An outlook for robotics (in industry and service)

Martin Haegele

Fraunhofer IPA, Stuttgart

Oct 13, 2016

International Federation of Robotics IFR

- Represents the global robotics industry
- Turn-over 2015 industrial robotics ~ US\$35bn
- >50 members:
 - National robot associations
 - R&D institutes
 - Robot suppliers
 - Integrators
- World (Industrial and Service)
 robotics Yearbooks; <u>www.ifr.org</u>;
 <u>www.worldrobotics.org</u>
- → Look for downloads. Complete set of data or DB access subject to fee.

Industrial Robotics on the rise in a globalized economy; some basic statistics

Industrial robot shipments worldwide in thousands of units (2016+ estimated) $_{414}$

Industrial robot density worldwide In selected regions (in 2015)

- Global turn over in industrial robotics ~US\$35b (+15.5%); 2015: 253k, 2019: 414k units
- In 2019, estimated 2.6m industrial robots in factories worldwide; 1 million more than in 2015
- Total Industrial Robotics market worldwide estimated US\$25bn.
- Strong growth in Asia (China) will impact technology, cost, supply chain of industrial robotics

Industrial Robotics: Almost 70% of systems installed in three main industries

Estimated worldwide operational stock of industrial robots at year-end by main industries 2013 - 2015

Source: IFR World Robotics 2016

- Share of robot sales into automotive industries in 2015 → some 40%
- Robots for electrical/electronics industry (3C industries incl. medical equipment, precision/optical devices) were up 41% in 2015 to 64,600 units

Some major technological trends in IR

Safe human robot collaboration

Interfacing with production data

Cost effectiveness

Sensors

Cognitive capabilities

Intuitive instruction (skills), error recovery

- Industrie4.0/Industrial Internet will have strong impact on technological progress
- Still, incremental/evolutionary innovation process in industry
- Role of human operator shifting → knowledge worker on the shopfloor
- Example: SMErobotics in 100 sec; <u>www.smerobotics.org</u>

Industrial Robotics in Industrie4.0-environments Basic architecture of I4.0 platforms

Portal

Platform

Services

Cyber-physical systems

ISV: Independent Software Vendor ERP: Enterprise Resource Planning Software MES: Manufacturing Execution System

Main application areas of Service Robots

Professional Use		Personal/domestic use
17-23	Field robotics	1-6 Robots for domestic tasks
24-28	Professional cleaning	7-10 Entertainment robots
29-31	Inspection and maintenance systems	11-13 Elderly and handicap assistance
32-35	Construction and demolition	14 Personal transportation (AGV for person
36-39	Logistic systems	15 Home security & surveillance
40-43	Medical robotics	16 Other Personal / domestic robots
44-46	Rescue & security applications	
47-51	Defense applications	
52	Underwater systems (civil / general use)	
53	Powered Human Exoskeletons	
54	Unmanned aerial vehicles (general use)	
55	Mobile Platforms in general use	
56-60	Underwater systems (civil / general use)	

Other

61

Service Robotics for Professional Use

Service robots for professional use. Estimated value of sales 2014 and 2015 and estimated value of forecast 2016 - 2019 (main applications)

Service Robotics for personal/domestic use

Service Robotics is taking off

2015: US\$ 6.8bn global turn over globally (corresponds to ~20% of industrial robotics)

2016-2019: US\$ 45bn accumulated sales value

2016 - 2019: US\$ 22.4bn turnover of personal/domestic service robots

Number of service robot manufacturers of all types (professional and personal/domestic use) by region of origin

Service Robotics (domestic and professional applications): more than 620 active companies

Service Robotics: Opportunities give birth to a new industry worldwide

Number of service robot manufacturers

250 —— (professional and personal/domestic use) by country of origin

Service Robotics: Industrial activity in relation to national GDPs

Number of service robot manufacturers; normalized [per US\$1.000bn in GDP]

2015 GDPs; https://en.wikipedia.org/wiki/List_of_countries_by_GDP_%28nominal%29

Service robotics: Some observations

- Service robotics: strong growth and technology burst
- 625 companies world wide developing/supplying service robots
- Hot field of start-up activities (185/625→28%, >US\$1bn 2015 in VC investment)
- First eco-systems being formed (networks of end-users, suppliers, technology partners, application modules/packages, services, consulting):
 - Mobile robot platforms
 - Unmanned aerial vehicles/multicopter/drones
- Strong facilitators for ecosystems:
 - Mature multi-purpose hardware platforms
 - Open source software-systems → start-ups
- European potential for further growth:
 - Logistics, health, domestic/personal, ...

Robotics and jobs: Image of automation

Automation has a **positive net effect** on labour demand [in Europe]:

- Automation reduces production cost
- Reduced product costs reduce prices
- Reduced product prices increase demand for products
- Increased product demand increases employment.

Main challenge for future work → coping with rising inequality, as technological change creates both winners and losers. Policy makers should focus on the qualifications of the workers to ensure that workers' skills match future skill requirements.

Download ZEW-Study: http://ftp.zew.de/pub/zew-docs/gutachten/Robotics_Employment_2016.pdf