimate components
 (use certificates)
 - Sending messages: mandatory digital signature
 - Receiving messages: reject if not signed or signature invalid

- **Confidentiality**
 - use topic-key shared between all talkers/listeners
 - illegitimate talkers cannot produce "understandable" messages
 - illegitimate listeners won’t understand what others talk about
Application-level Architecture

P2P Security for ROS [2]

- Integrated to ROS core
- Secure low-level communication using TLS
- Establish trust between nodes on p2p basis
- Modify `ros_comm` package
- Similar to SROS but in roscpp, TCP & UDP

Outlook

- Certificate Management
- Security for robot swarms
- Non-centralized security management
Security by optimism and prayer

Expert

Hoping Nobody Hacks You

O RLY?

@ThePracticalDev