7t ROS-Industrial Conference
Stuttgart, Germany (EU)
rosindustrial.org/riceu2019

ROS2 Robot Dev Kit
Featuring Navigation2 Overview




Intel Open Source Robotics

https://01.org/robotics-autonomous-systems

Robot Development Kit (RDK) for ROS2 is
our platform for robotics development

Make it simple

*  Make it performant

Robotics
:::ROS

 Make it open source with ROS2

- Make it with Intel® technologies

Accelerate industry
adoption of ROS2
SO you can innovate!



https://01.org/robotics-autonomous-systems

RDK — Intelligence, Performance, Vision

/" Mapping & Y /| Machine Y V'  inteligent N
Planning /4 Vision \ Manipulation /




ROS2 Machine Vision: ROS2 RealSense™

« High Performance Stereo RGBD camera
« Point cloud generation
« Mapping & Navigation
* Object detection

« Face & gesture detection

* https://github.com/intel/ros2 intel realsense

Also announced by @OpenRoboticsOrg in their twitter
ROS Image Pipeline

: —_—
Color image

Depth image

B ]

Point Cloud (PCL)



https://github.com/intel/ros2_intel_realsense
https://twitter.com/statuses/978791778592542720

Vision

ROS2 Machine Vision: OpenVINO™ toolkit V...

 Intel® Open Visual Inference & Neural
network Optimization Toolkit

« CNN inference with Intel® OpenVINO™
optimization and acceleration

* Deployment on various devices — using
common APIs
« CPU, GPU, Movidius™ VPU, FPGA

« ROS2 interfaces for

Object Detection Face/Emotion/Age/
Gender

Object Person Re-

Segmentation identification

https://github.com/opencv/didt
https://github.com/intel/ros2 openvino toolkit

Queve size

% TensorFlow [Caffe]

040) S ONNX | o
O gw
N Run Model Inference
Optimizer Engine
xml
.bin
OpenVINO™



https://github.com/intel/ros2_openvino_toolkit

- Real-time object detection, tracking, localization

https://github.com/intel/ros2 object analytics

my

_________________________________________________________________________________

3D OpenVINO

Camera ROS Node
(crPu, GPU, VPU)

Tracking
ROS Node

Movwvidius NCS

RealSense ROS Node

ROS Node

Object 3D
Localization
ROS Node




ROS2 Intelligent Manipulation: Grasp detection,

« Convolutional Neural Networks (CNN)-
based grasp detection

+ Dex-Net* ® Tensor
» Grasp Pose Detection (GPD)
Caffe

 OpenVINO™ |nference acceleration
« Grasp planning
« Works with Movelt* interfaces

>

https://github.com/intel/ros2 qgrasp library

Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. Grasp
Pose Detection in Point Clouds

The International Journal of Robotics Research, Vo ue 13-14, pp.
73. October 2017
o Taxis
o

]' E ) ‘ binormal
approach
Point Cloud
Library (PCL) or Grasp Grasp
Depth Candidates Classification

Hand Geometry



https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://github.com/intel/ros2_grasp_library
http://arxiv.org/abs/1706.09911

ROS2 Mapping & Planning: Navigation2

3 .

& oA A el ZIn Ak Al

ROS Navigation -http://wiki.ros.org/navigation

* One of the key and most used packages of ROS

* Autonomous movement for a robot in a 2D map
« Given a ‘current pose’ and a ‘goal ‘pose’
« Path is planned, robot drives itself to the goal

« Key to accelerating ROS2 development and adoption across the community and industry
« As of Spring 2018 - no one had committed to porting Navigation to ROS2
 We gathered input from the ROS community; changes and improvements they wanted in ROS2 Navigation
* Proactively with support from OSRF, our team assumed ownership of ROS2 Navigation

« Ported, refactored, and made architectural improvements from ROS

« https://qgithub.com/ros-planning/navigation2



http://wiki.ros.org/navigation
https://github.com/ros-planning/navigation2

Product Example: Yunji Deli Platform w/ ROS2 + RDK

\

S 10 i) 352

~ YUNJI TECHNOLOGY

- A

ardware:

* Intel Core i7 processor (ADLink neuron board for robotics)
» Intel Realsense RGB-D camera

« Laser radar sensor, bidirection ranging

« Ultrasonic distance measuring sensor

IMU 6 axis sensor

6 wheels (2 driving + 4 universal wheels) differential driving

K Net weight: 50kg; Loading capacity: 80kg

/
/Software: \

« Ubuntu Linux 18.04

SRREOS2

« Semantic Mapping, multi-storey support

» Navigation2

 Intelligent collision avoidance with pedestrian detection
and path prejudgment**

» Real-time object detection, localization and tracking**

* Cloud multi robot scheduling

Elevator loT communication

l LR LS |



Navigation2 Goals

We asked the community for input and some recurring themes emerged:

. Customizable logic —ability to customize behavior, less need to fork the code

. Modularity —ability to more easily replace planners and control algorithms

. Extensibility — ability to use Python or other languages to write planners and control
In addition, the development team wanted to ensure other properties such as:

