
7th ROS-Industrial Conference
Stuttgart, Germany (EU)
rosindustrial.org/riceu2019

Matt Hansen, Sr. SW Architect
Open Source Robotics
Intel

ROS2 Robot Dev Kit

Featuring Navigation2 Overview

Intel Open Source Robotics
https://01.org/robotics-autonomous-systems

Robot Development Kit (RDK) for ROS2 is

our platform for robotics development

• Make it simple

• Make it performant

• Make it open source with ROS2

• Make it with Intel® technologies

Accelerate industry
adoption of ROS2

so you can innovate!

Robotics

Computer
Vision

AI

TSN & TCC

Real Time

Safety

Edge
Server

https://01.org/robotics-autonomous-systems

3

RDK – Intelligence, Performance, Vision

Machine
Vision

Intelligent
Manipulation

Mapping &
Planning

Color image

Depth image

• High Performance Stereo RGBD camera

• Point cloud generation

• Mapping & Navigation

• Object detection

• Face & gesture detection

• https://github.com/intel/ros2_intel_realsense

Also announced by @OpenRoboticsOrg in their twitter

ROS2 Machine Vision: ROS2 RealSense™

4

ROS Camera

Driver

*Other names and brands may be claimed as the property of others.

ROS Image Pipeline

Debayer Rectify

Point Cloud

XYZZRGB
Point Cloud (PCL)

Rectify Register
Intel® RealSense™ depth

module alignment

Photos: Sharron Liu

Machine
Vision

https://github.com/intel/ros2_intel_realsense
https://twitter.com/statuses/978791778592542720

• Intel® Open Visual Inference & Neural

network Optimization Toolkit

• CNN inference with Intel® OpenVINOTM

optimization and acceleration

• Deployment on various devices – using

common APIs

• CPU, GPU, MovidiusTM VPU, FPGA

• ROS2 interfaces for

https://github.com/opencv/dldt
https://github.com/intel/ros2_openvino_toolkit

ROS2 Machine Vision: OpenVINO™ toolkit

5*Other names and brands may be claimed as the property of others.

Machine
Vision

Object Detection Face/Emotion/Age/

Gender

Object

Segmentation

Person Re-

identification

https://github.com/intel/ros2_openvino_toolkit

ROS2 Machine Vision: Object Analytics

6*Other names and brands may be claimed as the property of others.

RealSense refers to Intel® RealSense™ technology. Modividius refers to Intel® Movidius™ technology.

• Real-time object detection, tracking, localization

https://github.com/intel/ros2_object_analytics

Machine
Vision

7

ROS2 Intelligent Manipulation: Grasp detection

Robotiq gripper photo: https://robotiq.com/products/2f85-140-adaptive-robot-gripper

• Convolutional Neural Networks (CNN)-

based grasp detection

• Dex-Net*

• Grasp Pose Detection (GPD)

• OpenVINO™ Inference acceleration

• Grasp planning

• Works with MoveIt* interfaces

https://github.com/intel/ros2_grasp_library

*Other names and brands may be claimed as the property of others.

Point Cloud

Library (PCL) or

Depth

Hand Geometry

Grasp

Candidates

Grasp

Classification

Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. Grasp

Pose Detection in Point Clouds

The International Journal of Robotics Research, Vol 36, Issue 13-14, pp.

1455 - 1473. October 2017

Intelligent
Manipulation

https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://github.com/intel/ros2_grasp_library
http://arxiv.org/abs/1706.09911

ROS2 Mapping & Planning: Navigation2

8

ROS Navigation -http://wiki.ros.org/navigation

• One of the key and most used packages of ROS

• Autonomous movement for a robot in a 2D map

• Given a ‘current pose’ and a ‘goal ‘pose’

• Path is planned, robot drives itself to the goal

• Key to accelerating ROS2 development and adoption across the community and industry

• As of Spring 2018 - no one had committed to porting Navigation to ROS2

• We gathered input from the ROS community; changes and improvements they wanted in ROS2 Navigation

• Proactively with support from OSRF, our team assumed ownership of ROS2 Navigation

• Ported, refactored, and made architectural improvements from ROS

• https://github.com/ros-planning/navigation2

http://wiki.ros.org/navigation
https://github.com/ros-planning/navigation2

Hardware:
• Intel Core i7 processor (ADLink neuron board for robotics)

• Intel Realsense RGB-D camera

• Laser radar sensor, bidirection ranging

• Ultrasonic distance measuring sensor

• IMU 6 axis sensor

• 6 wheels (2 driving + 4 universal wheels) differential driving

• Net weight: 50kg; Loading capacity: 80kg

Software:
• Ubuntu Linux 18.04

• ROS2

• Semantic Mapping, multi-storey support

• Navigation2

• Intelligent collision avoidance with pedestrian detection

and path prejudgment**

• Real-time object detection, localization and tracking**

• Cloud multi robot scheduling

• Elevator IoT communication

Potteplant

Product Example: Yunji Deli Platform w/ ROS2 + RDK

10

Navigation2 Goals

We asked the community for input and some recurring themes emerged:

• Customizable logic –ability to customize behavior, less need to fork the code

• Modularity –ability to more easily replace planners and control algorithms

• Extensibility – ability to use Python or other languages to write planners and control

In addition, the development team wanted to ensure other properties such as:

• Reliability – the system should be able to perform in a consistent way

• Quality – the code submitted should be validated before merging

• Maintainability – the workflow should prevent regressions in the above

The navigation2 project is an attempt to meet these goals

11

Navigation2 Overview
Mapping &
Planning

Improvements:

• Customizability: Behavior Trees

• Extensibility / Modularity:

• Planners and Recovery behaviors as ROS2 Actions with

plugins

• Reliability: Lifecycle nodes

• Quality: System tests

• Maintainability: Continuous Integration

https://github.com/ros-planning/navigation2

ROS2 Navigation Enabling on Commercial Mobile Robot

https://github.com/ros-planning/navigation2

12

Comparison – ROS Navigation vs Navigation2
amcl and map_server – ported from ROS Navigation with

refactoring

move_base – replaced by behavior tree based navigation

node called ‘bt_navigator’

recovery_behaviors – now actions within the behavior

tree(s)

global_planner – navfn ported as a global planner called

navfn_planner

local_planner – ‘dwb’ local planner ported from the

robot_navigation project as dwb_planner

global_costmap and local_costmap - contained within the

global and local planners respectively

planner_server and controller_server (NEW) - ROS2 action

servers (ComputePathToPose) and (FollowPath) We blew up move_base and planted a

behavior tree in it’s place

http://wiki.ros.org/navigation/Tutorials/RobotSetup

http://wiki.ros.org/navigation/Tutorials/RobotSetup

Navigation2 ROS API

13

amcl

map_server
bt_navigator

planner_server controller_server

base_controller

/cmd_vel
(20 hz)

FollowPath(a)

path
/map

/scan

scan sensor

map to
odom
transform

ComputePathTo
Pose(a)

NavigateToPose(a)

navfn_planner
global_costmap

dwb_planner
local_costmap

wheel
odometry

/odom

robot state
publisher

/tf

KEY:

nav2 node

plugin

external
node

/topic

Action(a)

recovery_server

Spin(a)

spin

bt_navigator – uses behavior tree

to control the logic flow

14

Behavior Trees
What are behavior trees? - https://www.behaviortree.dev/

Program flow control decision trees, similar to state machines but hierarchical in

nature

Enables customizable logic / behavior flows without rebuilding code!

Enables extensibility by adding new nodes for other non-navigation actions

https://www.behaviortree.dev/

15

Behavior Tree XML example
<!--

This Behavior Tree replans the global path periodically at 1 Hz and it also has primitive recovery actions.

-->

<root main_tree_to_execute="MainTree">

<BehaviorTree ID="MainTree">

<RecoveryNode number_of_retries="6">

<Sequence name="NavigateWithReplanning">

<RateController hz="1.0">

<Fallback>

<GoalReached/>

<ComputePathToPose goal="${goal}" path="${path}"/>

</Fallback>

</RateController>

<FollowPath path="${path}"/>

</Sequence>

<SequenceStar name="RecoveryActions">

<clearEntirelyCostmapServiceRequest

service_name="/local_costmap/clear_entirely_local_costmap"/>

<clearEntirelyCostmapServiceRequest

service_name="/global_costmap/clear_entirely_global_costmap"/>

<Spin/>

</SequenceStar>

</RecoveryNode>

</BehaviorTree>

</root>

Main

Retry 6x

RecoveryNavigate

Compute

Path

1.0

Hz Follow

Path

Goal

Reached

?

Clear

Global

costmap

Spin
Clear Local

costmap

Navigate
Key:

Control

Action

Conditionhttps://github.com/ros-planning/navigation2/tree/master/nav2_bt_navigator

https://github.com/ros-planning/navigation2/tree/master/nav2_bt_navigator

ROS2 Lifecycle nodes

16

Lifecycle nodes are ‘managed’ nodes that have an

internal state machine

https://design.ros2.org/articles/node_lifecycle.html

States:

- Unconfigured = created or new

- Inactive = ready to work

- Active = doing real work

- Finalized = ready to destroy

States are controlled through ‘change_state’ service

Each lifecycle node must implement the callbacks for

the state transitions

- onConfigure(), onActivate(), etc.

