FLEXIBLE AUTOMOTIVE ASSEMBLY WITH INDUSTRIAL CO-WORKERS

M.Sc. Georg Heppner
Stellv. Abteilungsleiter Interaktive Diagnose- und Servicesysteme (IDS) – FZI Forschungszentrum Informatik

Dr. Fabian Fürst
Advanced Manufacturing Technologies – Paint Shop and General Assembly – Opel Automobile GmbH
EuRoC - Advancing European Manufacturing

- European Robotics Challenges
 - EU Seventh Framework Program (FP7) funded
 - Bring innovative technologies from research to industry
- 3 industry relevant challenges
 - Reconfigurable Interactive Manufacturing Cell
 - Shop Floor Logistics and Manipulation
 - Plant Servicing and Inspection
- Competition over multiple stages
 - > 100 Teams in open call (simulation stage)
 - 45 (first stage), 15 (second stage), 6 (final stage)
EuRoC - Advancing European Manufacturing

- **Duration**
 - 2014 – 2018

- **Participants**
 - > 100 Teams from all over Europe

- **Coordinator**
 - Bruno Siziliano

- **Grant**
 - 8.3 Mio €
 - 7.0 Mio € for challenges
Team FLA²IR

FLexible Automotive Assembly with Industrial Co-WorkeRs

- FZI (challenger):
 - Software concept, design, integration
 - Development of the overall application

- MRK (system integrator):
 - Hardware integration, safety
 - Construction of gripper

- OPEL (end user):
 - Use-Case requirements
 - Feasibility checks & support
Use Case – Mounting of Polymer Sealings

- Mounting of flexible polymer sealings
 - Flexible polymer strips with pins
 - 35-39 pins clipped into holes
 - Ergonomically straining for workers

- Challenges for the Use Case
 - Various doors & sealings
 - Fast teaching required
 - Flexible polymer handling
 - Flexible dexterous manipulation
 - Contact based clip insertion
 - Robot needs to „feel“ the pins
 - Large door & human workspace
 - Safe industrial robot required
Opel’s Motivation to Participate in EuRoC

- Usage of ROS on the shop floor
 - Development of concept to use lab technologies in the plant
 - Advanced technologies in production (Standards need to be met)

- Choice of application
 - High sophisticated, unconventional challenge
 - Force sensitive assembly
 - Moving line & ambitious cycle time
 - High equipment availability
 - Scalability of technology
 - Low cost approach

- Not automatable until now!
EuRoC Development Stages

Stage II a: Benchmarking
- Car door module assembly
- 2D localization of module & door
- 6D path for module assembly & screws
- Adaptation of pick-and-place application
- Integration on benchmark hardware

Stage II a: Freestyle
- Virtual objects from 3D point clouds
- 6D surface trajectory from 2D contour
- 6D paths on 3D object surfaces
- Interactive tool to draw 2D contour
- Integration on freestyle hardware

Stage II b: Showcase
- Fine localization of clips (3D & 2D data)
- Localization of elastic polymer sealing
- Clip assembly paths with visual servoing
- Interactive tool to teach clip positions
- Tool prototype & Safe industrial robots
- Evaluation: concepts use case automation

Stage III: Pilot experiments
- Hybrid position & force control
- Safe tool for polymer sealing assembly
- Reactive behaviours for safe interaction
- Evaluation: final use case automation
- Risk assessment - human robot teams
Benchmarking – Car Door Inlay Mounting

- Learning of object poses
 - Extraction of contour from stitched point clouds
 - ROS Node to publish TFs of dynamic objects
 - Manual taught positions relative to these TFs
- Adaptive execution
 - SMACH state machines for increased reuse
 - FZI Motion pipeline for adaptive paths
 - Poses & trajectories relative to generated TF
- Force based operations
 - Force controlled insertion & screw assembly
 - Manipulation strategies with "compliant wrist"
Freestyle – Intuitive Teach-In & Adaptation

- Intuitive graphical trajectory teach-in
 - Trajectory is generated by drawing it onto a 3D model
 - Automatic adaptation to workpiece surface
- Force based surface exploration by a robot
 - Trajectory is learned by a executing point-to-point movement
 - The robot adapts a spline interpolation to the surface structure
- Online adaptation of trajectories by user interaction
 - Changes to previously taught trajectory can be applied intuitively
 - Little previous knowledge/expertise required, usable by non-experts
Freestyle – Intuitive Teach-In & Adaptation

https://youtu.be/yky_VfquO-8

CAD2Path allows easy path generation on a 3D Model
Use Case – Mounting of Polymer Sealings

- Mounting of flexible polymer sealings
 - Flexible polymer strips with pins
 - 35-39 pins clipped into holes
 - Ergonomically straining for workers