. Reliability — the system should be able to perform in a consistent way

. Quality — the code submitted should be validated before merging

. Maintainability — the workflow should prevent regressions in the above

The navigation2 project is an attempt to meet these goals




Navigation2 Overview

Improvements:

« Customizability: Behavior Trees

- Extensibility / Modularity:

* Planners and Recovery behaviors as ROS2 Actions with
plugins

« Reliability: Lifecycle nodes
« Quality: System tests

« Maintainability: Continuous Integration

https://qithub.com/ros-planning/navigation?2

N
ROS2 Navigation Enabling on Commercial Mobile Robot


https://github.com/ros-planning/navigation2

Comparison — ROS Navigation vs Navigation2

amcl and map_server — ported from ROS Navigation with
refactoring

move_base — replaced by behavior tree based navigation

node called ‘bt_navigator’ Teomet Paggs/osestamped Navigation Stagk Setup
e
recovery_behaviors — now actions within the behavior » cbol_olonner ambal.costmep :
tree(s) - _
-

sensor transforms

sensor topics
sensor_msgs/Laserscan
sensor_msgs/PointCloud

internal

SEensor saurces
tfitfMessage nav_msgs/Path

recovery_behaviors
global_planner — navfn ported as a global planner called ’

navfn_planner P ‘ogom o >
— nav_msgs/Odometry \

local_costmap

local_planner — ‘dwb’ local planner ported from the

robot_navigation project as dwb_planner _m_mr,Fgmm_msmigl -
prou‘de node
I 1 1 base controller optional pruvifjfad nade
global_costmap and local_costmap - contained within the |
gIObaI and local planners respeCtiver http://wiki.ros.org/navigation/Tutorials/RobotSetup

planner_server and controller_server (NEW) - ROS2 action
servers (ComputePathToPose) and (FollowPath) We blew up move_base and planted a
behavior tree in it's place

intel) l 12



http://wiki.ros.org/navigation/Tutorials/RobotSetup

KEY:

Navigation2 ROS API

plugin

external
node

bt navigator — uses behavior tree

NavigateToPose(a) to control the logic flow

/topic

|

bt_navigator Action(a)

map_server Spin(a)

|

ComputePathTo

map to Pose(a)
odom !

transform

g planner_server controller_server
navfn_planner dwb_planner
global costmap local costmap

FollowPath(a)

recovery_server

Jellg
| /cmd_vel
Jodom (20 hz)

/tf
scan sensor robot state wheel
: base_controller
publisher odometry




Behavior Trees
What are behavior trees? - https://www.behaviortree.dev/

Program flow control decision trees, similar to state machines but hierarchical in

nature

BehaviorTree

Seguence

/\

RetryUntilSuccesful Build Awesome
Robot Behaviors

Fallback

ad
Cocumentation

Enables customizable logic / behavior flows without rebuilding code!

Enables extensibility by adding new nodes for other non-navigation actions

@ |


https://www.behaviortree.dev/

Behavior Tree XML example

<!--
This Behavior Tree replans the global path periodically at 1 Hz and it also has primitive recovery actions.
- Main

<root main_tree_to_execute="MainTree">
<BehaviorTree ID="MainTree">
<RecoveryNode number_of_retries="6">

<Sequence name="NavigateWithReplanning"> Retry 6x
<RateController hz="1.0">
<Fallback>
<GoalReached/>
<ComputePathToPose goal="${goall}" path="¢{path}"/>
</Fallback> Navigate Recovery
</RateController>
<FollowPath path="${path}"/>
</Sequence>
<SequenceStar name="RecoveryActions"> v
<clearEntirelyCostmapServiceRequest Follow Clear Clear Local ;
service_name="/local_costmap/clear_entirely local_costmap"/> Path Global costmap Spin
<clearEntirelyCostmapServiceRequest costmap
service_name="/global_costmap/clear_entirely global_ costmap"/> _
<Spin/> Navigate Ke .
</SequenceStar> )/'
</RecoveryNode> ‘/’///’\\\\\\! Control
</BehaviorTree> Goal Compute
</root> Reaﬁhed Path Action

Condition

https://github.com/ros-planning/navigation2/tree/master/nav2 bt navigator



https://github.com/ros-planning/navigation2/tree/master/nav2_bt_navigator

ROS2 Lifecycle nodes ==

onConfigure:
[FAILURE]

Lifecycle nodes are ‘managed’ nodes that have an
internal state machine

onCleanup:
[SUCCESS]

rrorProcessin 2anin

https://design.ros2.org/articles/node lifecycle.html

States: e
- Unconfigured = created or new [_snutnaboun ]
- Inactive = ready to work orpescrivate
- ACtlve = d0|ng real Work Finalized [ Deactivating I [ Activating ]

. . ‘do / onDeactivate() J l do / onActivate() ‘
- Finalized = ready to destroy
States are controlled through ‘change_state’ service

- - é 0/ callbacks

Each lifecycle node must implement the callbacks for mers
the state transitions
- onConfigure(), onActivate(), etc. —

Lifecycle nodes provide reliability of the system launch flow



https://design.ros2.org/articles/node_lifecycle.html

Navigation?2 lifecycle manager

The lifecycle_manager node provides a ‘management’ service for controlling the
startup and shutdown of the Navigation2 nodes

‘autostart’ parameter tells the lifecycle manager to start up everything in
sequence automatically

parameters: {
autostart: boolean
node_list: [...]

