HRIM
Hardware Robot Information Model

Irati Zamalloa
irati@erlerobotics.com

Erle Robotics
an Autonomous Robotics company
Erle & Acutronic Robotics: Brief History
Acutronic Robotics is a leading robotics firm focused on next-generation robot solutions around two verticals:

1. **Modular robots, H-ROS.**

2. **Artificial intelligence applied to robotics.**
“The more time is spent dealing with hardware/software interfaces, the little is put into behavior development on real-world scenarios”
H-ROS

“A standardized software and hardware stack to easily create reusable and reconfigurable robot hardware parts.”

SIMPLIFYING ROBOTICS
HRM
HRIM

“A common interface for robot modules”
Constants are chosen to match the enums in the linux kernel
defined in include/linux/power_supply.h as of version 3.7
The one difference is for style reasons the constants are
all uppercase not mixed case.

Power supply status constants
uint8 POWER_SUPPLY_STATUS_UNKNOWN = 0
uint8 POWER_SUPPLY_STATUS_CHARGING = 1
uint8 POWER_SUPPLY_STATUS_DISCHARGING = 2
uint8 POWER_SUPPLY_STATUS_NOT_CHARGING = 3
uint8 POWER_SUPPLY_STATUS_FULL = 4

Power supply health constants
uint8 POWER_SUPPLY_HEALTH_UNKNOWN = 0
uint8 POWER_SUPPLY_HEALTH_GOOD = 1
uint8 POWER_SUPPLY_HEALTH_DEAD = 3
uint8 POWER_SUPPLY_HEALTH_OVER_VOLTAGE = 4
uint8 POWER_SUPPLY_HEALTH_UNSTABLE = 5
uint8 POWER_SUPPLY_HEALTH_UNKNOWN = 6
uint8 POWER_SUPPLY_HEALTH_WATCHDOG(timer_expire) = 7
uint8 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRED = 8

Power supply technology (chemistry) constants
uint8 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0
uint8 POWER_SUPPLY_TECHNOLOGY_LITH = 1
uint8 POWER_SUPPLY_TECHNOLOGY_LION = 2
uint8 POWER_SUPPLY_TECHNOLOGY_LIPD = 3
uint8 POWER_SUPPLY_TECHNOLOGY_LIPM = 4
uint8 POWER_SUPPLY_TECHNOLOGY_LIMN = 5
uint8 POWER_SUPPLY_TECHNOLOGY_LIMN = 6

This message communicates the state of the power system.
Header header
float64 voltage # [V]
float64 current # [A]
float64 power_consumption # [W] can only be calculated if not charging
float64 remaining_capacity # [Ah]
bool charging # flag if robot is connected to external power or not
float64 relative_remaining_capacity # [0.0..1.0] percent of maximum capacity (parameter max_capacity)
float64 time_remaining # [h] estimated time to empty or fully charged
float64 temperature # [Celsius] temperature of the battery

Extra variables
float32 voltage
float32 current
float32 charge
float32 capacity # Capacity in Ah (last full capacity) (if unmeasured NaN)
float32 design_capacity # Capacity in Ah (design capacity) (if unmeasured NaN)
float32 percentage # Charge percentage on 0 to 1 range (if unmeasured NaN)
uint8 power_supply_status
uint8 power_supply_health
uint8 power_supply_technology
bool present # True if the battery is present
float32[] cell_voltage # An array of individual cell voltages for each cell in the pack
string location # The location into which the battery is inserted
string serial_number # The best approximation of the battery serial number

uint8 UNPLUGGED = 0
uint8 PLUGGED_TO_ADAPTER = 2
uint8 CHARGE_COMPLETED = 3
uint8 BATTERY_LOW = 4
uint8 BATTERY_CRITICAL = 5
uint8 event
<table>
<thead>
<tr>
<th>Naoqi</th>
<th>Kobuki</th>
<th>Evarobot</th>
</tr>
</thead>
</table>

Publisher:

bumper:
- uint8 bumper # which bumper (left or right)
- uint8 state # state of the bumper (pressed or released)
- uint8 right=0
- uint8 left=1
- uint8 back=2
- uint8 stateReleased=0
- uint8 statePressed=1

Publisher:

bumper:
- uint8 LEFT = 0
- uint8 CENTER = 1
- uint8 RIGHT = 2
- uint8 RELEASED = 0
- uint8 PRESSED = 1
- uint8 bumper
- uint8 state

Publisher:

bumper:
- std_msgs/Header header
- bool [] state

Parameters:
- ~i2c_path (string, default: /dev/i2c-1)
- ~commandTopic (string, default: bumper)
- ~frequency (double)
HRIM

The Hardware Robot Information Model

- Interoperability
- Modularity
- Solid infrastructure
- Collaborative

 github.com/erlerobot/HRIM

- ROS 2.0
Cognition

Actuator
- Rotary servomotor
- Speaker

Sensor
- Camera
- Range finder

Communication
- WiFi
- Switch

User Interface
- Joystick
- Tactile screen

Power
- Battery
- Power supply

Composite
- Mobile base
- Conveyor

CLASSIFICATION
HRIM <component> Model

- Most of robotics components.
- Designed one by one:
 - Analysis
 - Conclusion
 - Create the model
 - Improve
- Updates.
The general structure in which all the HRIM component models are based on. Each component has **topics**, **services**, **parameters** and **actions** to communicate. For each one of these abstractions, the figure illustrates that some will be mandatory and some others optional.
COLLABORATION
CONCLUSION

• Robotics community need a common interface database focused on hardware.

• HRIM offers to the robotics community a common interface that facilitates the manufacturing of reusable and interoperable robot hardware module.

• HRIM it is being built side by side with manufacturers and experts.

• All we win.
NEXT STEPS

- Packages generator.
- MDE techniques.
- FTP.
- Electronic datasheet.