Bootstrapping ROS-Industrial in Asia Pacific

Prepared by: Min Ling Chan
12th December 2017
Agenda

• Who we are?
• Bootstrapping ROS-Industrial in Asia Pacific
 – Leveraging Open-Source Software → ROS-Industrial
 • Awareness of shift towards industry adoption
 - AP members
• Leveraging Open-Source Software for SMEs and Startups
• Using ROS for “ROS-Industrial” applications
WHO WE ARE?
Who we are? A*STAR, Singapore Research Ecosystem

MISSION
We advance science and develop innovative technology to further economic growth and improve lives

VISION
A global leader in science, technology and open innovation

Annual Outputs (FY2011 – 2015)
- >1,700 Industry projects a year
- >2800 Papers published a year
- >14 Start-Ups a year
- >270 Patents filed a year

Our Membership

- Industry-led Public-Private Partnership
- AxRC Model
- Mission – Bridge the Gap from Research to Industry Applications for Remanufacturing & Manufacturing for Cross-Sectorial Industries

Advanced Remanufacturing and Technology Centre, ARTC

- Biomedical Research Council (BMRC)
- Science & Engineering Research Council (SERC)
- ETPL
- A*STAR Graduate Academy Scholarships

>5,200 STAFF

>4,100 Researchers, Engineers and Technical Support Staff

>38% of whom come from 64 countries

Our Member Ecosystem

- Aerospace
- FMCG
- Oil & Gas
- Marine
- Machinery

Project Delivery

- Our Manpower
- Facility Growth
Our Industry Expertise: Six Technological Groups

Smart Manufacturing and Robotics
- Test-bedding of Industrie 4.0 Technologies
- Intelligent System and Connectivity
- Virtual Manufacturing & Digital Twin
- E2E Cyber-Physical Solutions

Advanced Manufacturing
- Industrial Manufacturing and Remanufacturing Process
- Masking & Automation Technologies
- Intelligent Machining Technologies
- Regenerative Repair Processes

Intelligent Product Verification and Surface Enhancement
- Complex Geometric & Surface Measurement
- Non-Destructive Testing & Inspection Solutions
- Condition Monitoring & Lifetime Prediction

Additive Manufacturing Industrialisation
- Industrialisation of Metal 3D Printing
- Additive Process Development
- Optimisation of Pre- and Post-Proceses
- Material Characterisation

Data-Driven Surface Enhancement
- Surface Finishing & Preparation
- Robotic Shot Peening
- Alternative Fatigue Enhancement Processes
- Stress & Fatigue Analysis
The 24 Project Themes have been developed based on relevance and of highest priority to companies across industry sectors.

Model Factory @ ARTC will be divided into 2 phases featuring 3 manufacturing lines and 1 virtual showcase, covering end-to-end digital thread along the manufacturing value chain.

Phase 1:

1. Discrete manufacturing line
 - Focuses in processes addressing components of low volume with high complexity

Phase 2:

2. Additive manufacturing line
 - Pre and post AM processes
 - High mix with high complexity components

3. Virtual Showcase
 - Digital Factory
 - E2E digital thread

4. Mini Continuous manufacturing line
 - Addresses high volume products

ARTC’s Model Factory (Advanced) Testbed will focus in 3 production methodologies and a Virtual Showcase.
BOOTSTRAPPING ROS-INDUSTRIAL IN ASIA PACIFIC
The Objective:

- Increase global competitiveness of the robotics industry through ROS development and adoption in Asia Pacific
- Develop ROS-Industrial talent pool through training, summer schools and workshops
- Address specific features for industry applications

This runs separately from ARTC’s consortium.
Projects run by ROS-I APAC Consortium will be managed by ROS-I Consortium structure and guidelines in the ROS-I APAC membership agreement.

Examples of ROS based products in Asia Pacific

- Hope Technik (Singapore)
- Ctrlworks (Singapore)
- DJi (China)
 VCs include Sequoia Capital, Accel
- YuJin Robotics (Korea)
- Kawada Robotics (Japan)
- CSIRO – Bobcat (Australia)
- Jinan Tony Robotics (China)
ROS Statistics