Lifecycle nodes provide reliability of the system launch flow

https://design.ros2.org/articles/node_lifecycle.html

17

Navigation2 lifecycle manager

The lifecycle_manager node provides a ‘management’ service for controlling the

startup and shutdown of the Navigation2 nodes

‘autostart’ parameter tells the lifecycle manager to start up everything in

sequence automatically

lifecycle_manager
node

parameters: {
autostart: boolean
node_list: […]

}

/node/change_state/lifecycle_manager/manage_nodes node
node

node

18

Nav2 Plugin interface

The ‘nav2_core’ package contains abstract interfaces for plugins

• Global Planner – global_planner.hpp

• Local Planner – local_planner.hpp

• Recovery behaviors – recovery.hpp

• Goal checker – goal_checker.hpp

• Exceptions – exceptions.hpp

Costmap and trajectory critics are still plugins, as in ROS

Enables extensibility by creating new plugins without requiring rebuilding

existing Navigation2

planner_server

navfn_planner
global_costmap

19

Navigation2 Bringup

nav2_bringup provides the basic instructions and launch files for starting up the

Navigation2 system

https://github.com/ros-planning/navigation2/tree/master/nav2_bringup

sudo apt install ros-dashing-navigation2 ros-dashing-nav2-bringup
source /opt/ros/dashing/setup.bash
Launch the nav2 system
ros2 launch nav2_bringup nav2_bringup_launch.py use_sim_time:=True autostart:=True \
map:=<full/path/to/map.yaml>

For best results, follow the instructions on nav2_bringup/README.md

More tutorials and documentation is in progress, watch for updates

https://github.com/ros-planning/navigation2/tree/master/nav2_bringup

20

Simulation in the loop testing -

nav2_system_testsIn ROS navigation, each pull request / code change was manually tested on a

physical robot prior to being merged.

• This is a time-consuming manual process

By contrast during the development of navigation2, extensive testing is primarily

done using Gazebo

To ensure quality and maintainability, an automated system test was created

that uses Gazebo and a Turtlebot3 model to test that the system:

• Localizes correctly

• Successfully transitions into the ‘active’ lifecycle state

• Navigates successfully to a known location

21

System test results

With the system test in place, able to find issues quickly (< 1minute to run)

• Example: prior to ROS2 Dashing release FastRTPS caused our test to break

• OSRF & Eprosima were able to reproduce the failures and fix

Able to run the test 100x/hour to find race conditions

• Drove pass rate from ~85% for Dashing to 95+% for Eloquent

Able to quickly test different DDS implementations for issues

• Found issue where CycloneDDS was initially failing more frequently than

FastRTPS, ADLink was able to fix and increase to 95%+

System test is now integrated into ROS build farm “nightly” build

Future Plans

22

Release Nav2 packages for ROS2 Eloquent

Analyze and improve system performance metrics

Improve quality and robustness by improving test coverage

Increase community involvement

• Currently asking for input for F-turtle features

Build ROS2 expertise in academia and industry

Continuously improve!

*Other names and brands may be claimed as the property of others.

Call to Action

23

Try Navigation2!

• https://github.com/ros-planning/navigation2

• Submit issues and PRs

Participate in our ROS2 Working Group

• Navigation2 WG – Thursdays 3pm Pacific time

• https://groups.google.com/forum/#!forum/ros-navigation-working-group-invites

• Contact me if you have questions: discourse.ros.org - mkhansen

https://github.com/ros-planning/navigation2
https://groups.google.com/forum/#!forum/ros-navigation-working-group-invites

Navigation2 team

24

Matt Hansen, github: mkhansen-intel

Carl Delsey, github: crdelsey

Mike Jeronimo, github: mjeronimo

Carlos Orduno, github: orduno

Mohammad Haghighipanah, github: mhpanah

Brian Wilcox, github: bpwilcox

Melih Erdogan, github: mlherd

Yathartha Tuladhar, github: yathartha3

Steve Macenski, github: SteveMacenski

Thank You!

25

RDK Software Architecture

*Other names and brands may be claimed as the property of others. RealSense refers to Intel® RealSense™ technology. Modividius refers to Intel® Movidius™ technology.

Robot Arms

Navigation2

Object

Tracking
Pipeline Composing

Tool

Mission Management

Remote Management (Edge/Cloud)

Parameter Tuning

Tool

Other

modules

RealSense Node

Robot State Monitor

Object

Detection

Face

Detection

Emotion

Recognition

Head Pose

Estimation

Object

Segmentation
Person Reid

CPU

Drivers & Libraries(OpenVINO™ Toolkit, RealSense™ SDK2.0, etc.)

ROS2 Core

SLAM MoveIt2

Grasp

Library

Hand-eye

Calibration

Performance

Measurement Tool

Sample Code

API Documents

Tutorials

G
a
z
e
b
o

ID
E

Mapping

& Planning

Tools Docs

Lidar IMU CameraWheels

GPU VPU FPGA

USB Camera Node

3D

Localization

Robot Development Kit
Machine Vision

Intelligent

Manipulation

Intel Focus

Intel Contribute