- Challenges for the Use Case
 - Various doors & sealings
 - Fast teaching required
 - Flexible polymer handling
 - Flexible dexterous manipulation
 - Contact based clip insertion
 - Robot needs to „feel“ the pins
 - Large door & human workspace
 - Safe industrial robot required
Fast Intuitive Teach-In

- **CAD-2-Path**
 - Web based tool (runs in browser)
 - Path automatically follows object surface
 - Cartesian trajectory for ROS pipeline

- **Teach-in of clip positions**
 - Hole-Tool to set support points for clips
 - Guided generation of all hole poses (TFs)
 - Automatic generation of support paths

Teach-in of full assembly process in under 5 minutes
Flexible Polymer Handling

- Special jaws for industrial gripper (PG+70)
 - Cheap, only jaws are specialized
 - Pneumatic piston for faster insertion
- Sealing can be clamped
 - Precise insertion of pins
 - Stretching of sealing is possible
- Sealing can glide freely
 - No regrasping, continuous movement
 - Next pin is precisely localized

Successful handling of flexible Polymers with a low cost gripper
Feeling the Pin

- Add-on Compliance control for robots
 - Virtual force/impedance/admittance control
 - Robot independent with virtual model
 - ROS-Control interface for easy use

- Dexterous manipulation
 - Insertion of clips is detected by forces
 - Robot reacts to work piece (e.g. collisions)
 - Optimal alignment during push in

Dexterous, force-based assembly enables many new use cases

Safe Human Robot Interaction

- Layered safety concept
 - Laser scanner safety zones
 - Worker is tracked in 3 zones
 - Hard PLC safety in inner zone
- Smooth stop of robot
 - Extension of ROS-I driver to enable “pause”
 - Hard PLC safety triggers emergency stop if robot is not fast enough

Safe human robot collaboration with no impact on the process
https://youtu.be/BX2dWxLMWeQ
(older version, the one shown will be released as soon as possible)
Using ROS-Industrial on the Shop Floor

Tools for visualization & available drivers speed up development

Robot independent developments such as force control & intuitive teach in

Easy prototyping speeds up development and integration of new hardware

Combining proven safety & adaptive approaches enables a certified safety system with ROS
Transferability for Other Applications

- Safety concept based on standard and proven equipment
- Risk assessment for production conditions approved by in-house machine and plant safety team
- Open work space attractive for general assembly (GA) applications with moving lines
Transferability for Other Applications

- Safety concept
 - Machine unloading in press shop
 - Machine loading in body shop
 - Handling of components and subassemblies
 - Screwing and mounting operations in Powertrain and GA
Transferability for Other Applications

- Force sensitivity implemented with ROS
 - Screwing and mounting operations in Powertrain and GA
 - Initial results for moving line
Transferability for Other Applications

- CAD2Path – Easy offline teaching
 - Adhesive bead application in body shop and GA (over 130 m adhesive)
 - Sealer application in paint shop (up to 40% saved programming time est.)
 - Early test with the Zafira window
End User Feedback

- Evaluating CAD-2-Path with a user study
 - Diverse combination of testers: planners, group leaders, offline programmers
 - Goal: Program sealing assembly in 15 min
 - All users mastered the task immediately

- Results of Questionnaire
 - Very intuitive and impressive speed-up
 - Meets robot programmers’ needs

CAD-2-Path was considered a technological Game Changer!

<table>
<thead>
<tr>
<th>Question</th>
<th>No Answer</th>
<th>Disagree</th>
<th>Slightly Disagree</th>
<th>Middle</th>
<th>Slightly Agree</th>
<th>Agree</th>
<th>Totally Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex paths...</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>well structured...</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>can be used...</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>clear usability...</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>all necessary...</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Conclusion – Lessons Learned

- ROS is feasible for implementations in production environments
- Combination with pragmatic safety equipment possible
- Feasibility of human robot collaboration in „real“ collaboration
- Flexibility/robustness and cycle time are contrary requirements
- Easier applications to be in focus first (not assembling ≈ 40 pins in < 60 s)
- Force sensitivity needs to be much faster
- Parallelization of processes to meet cycle times is not always an option
Bringing ROS to the Shop floor - Next Steps

- Application in moving line needs to be proven
- Speeding up force sensitivity
- Combination with vision systems
- First implementation in production
- Increase of CAD2Path product maturity
Thanks for your attention!

Questions?

Contact:

Fabian Fürst
fabian.fuerst@opel-vauxhall.com

Georg Heppner
heppner@fzi.de

More At:

http://www.euroc-project.eu/index.php?id=flaair
https://www.youtube.com/user/FZIchannel