<table>
<thead>
<tr>
<th>Country</th>
<th>Unique Wiki Visitors 2016</th>
<th>Country</th>
<th>Unique Wiki Visitors 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>85,023 (23.06%)</td>
<td>United States</td>
<td>100,711 (20.08%)</td>
</tr>
<tr>
<td>China</td>
<td>62,933 (17.97%)</td>
<td>China</td>
<td>90,120 (17.97%)</td>
</tr>
<tr>
<td>Japan</td>
<td>30,745 (8.34%)</td>
<td>Japan</td>
<td>45,834 (9.14%)</td>
</tr>
<tr>
<td>Germany</td>
<td>28,022 (7.60%)</td>
<td>Germany</td>
<td>39,590 (7.89%)</td>
</tr>
<tr>
<td>India</td>
<td>12,918 (3.50%)</td>
<td>India</td>
<td>20,632 (4.11%)</td>
</tr>
<tr>
<td>Taiwan</td>
<td>11,301 (3.04%)</td>
<td>South Korea</td>
<td>16,683 (3.33%)</td>
</tr>
<tr>
<td>South Korea</td>
<td>9,990 (2.71%)</td>
<td>United Kingdom</td>
<td>12,784 (2.55%)</td>
</tr>
<tr>
<td>Singapore</td>
<td>9,015 (2.44%)</td>
<td>Taiwan</td>
<td>11,809 (2.36%)</td>
</tr>
<tr>
<td>Canada</td>
<td>8,928 (2.42%)</td>
<td>Canada</td>
<td>11,685 (2.33%)</td>
</tr>
<tr>
<td>Spain</td>
<td>8,517 (2.31%)</td>
<td>France</td>
<td>11,651 (2.32%)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>8,436 (2.29%)</td>
<td>Spain</td>
<td>10,445 (2.08%)</td>
</tr>
<tr>
<td>Italy</td>
<td>7,678 (2.09%)</td>
<td>Singapore</td>
<td>9,751 (1.94%)</td>
</tr>
<tr>
<td>Australia</td>
<td>7,663 (2.09%)</td>
<td>Italy</td>
<td>9,366 (1.87%)</td>
</tr>
<tr>
<td>Russia</td>
<td>6,450 (1.75%)</td>
<td>Hong Kong</td>
<td>9,289 (1.85%)</td>
</tr>
<tr>
<td>Brazil</td>
<td>5,171 (1.40%)</td>
<td>Russia</td>
<td>8,380 (1.67%)</td>
</tr>
<tr>
<td>Switzerland</td>
<td>4,805 (1.30%)</td>
<td>Australia</td>
<td>6,346 (1.27%)</td>
</tr>
<tr>
<td>Portugal</td>
<td>3,554 (0.96%)</td>
<td>Brazil</td>
<td>5,959 (1.19%)</td>
</tr>
<tr>
<td>Netherlands</td>
<td>3,120 (0.85%)</td>
<td>Switzerland</td>
<td>4,414 (0.89%)</td>
</tr>
<tr>
<td>Turkey</td>
<td>3,074 (0.83%)</td>
<td>Turkey</td>
<td>4,399 (0.90%)</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>2,603 (0.71%)</td>
<td>Netherlands</td>
<td>4,243 (0.87%)</td>
</tr>
<tr>
<td>Israel</td>
<td>2,462 (0.67%)</td>
<td>Poland</td>
<td>4,176 (0.83%)</td>
</tr>
<tr>
<td>(not set)</td>
<td>2,386 (0.65%)</td>
<td>Sweden</td>
<td>3,159 (0.63%)</td>
</tr>
<tr>
<td>Mexico</td>
<td>2,374 (0.64%)</td>
<td>Portugal</td>
<td>3,150 (0.63%)</td>
</tr>
<tr>
<td>Poland</td>
<td>2,214 (0.63%)</td>
<td>Mexico</td>
<td>3,124 (0.62%)</td>
</tr>
<tr>
<td>Greece</td>
<td>2,076 (0.56%)</td>
<td>Greece</td>
<td>2,683 (0.54%)</td>
</tr>
</tbody>
</table>

- Statistics for ROS.org downloads
- 7 EU countries in top 20
- 8 AP countries in top 20

Number of ROS users in AP is growing

Source: OSRF
ROS-Industrial Consortium Members > 55

Source: http://rosindustrial.org/
AP New Members in November

- Who they are?
 - HQ: Taiwan
 - 1400+ Employees
 - ADLINK is becoming a technology-leading platform *provider in the applied computing industry, IOT*

- Benefit for joining
 - Able to develop hardware for ROS (DDS)

- Who they are?
 - HQ: Tokyo Japan
 - 20 people incl. 16 researchers
 - Consortium based in Japan

- Benefit for joining
 - Community bridge to Japan users
Latest AP Member

• Who they are? Tony Robotics
 • HQ: China
 • 40+ people
• Benefit for joining
 – RoboWare: Open Source IDE based on ROS
 – RoboStore, Robo School

• Who they are? M8M Pte Ltd
 • HQ: Singapore
 • 75+ people
• Benefit for joining
 – Adoption of ROS-Industrial in their development of material handling systems for Intralogistic systems
 – System integration company
What can ROS-Industrial do for you?