}

i node/change_state
/I|fecycle_manager/manage_nodes; lifecycle_manager / / ge_ U((




Nav2 Plugin interface

The ‘nav2_core’ package contains abstract interfaces for plugins
* Global Planner — global planner.npp

» Local Planner — local_planner.hpp

planner_server

navfn_planner
global costmap

* Recovery behaviors — recovery.hpp
* Goal checker — goal checker.hpp
* EXxceptions — exceptions.hpp

Costmap and trajectory critics are still plugins, as in ROS

Enables extensibility by creating new plugins without requiring rebuilding
existing Navigation2




Navigation2 Bringup

nav2_bringup provides the basic instructions and launch files for starting up the
Navigation2 system

https://github.com/ros-planning/navigation2/tree/master/nav2 brinqup

sudo apt install ros-dashing-navigation2 ros-dashing-nav2-bringup
source /opt/ros/dashing/setup.bash

# Launch the nav2 system
ros2 launch nav2_bringup nav2 bringup launch.py use sim time:=True autostart:=True \

map:=<full/path/to/map.yaml>

For best results, follow the instructions on nav2_bringup/README.md

More tutorials and documentation is in progress, watch for updates



https://github.com/ros-planning/navigation2/tree/master/nav2_bringup

Simulation in the loop testing -
m%&gn&M&Rﬁr@a@Jﬁ%ﬁF%queﬁ / code change was manually tested on a

physical robot prior to being merged.
 Thisis atime-consuming manual process

By contrast during the development of navigation2, extensive testing is primarily
done using Gazebo

To ensure quality and maintainability, an automated system test was created
that uses Gazebo and a Turtlebot3 model to test that the system:

* Localizes correctly

« Successfully transitions into the ‘active’ lifecycle state

* Navigates successfully to a known location




System test results

With the system test in place, able to find issues quickly (< 1minute to run)

« Example: prior to ROS2 Dashing release FastRTPS caused our test to break
« OSRF & Eprosima were able to reproduce the failures and fix

Able to run the test 100x/hour to find race conditions

* Drove pass rate from ~85% for Dashing to 95+% for Eloquent

Able to quickly test different DDS implementations for issues

* Found issue where CycloneDDS was Initially failing more frequently than
FastRTPS, ADLInk was able to fix and increase to 95%-+

System test is now integrated into ROS build farm “nightly” build




Future Plans

Release Nav2 packages for ROS2 Eloquent

Analyze and improve system performance metrics
Improve quality and robustness by improving test coverage
Increase community involvement

« Currently asking for input for F-turtle features

Build ROS2 expertise in academia and industry

Continuously improve!




Call to Action

Try Navigation?2!

o https://github.com/ros-planning/navigation?2

e Submit issues and PRs
Participate in our ROS2 Working Group
« Navigation2 WG — Thursdays 3pm Pacific time

* https://groups.gooqle.com/forum/#!forum/ros-navigation-working-group-invites

« Contact me if you have guestions: discourse.ros.org - mkhansen



https://github.com/ros-planning/navigation2
https://groups.google.com/forum/#!forum/ros-navigation-working-group-invites

Navigation2 team

Matt Hansen, github: mkhansen-intel

Carl Delsey, github: crdelsey

Mike Jeronimo, github: mjeronimo

Carlos Orduno, github: orduno

Brian Wilcox, github: bpwilcox
Melih Erdogan, github: mlherd
Yathartha Tuladhar, github: yathartha3

Steve Macenski, github: SteveMacenski







RDK Software Architecture

Remote Management (Edge/Cloud)

< 1

Robot Development Kit

/ Machine Vision \ Mission Management 4 Tools ) Docs
Object 3D Other Piveli -
! . . peline Composing
Tracking Localization modules /Mapplng \ /Intel Ilgent \ Tool Sample Code
_ & Planning Manipulation
Face Object .
Detection Segmentation Person Reid Robot State Monitor = g('?
SLAM Movelt2 API Documents = 3
(on
o
Detection Recognition Estimation [ Hand-eye Grasp Tool _
2 Calibration Library Tutorials
RealSense Node USB Camera Node Performance
\ / & / K / K Measurement Tool j \ /
ROS2 Core
Drivers & Libraries(OpenVINO™ Toolkit, RealSense™ SDK2.0, etc.)
Robot Arms Wheels Lidar IMU Camera
Intel Focus
CPU GPU VPU FPGA
[ I intel Contribute