Hardware interfaces
- Common software capabilities for various hardware

Software Development
- ROS drivers
- Maintenance
- Applications

Education & Training
- Workshops
- Training
- Summer Schools

Community & Networking

FTP Projects (Multi-Member)

Specific Member Projects
LEVERAGING OPEN-SOURCE SOFTWARE FOR SME AND STARTUPS
ROS for ?

• System integrators / startups:
 – Depends on HW, SW selected
 – Improving application software development pain.
 – Beneficial by joining consortium from a PR & Marketing perspective

• OEM:
 – HW manufactures are beginning to request that their software also works with ROS
How ROS-Industrial can help SMEs and industry?

- Technology growth is rapid
- New technology is cost consuming to implement
- Don’t re-invent the wheel
- Re-use of programming packages and code
- Improve efficiency
USING ROS FOR “ROS-INDUSTRIAL” APPLICATIONS
Scan-N-Plan™ in Singapore

- Adding capability for:
 - UR
 - Fanuc
PackML: Scope & Deliverables

- **Collaborators:** 3M, ARTC, SwRI, PlusOne Robotics

- **Problem Statement:** Software development of using PackML state machine to communicate between PLC and ROS.

- **Delivered:**
 - **Tested** with a remote PLC using a standard PackML implementation using OPC-UA to connect to the PLC
 - **Developed** an open-source C++ library, python (SMACH) to implement the PackML state machine abstraction for use in ROS-I.
 - **Integrate RVIZ** plugin for PackML
 - PACKML State Machine
 - Provide options for mode selection
 - Show accumulative timer per state
PackML Architecture

Original State:
ROS does not interact and communicate between PLC

Final State:
ROS is acting as a middleware and PLCs
Communicating ROS ↔ PLC

Methods:
2 Methods of ROS as a Middleware communication with PLC
1. PLC as the master sending signals to ROS
2. ROS as the master
 – Signals and messages to the PLC (Siemens) – KUKA via ROS as a middleware

Benefits:
• State machine applied to ROS C++ node for any industrial application
• State control reporting ROS-I messages, reusable GUI widget

GitHub https://github.com/ros-industrial-consortium/bohr_devel
Business Analytics Dashboard

Approach
- Open source tools will be used to create the Dashboard, there is no need to “invent the wheel” on any components, leveraging the benefits of ROS.
- The components for development are available gui (QT), plots (pyqtplot) and communication with the robot (ROS).
- A generic PackML test system is available to developers for testing.
- A web-based Ruby on Rails implementation of the dashboard is desirable for operation on ANY system (windows, tablet, etc.)

Metrics for success:
- GUI demonstration on PackML system

Motivation/Objective
- **Motivation:**
 - Displaying the real-time OEE allows the end-user to measure and increase the ROI of the robot asset.
 - Standardization using the PackML state machine allows for swift implementation and reporting.
- **Objectives:**
 - Real-Time Pareto Analysis
 - Instantaneous & Historical OEE (Overall Equipment Effectiveness)
 - QT & Ruby on Rails implementation
 - Example code and documentation

Scope Of Work
- **Developer 1**
 - Task: QT implementation of OEE displays
 - Schedule: 1 week
- **Developer 2**
 - Task: QT implementation of Pareto Analysis
 - Schedule: 1 week
- **Developer 3**:
 - Task: Documentation, Examples & Testing
 - Schedule: 2 week
- **Developer 4:**
 - Ruby on Rails implementation of the
 - Schedule: 3 weeks
PackML Call for Contributors

Current Contributors:

• ROS-I AP: Mingli Han, SMACH and remote plc
• PlusOne Robotics: Shaun Edwards, C++ Package
• 3M: Schoen Schuknecht, Lex Tinkett, Tom Strey: PLC and PackML support
• SwRI: Austin Deric, Paul Evans

• Call for contributors and testers: C++ Package, SMACH, GUI interface
• Call for contributors for next phase 2: (3-4 months)
 – OEE (limited to “Availability”)
 – Other PLCs with OPC-UA connectivity
Bootstrapping moving forward ...

- Increase Asia Pacific engagement thru
 - Projects (FTP, Member)
 - Increase ROS-Industrial use and talent pool
 - Focus on industry specific applications
ROS-I AP Consortium
3 Cleantech Loop
#01-01 CleanTech Two
Singapore 637143

Email: ros-i_asia@artc.a-star.edu.sg

www.rosindustrial.org